1,448
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Dissolved organic carbon in Alaskan Arctic snow: concentrations, light-absorption properties, and bioavailability

, , , , , , , , , , , & show all
Pages 1-19 | Received 15 Nov 2018, Accepted 02 Jun 2020, Published online: 26 Jun 2020

References

  • ACIA (Arctic Climate Impact Assessment). 2004. Impacts of a WarmingArctic: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK.
  • AMAP (Arctic Monitoring and Assessment Programme). 2015. AMAP Assessment 2015: Black Carbon and Ozone as Arctic Climate Forcers. Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway.
  • Andreae, M. O. and Gelencser, A. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6, 3131–3148. doi:10.5194/acp-6-3131-2006
  • Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R. and Sattler, B. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biol. 15, 955–960. doi:10.1111/j.1365-2486.2008.01758.x
  • Antony, R., Grannas, A. M., Willoughby, A. S., Sleighter, R. L., Thamban, M. and co-authors. 2014. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet. Environ. Sci. Technol. 48, 6151–6159. doi:10.1021/es405246a
  • Antony, R., Mahalinganathan, K., Thamban, M. and Nair, S. 2011. Organic carbon in Antarctic snow: spatial trends and possible sources. Environ. Sci. Technol. 45, 9944–9950. doi:10.1021/es203512t
  • Assaad, A., Pontvianne, S. and Pons, M.-N. 2017. Assessment of organic pollution of an industrial river by synchronous fluorescence and UV-vis spectroscopy: the Fensch River (NE France)). Environ. Monit. Assess. 189, 229. doi:10.1007/s10661-017-5933-3
  • Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C. and co-authors. 2007. Spectral absorption properties of atmospheric aerosols. Atmos. Chem. Phys. 7, 5937–5943. doi:10.5194/acp-7-5937-2007
  • Bokhorst, S., Pedersen, S. H., Brucker, L., Anisimov, O., Bjerke, J. W. and co-authors. 2016. Changing Arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling, and impacts. AMBIO 45, 516–537. doi:10.1007/s13280-016-0770-0
  • Bond, T. C. 2001. Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geophys. Res. Lett. 28, 4075–4078. doi:10.1029/2001GL013652
  • Bond, T. C. and Bergstrom, R. W. 2006. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Technol. 40, 27–67. doi:10.1080/02786820500421521
  • Bond, T. C., Doherty, S. J., Fahey, D., Forster, P., Berntsen, T. and co-authors. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118, 5380–5552. doi:10.1002/jgrd.50171
  • Bosch, C., Andersson, A., Kirillova, E., Budhavant, K., Tiwari, S. and co-authors. 2014. Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean. J. Geophys. Res. Atmos. 119, 11,743–11,759. doi:10.1002/2014JD022127
  • Callaghan, T. V., Johansson, M., Brown, R., Groisman, P. Y., Labba, N. and co-authors. 2011. The changing face of arctic snow cover: a synthesis of observed and projected changes. AMBIO 40, 17–31. doi:10.1007/s13280-011-0212-y
  • Chen, Y. and Bond, T. C. 2010. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 10, 1773–1787. doi:10.5194/acp-10-1773-2010
  • Cheng, Y., He, K., Du, Z., Engling, G., Liu, J. and co-authors. 2016. The characteristics of brown carbon aerosol during winter in Beijing. Atmos. Environ. 127, 355–364. doi:10.1016/j.atmosenv.2015.12.035
  • Cohen, J., Furtado, J. C., Jones, J., Barlow, M., Whittleston, D. and co-authors. 2014. Linking Siberian snow cover to precursors of stratospheric variability. J. Clim. 27, 5422–5432. doi:10.1175/JCLI-D-13-00779.1
  • Cohen, J., Jones, J., Furtado, J. C. and Tziperman, E. 2013. Warm Arctic, cold continents: A common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather. Oceanography 26, 150–160. https://dx.doi.org/10.5670/oceanog.2013.70
  • Cooper, E. J. 2014. Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 271–295. doi:10.1146/annurev-ecolsys-120213-091620
  • D’Amore, D. V., Edwards, R. T., Herendeen, P. A., Hood, E. and Fellman, J. B. 2015. Dissolved organic carbon fluxes from hydropedologic units in Alaskan coastal temperate rainforest watersheds. Soil Sci. Soc. Am. J. 79, 378–388. doi:10.2136/sssaj2014.09.0380
  • Derksen, C., Brown, R., Mudryk, L. and Luojus, K. 2015. Arctic: terrestrial snow cover (in State of the Climate in 2014). Bull. Am. Meteorol. Soc. 96, S133–S135.
