2,520
Views
11
CrossRef citations to date
0
Altmetric
Article

Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences

, , , ORCID Icon, , , , , ORCID Icon, , ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, , , , , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, & show all
Pages 1-13 | Received 17 Mar 2020, Accepted 04 Jul 2020, Published online: 16 Jul 2020

References

  • Arheimer, B. and Lindström, G. 2015. Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100). Hydrol. Earth Syst. Sci. 19, 771–784. doi:10.5194/hess-19-771-2015
  • BACC Author Team. 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Springer International Publishing, Cham, 501 pp.
  • Baldwin, J. W., Dessy, J. B., Vecchi, G. A. and Oppenheimer, M. 2019. Temporally compound heat wave events and global warming: an emerging hazard. Earth's Future 7, 411–427. doi:10.1029/2018EF000989
  • Barcikowska, M. J., Weaver, S. J., Feser, F., Russo, S., Schenk, F., and co-authors. 2018. Euro-Atlantic winter storminess and precipitation extremes under 1.5 °C vs. 2 °C warming scenarios. Earth Syst. Dyn. 9, 679–699. doi:10.5194/esd-9-679-2018
  • Bärring, L. and Fortuniak, K. 2009. Multi-indices analysis of southern Scandinavian storminess 1780–2005 and links to interdecadal variations in the NW Europe-North Sea region. Int. J. Climatol. 29, 373–384. doi:10.1002/joc.1842
  • Belušić, D., Berg, P., Bozhinova, D., Bärring, L., Döscher, R, and co-authors. 2019. Climate extremes for Sweden. State of knowledge and implications for adaptation and mitigation. SMHI SE-60176 Norrköping, 75 pp. Available at: http://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-5461
  • Belušić, D., de Vries, H., Dobler, A., Landgren, O., Lind, P., and co-authors. 2020. HCLIM38: A flexible regional climate model applicable for different climate zones from coarse to convection permitting scales. Geoscient. Model Dev. 13, 1311–1333. doi:10.5194/gmd-13-1311-2020
  • Berg, P., Norin, L. and Olsson, J. 2016. Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden. J. Hydrol. 541, 6–13. doi:10.1016/j.jhydrol.2015.11.031
  • Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J. and Kirchner, J. W. 2019. The relative importance of different flood-generating mechanisms across Europe. Water Resour. Res. 55, 4582–4593.
  • Borchert, L. F., Pohlmann, H., Baehr, J., Neddermann, N. C., Suarez-Gutierrez, L. and co-authors. 2019. Decadal predictions of the probability of occurrence for warm summer temperature extremes. Geophys. Res. Lett. 46, 14042–14051. doi:10.1029/2019GL085385
  • Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. and Saba, V. 2018. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196. doi:10.1038/s41586-018-0006-5
  • Chen, D., Walther, A., Moberg, A., Jones, P. D., Jacobeit, J. and co-authors. 2015. European Trend Atlas of Extreme Temperature and Precipitation. Springer, Dordrecht, pp 178.
  • Coles, S. 2001. An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, London, pp 208.
  • Coumou, D., Di Capua, G., Vavrus, S., Wang, L. and Wang, S. 2018. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959. doi:10.1038/s41467-018-05256-8
  • Davini, P. and Cagnazzo, C. 2014. On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim. Dyn. 43, 1497–1511. doi:10.1007/s00382-013-1970-y
  • Deng, K., Ting, M., Yang, S. and Tan, Y. 2018a. Increased frequency of summer extreme heat waves over Texas area tied to the amplification of Pacific zonal SST gradient. J. Clim. 31, 5629–5647. doi:10.1175/JCLI-D-17-0554.1
  • Deng, K., Yang, S., Ting, M., Lin, A. and Wang, Z. 2018b. An intensified mode of variability modulating the summer heat waves in eastern Europe and northern China. Geophys. Res. Lett. 45, 11361–11369.
  • Deng, K., Yang, S., Ting, M., Zhao, P. and Wang, Z. 2019. Dominant modes of China summer heat waves driven by global sea surface temperature and atmospheric internal variability. J. Clim. 32, 3761–3775. doi:10.1175/JCLI-D-18-0256.1
  • Döscher, R., Willén, U., Jones, C., Rutgersson, A., Meier, H. E. M, and co-authors. 2002. The development of the regional coupled ocean-atmosphere model RCAO. Boreal Env. Res. 7, 183–192.
  • Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M, and co-authors. 2015. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl. Acad. Sci. USA 112, 5777–5786.
  • Drobyshev, I., Bergeron, Y., de Vernal, A., Moberg, A., Ali, A. and co-authors. 2016. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia. Sci. Rep. 6, 1–13.
  • Duchez, A., Frajka-Williams, E., Josey, S. A., Evans, D. G., Grist, J. P., and co-authors. 2016. Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ. Res. Lett. 11, 074004. doi:10.1088/1748-9326/11/7/074004
  • Emanuel, K. A. 1987. The dependence of hurricane intensity on climate. Nature 326, 483–485. doi:10.1038/326483a0
  • Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., and co-authors. 2018. Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 359, 411–418. doi:10.1126/science.aan8461
  • Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R. and co-authors. 2015. Storminess over the North Atlantic and northwestern Europe – A review. Q. J. R. Meteorol. Soc. 141, 350–382. doi:10.1002/qj.2364
  • Gusain, A., Ghosh, S. and Karmakar, S. 2020. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res. 232, 104680. doi:10.1016/j.atmosres.2019.104680
  • Haarsma, R. J., Selten, F. M. and Sybren, S. D. 2015. Decelerating Atlantic meridional overturning circulation main cause of future west European summer atmospheric circulation changes. Environ. Res. Lett. 10, 094007. doi:10.1088/1748-9326/10/9/094007
  • Harris, I., Jones, P. D., Osborn, T. J. and Lister, D. H. 2014. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642. doi:10.1002/joc.3711
  • Hausfather, Z., Drake, H. F., Abbott, T. and Schmidt, G. A. 2020. Evaluating the performance of past climate model projections. Geophys. Res. Lett. 47, e2019GL085378. doi:10.1029/2019GL085378
  • Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., and co-authors. 2019. From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 19, 3097–3124. doi:10.5194/acp-19-3097-2019
  • IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (ed. C. B. Field). Cambridge University Press, Cambridge, pp 582.
  • IPCC. 2013. Climate change 2013: the physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.). Cambridge University Press, Cambridge, 1535 pp.
  • IPCC. 2018. Summary for policymakers. In: Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (eds. Masson-Delmotte, V., Zhai, P. M., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T.). World Meteorological Organization, Geneva, Switzerland, pp 32.
  • Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., and co-authors. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578. doi:10.1007/s10113-013-0499-2
  • Jeworrek, J., Wu, L., Dieterich, C. and Rutgersson, A. 2017. Characteristics of convective snow bands along the Swedish east coast. Earth Syst. Dyn. 8, 163–175. doi:10.5194/esd-8-163-2017
  • Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C. and co-authors. 2014. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576. doi:10.1038/nclimate2258
  • Kitoh, A. and Endo, H. 2019. Future changes in precipitation extremes associated with tropical cyclones projected by large-ensemble simulations. J. Meteorol. Soc. Jpn. 97, 141–152. doi:10.2151/jmsj.2019-007
  • Kjellström, E., Thejll, P., Rummukainen, M., Christensen, J. H., Boberg, F., and co-authors. 2013. Emerging regional climate change signals for Europe under varying large-scale circulation conditions. Clim. Res. 56, 103–119. doi:10.3354/cr01146
  • Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., and co-authors. 2019. Tropical cyclones and climate change assessment: Part I. Detection and attribution. Bull. Amer. Meteor. Soc 100, 1987–2007. doi:10.1175/BAMS-D-18-0189.1
  • Knutson, T., Camargo, S. J., Chan, J. C. L., Emanue, K., Ho, C.-H, and co-authors. 2020. Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc. 101, E303–E322. doi:10.1175/BAMS-D-18-0189.1
  • Kylander, M. E., Söderlindh, J., Schenk, F., Gyllencreutz, R., Rydberg, J., and co-authors. 2020. It's in your glass: a history of sea level and storminess from the Laphroaig bog, Islay (southwestern Scotland). Boreas 49, 152–167. doi:10.1111/bor.12409
  • Lavender, S. L., Walsh, K. J. E., Caron, L.-P., King, M., Monkiewicz, S., and co-authors. 2018. Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models. Sci. Adv. 4, eaat6509. doi:10.1126/sciadv.aat6509
  • Lenderink, G., Belušić, D., Fowler, H. J., Kjellström, E., Lind, P., and co-authors. 2019. Systematic increases in the thermodynamic response of hourly precipitation extremes in an idealized warming experiment with a convection-permitting climate model. Environ. Res. Lett. 14, 074012. doi:10.1088/1748-9326/ab214a
  • Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D. and co-authors. 2011. Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci. 4, 888–894. doi:10.1038/ngeo1313
  • Linderholm, H. W., Björklund, J. A., Seftigen, K., Gunnarson, B. E. and Fuentes, M. 2015. Fennoscandia revisited: a spatially improved tree-ring reconstruction of summer temperatures for the last 900 years. Clim. Dyn. 45, 933–947. doi:10.1007/s00382-014-2328-9
  • Lindström, G. and Bergström, S. 2004. Runoff trends in Sweden 1807–2002. Hydrol. Sci. J. 49, 69–83. doi:10.1623/hysj.49.1.69.54000
  • Liu, X., He, B., Guo, L., Huang, L. and Chen, D. 2020. Similarities and differences in the mechanisms causing the European summer heatwaves in 2003, 2010, and 2018. Earth’s Future 8, e2019EF001386. doi:10.1029/2019EF001386
  • May, W. 2004. Variability and extremes of daily rainfall during the Indian summer monsoon in the period 1901-1989. Glob. Planet. Change 44, 83–105. doi:10.1016/j.gloplacha.2004.06.007
  • May, W. 