  • Doherty, S. J., Grenfell, T. C., Forsström, S., Hegg, D. L., Brandt, R. E. and co-authors. 2013. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J. Geophys. Res. Atmos. 118, 5553–5569. doi:10.1002/jgrd.50235
  • Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D. and Brandt, R. E. 2010. Light-absorbing impurities in Arctic snow. Atmos. Chem. Phys. 10, 11647–11680. doi:10.5194/acp-10-11647-2010
  • Dou, T., Xiao, C., Du, Z., Schauer, J. J., Ren, H. and co-authors. 2017. Sources, evolution and impacts of EC and OC in snow on sea ice: a measurement study in Barrow, Alaska. Sci. Bull 62, 1547–1554. doi:10.1016/j.scib.2017.10.014
  • Dou, T., Xiao, C., Shindell, D. T., Liu, J., Eleftheriadis, K. and co-authors. 2012. The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model. Atmos. Chem. Phys. 12, 7995–8007. doi:10.5194/acp-12-7995-2012
  • Draxler, R. R. and Rolph, G. D. 2010. Hysplit (hybrid single-particle lagrangian integrated trajectory) model access via NOAA ARL ready website. Online at: http://ready.arl.noaa.gov/HYSPLIT.php
  • Du, Z., Xiao, C., Dou, T., Li, S., An, H. and co-authors. 2019. Comparison of Sr-Nd-Pb isotopes in insoluble dust between northwestern China and high-latitude regions in the Northern Hemisphere. Atmos. Environ. 214, 116837. doi:10.1016/j.atmosenv.2019.116837
  • Dumont, M., Brun, E., Picard, G., Michou, M., Libois, Q. and co-authors. 2014. Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nature Geosci. 7, 509–512. doi:10.1038/ngeo2180
  • Fellman, J. B., Hood, E., Raymond, P. A., Stubbins, A. and Spencer, R. G. M. 2015. Spatial variation in the origin of dissolved organic carbon in snow on the Juneau icefield, Southeast Alaska. Environ. Sci. Technol. 49, 11492–11499. doi:10.1021/acs.est.5b02685
  • Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H. and co-authors. 2009. Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys. 9, 2481–2497. doi:10.5194/acp-9-2481-2009
  • Flanner, M. G., Zender, C. S., Randerson, J. T. and Rasch, P. J. 2007. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res 112, D11202. doi:10.1029/2006JD008003
  • Gao, T., Kang, S., Chen, R., Zhang, T., Zhang, T. and co-authors. 2019. Riverine dissolved organic carbon and its optical properties in a permafrost region of the Upper Heihe River basin in the northern Tibetan Plateau. Sci. Total Environ. 686, 370–381. doi:10.1016/j.scitotenv.2019.05.478
  • Gao, T., Kang, S., Zhang, Y., Sprenger, M., Wang, F. and co-authors. 2020. Characterization, sources and transport of dissolved organic carbon and nitrogen from a glacier in the Central Asia. Sci. Total Environ. 725, 138346. doi:10.1016/j.scitotenv.2020.138346
  • Goldenson, N., Doherty, S. J., Bitz, C. M., Holland, M. M., Light, B. and co-authors. 2012. Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM. Atmos. Chem. Phys. 12, 7903–7920. doi:10.5194/acp-12-7903-2012
  • Grannas, A. M., Hockaday, W. C., Hatcher, P. G., Thompson, L. G. and Mosley‐Thompson, E. 2006. New revelations on the nature of organic matter in ice cores. J. Geophys. Res. 111, D04304.
  • Grannas, A. M., Jones, A. E., Dibb, J. E., Ammann, M., Anastasio, C. and co-authors. 2007. An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos. Chem. Phys. 7, 4329–4373. doi:10.5194/acp-7-4329-2007
  • Grannas, A. M., Shepson, P. B. and Filley, T. R. 2004. Photochemistry and nature of organic matter in Arctic and Antarctic snow. Global Biogeochem. Cycle 18, GB1006.
  • Hood, E., Battin, T. J., Fellman, J., O'Neel, S. and Spencer, R. G. M. 2015. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96. doi:10.1038/ngeo2331
  • Hood, E., Fellman, J. B., Spencer, R. G. M., Hernes, P. J., Edwards, R. T. and co-authors. 2009. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462, 1044–1047. doi:10.1038/nature08580
  • Hu, Z., Kang, S., Yan, F., Zhang, Y., Li, Y. and co-authors. 2018. Dissolved organic carbon fractionation accelerates glacier-melting: a case study in the northern Tibetan Plateau. Sci. Total Environ. 627, 579–585. doi:10.1016/j.scitotenv.2018.01.265
  • Huang, J., Zhang, X., Zhang, Q., Lin, Y., Hao, M. and co-authors. 2017. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Change 7, 875–879. doi:10.1038/s41558-017-0009-5
  • Huntington, T. G., Balch, W. M., Aiken, G. R., Sheffield, J., Luo, L. and co-authors. 2016. Climate change and dissolved organic carbon export to the Gulf of Maine. J. Geophys. Res. Biogeosci. 121, 2700–2716. doi:10.1002/2015JG003314
  • IPCC. 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer]. https://www.ipcc.ch/srocc/.
  • Kelly, R., Chipman, M. L., Higuera, P. E., Stefanova, I., Brubaker, L. B. and co-authors. 2013. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. USA. 110, 13055–13060. doi:10.1073/pnas.1305069110
  • Kim, Y., Hatsushika, H., Muskett, R. R. and Yamazaki, K. 2005. Possible effect of boreal wildfire soot on Arctic sea ice and Alaska glaciers. Atmos. Environ. 39, 3513–3520. doi:10.1016/j.atmosenv.2005.02.050
  • Kirchstetter, T. W., Novakov, T. and Hobbs, P. V. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109, D21208. doi:10.1029/2004JD004999
  • Kirillova, E. N., Andersson, A., Han, J., Lee, M. and Gustafsson, Ö. 2014. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China. Atmos. Chem. Phys. 14, 1413–1422. doi:10.5194/acp-14-1413-2014
  • Koch, D., Menon, S., Del Genio, A., Ruedy, R., Alienov, I. and co-authors. 2009. Distinguishing aerosol impacts on climate over the past century. J. Clim. 22, 2659–2677. doi:10.1175/2008JCLI2573.1
  • Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. and co-authors. 2013. Relationship between oxidation level and optical properties of secondary organic aerosol. Environ. Sci. Technol. 47, 6349–6357. doi:10.1021/es401043j
  • Lambert, F., Bigler, M., Steffensen, J. P., Hutterli, M. and Fischer, H. 2012. Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Clim. Past 8, 609–623. doi:10.5194/cp-8-609-2012
  • Lawson, E. C., Wadham, J. L., Tranter, M., Stibal, M., Lis, G. P. and co-authors. 2014. Greenland Ice Sheet exports labile organic carbon to the Arctic oceans. Biogeosciences 11, 4015–4028. doi:10.5194/bg-11-4015-2014
  • Legrand, M., Preunkert, S., Jourdain, B., Guilhermet, J., Fa{Ï}N, X. and co-authors. 2013. Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance. Clim. Past 9, 2195–2211. doi:10.5194/cp-9-2195-2013
  • Levinson, R., Akbari, H. and Berdahl, P. 2010. Measuring solar reflectance–Part I: defining a metric that accurately predicts solar heat gain. Sol. Energy 84, 1717–1744. doi:10.1016/j.solener.2010.04.018
  • Li, C., Yan, F., Kang, S., Chen, P., Han, X. and co-authors. 2017. Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition. Atmos. Chem. Phys. 17, 11899–11912. doi:10.5194/acp-17-11899-2017
  • Li, X., Ding, Y., Xu, J., He, X., Han, T. and co-authors. 2018. Importance of mountain glaciers as a source of dissolved organic carbon. J. Geophys. Res. Earth Surf. 123, 2123–2134.
  • Lin, G., Penner, J. E., Flanner, M. G., Sillman, S., Xu, L. and co-authors. 2014. Radiative forcing of organic aerosol in the atmosphere and on snow: effects of SOA and brown carbon. J. Geophys. Res. Atmos. 119, 7453–7476. doi:10.1002/2013JD021186
  • Liu, J., Scheuer, E., Dibb, J. E., Diskin, G. S., Ziemba, L. D. and co-authors. 2015. Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing. Atmos. Chem. Phys. 15, 7841–7858. doi:10.5194/acp-15-7841-2015
  • Liu, Y. M., Xu, J., Kang, S., Li, X. and Li, Y. 2016. Storage of dissolved organic carbon in Chinese glaciers. J. Glaciol. 62, 402–406. doi:10.1017/jog.2016.47
  • Marks, A. A., Lamare, M. L. and King, M. D. 2017. Optical properties of sea ice doped with black carbon–an experimental and radiative-transfer modelling comparison. Cryosphere 11, 2867–2881. doi:10.5194/tc-11-2867-2017
  • McNeill, V. F., Grannas, A. M., Abbatt, J. P. D., Ammann, M., Ariya, P. A. and co-authors. 2012. Organics in environmental ices: sources, chemistry, and impacts. Atmos. Chem. Phys. 12, 9653–9678. doi:10.5194/acp-12-9653-2012
  • Meyer, T., Lei, Y. D., Muradi, I. and Wania, F. 2009. Organic contaminant release from melting snow. 1. Influence of chemical partitioning. Environ. Sci. Technol. 43, 657–662. doi:10.1021/es8020217
  • Mouteva, G. O., Czimczik, C. I., Fahrni, S. M., Wiggins, E. B., Rogers, B. M. and co-authors. 2015. Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils. Glob. Biogeochem. Cycles 29, 1977–2000. doi:10.1002/2015GB005247
  • Müller, T., Nowak, A., Wiedensohler, A., Sheridan, P., Laborde, M. and co-authors. 2009. Angular illumination and truncation of three different integrating nephelometers: implications for empirical, size-based corrections. Aerosol Sci. Technol. 43, 581–586. https://doi.org/ doi:10.1080/02786820902798484
  • Musilova, M., Tranter, M., Wadham, J., Telling, J., Tedstone, A. and co-authors. 2017. Microbially driven export of labile organic carbon from the Greenland ice sheet. Nat. Geosci. 10, 360–365. https://doi.org/ doi:10.1038/ngeo2920
  • O’Donnell, J. A., Aiken, G. R., Swanson, D. K., Panda, S., Butler, K. D. and co-authors. 2016. Dissolved organic matter composition of Arctic rivers: linking permafrost and parent material to riverine carbon. Glob. Biogeochem. Cycles 30, 1811–1826. doi:10.1002/2016GB005482
  • Pautler, B. G., Simpson, A. J., Simpson, M. J., Tseng, L.-H., Spraul, M. and co-authors. 2011. Detection and structural identification of dissolved organic matter in Antarctic glacial ice at natural abundance by SPR-W5-WATERGATE 1H NMR spectroscopy. Environ. Sci. Technol. 45, 4710–4717. doi:10.1021/es200697c
  • Ping, C., Michaelson, G. J., Jorgenson, M. T., Kimble, J. M., Epstein, H. E. and co-authors. 2008. High stocks of soil organic carbon in the North American Arctic region. Nat. Geosci. 1, 615–619. doi:10.1038/ngeo284
  • Pithan, F. and Mauritsen, T. 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184. doi:10.1038/ngeo2071
  • Pokhrel, R. P., Wagner, N. L., Langridge, J. M., Lack, D., Jayarathne, T. and co-authors. 2016. Parameterization of single scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC/OC for aerosol emissions from biomass burning. Atmos. Chem. Phys. 16, 9549–9561. doi:10.5194/acp-16-9549-2016
  • Pollard, P. C. and Ducklow, H. 2011. Ultrahigh bacterial production in a eutrophic subtropical Australian river: Does viral lysis short‐circuit the microbial loop? Limnol. Oceanogr. 56, 1115–1129. doi:10.4319/lo.2011.56.3.1115
  • Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K. M. and co-authors. 2015. Light-absorbing particles in snow and ice: measurement and modeling of climatic and hydrological impact. Adv. Atmos. Sci. 32, 64–91. doi:10.1007/s00376-014-0010-0
  • Schmale, J., Flanner, M., Kang, S., Sprenger, M., Zhang, Q. and co-authors. 2017. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon. Sci. Rep. 7, 40501 doi:10.1038/srep40501
  • Singer, G., Fasching, C., Wilhelm, L., Niggemann, J., Steier, P. and co-authors. 2012. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714. doi:10.1038/ngeo1581
  • Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M. and Painter, T. H. 2018. Radiative forcing by light-absorbing particles in snow. Nat. Clim Change 8, 964–917. doi:10.1038/s41558-018-0296-5
  • Spencer, R. G. M., Hernes, P. J., Dinga, B., Wabakanghanzi, J. N., Drake, T. W. and co-authors. 2016. Origins, seasonality, and fluxes of organic matter in the Congo River. Glob. Biogeochem. Cycles 30, 1105–1121. doi:10.1002/2016GB005427
  • Spencer, R. G. M., Vermilyea, A. W., Fellman, J. B., Raymond, P. A., Stubbins, A. and co-authors. 2014. Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources. Environ. Res. Lett. 9, 055005. doi:10.1088/1748-9326/9/5/055005
  • Sprenger, M. and Wernli, H. 2015. The LAGRANTO Lagrangian analysis tool – version 2.0. Geosci. Model Dev. 8, 2569–2586. doi:10.5194/gmd-8-2569-2015
  • Srinivas, B., Rastogi, N., Sarin, M. M., Singh, A. and Singh, D. 2016. Mass absorption efficiency of light absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-Gangetic Plain. Atmos. Environ 125, 360–370. doi:10.1016/j.atmosenv.2015.07.017
  • Stibal, M., Lawson, E. C., Lis, G. P., Mak, K. M., Wadham, J. L. and co-authors. 2010. Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet. Ann. Glaciol. 51, 1–8. https://doi.org/ doi:10.3189/172756411795931958
  • Stibal, M., Wadham, J. L., Lis, G. P., Telling, J., Pancost, R. D. and co-authors. 2012. Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Glob. Change Biol. 18, 3332–3345. doi:10.1111/j.1365-2486.2012.02763.x
  • Stubbins, A. and Dittmar, T. 2012. Low volume quantification of dissolved organic carbon and dissolved nitrogen. Limnol. Oceanogr. Methods 10, 347–352. doi:10.4319/lom.2012.10.347
  • Stubbins, A., Hood, E., Raymond, P. A., Aiken, G. R., Sleighter, R. L. and co-authors. 2012. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nat. Geosci. 5, 198–201. doi:10.1038/ngeo1403
  • Sun, H., Biedermann, L. and Bond, T. C. 2007. Color of brown carbon: a model for ultraviolet and visible light absorption by organic carbon aerosol. Geophys. Res. Lett. 34, L17813. doi:10.1029/2007GL029797
  • Telling, J., Anesio, A. M., Tranter, M., Stibal, M., Hawkings, J. R. and co-authors. 2012. Controls on the autochthonous production and respiration of organic matter in cryoconite holes on high Arctic glaciers. J. Geophys. Res 117, G01017.
  • Voisin, D., Jaffrezo, J. L., Houdier, S., Barret, M., Cozic, J. and co-authors. 2012. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow. J. Geophys. Res. 117, D00R19. doi:10.1029/2011JD016612.
  • Warren, S. G. and Wiscombe, W. J. 1980. A model for the spectral albedo of snow. II: snow containing atmospheric aerosols. J. Atmos. Sci. 37, 2734–2745. doi:10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2
  • Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R. and co-authors. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37, 4702–4708. doi:10.1021/es030360x
  • Wernli, H. and Davies, H. C. 1997. A Lagrangian-based analysis of extratropical cyclones. I: the method and some applications. Q. J. Royal Met. Soc. 123, 467–489. doi:10.1002/qj.49712353811
  • Yan, F., Kang, S., Li, C., Zhang, Y., Qin, X. and co-authors. 2016. Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau. Cryosphere 10, 2611–2621. doi:10.5194/tc-10-2611-2016
  • Zhang, Y., Kang, S., Cong, Z., Schmale, J., Sprenger, M. and co-authors. 2017. Light‐absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau. J. Geophys. Res. Atmos. 122, 6915–6933. doi:10.1002/2016JD026397
  • Zhang, Y., Kang, S., Gao, T., Schmale, J., Liu, Y. and co-authors. 2019. Dissolved organic carbon in snow cover of the Chinese Altai Mountains, Central Asia: concentrations, sources and light-absorption properties. Sci. Total Environ. 647, 1385–1397. doi:10.1016/j.scitotenv.2018.07.417
  • Zhang, Y., Kang, S., Li, G., Gao, T., Chen, P. and co-authors. 2018. Dissolved organic carbon in glaciers of the southeastern Tibetan Plateau: insights into concentrations and possible sources. PLoS One 13, e0205414. doi:10.1371/journal.pone.0205414
  • Zhang, Y., Kang, S., Zhang, Q., Gao, T., Guo, J. and co-authors. 2016. Chemical records in snowpits from high altitude glaciers in the Tibetan Plateau and its surroundings. PLoS One. 11, e0155232. doi:10.1371/journal.pone.0155232
  • Zhang, Y., Kang, S., Zhang, Q., Grigholm, B., Kaspari, S. and co-authors. 2015. A 500 year atmospheric dust deposition retrieved from a Mt. Geladaindong ice core in the central Tibetan Plateau. Atmos. Res. 166, 1–9. doi:10.1016/j.atmosres.2015.06.007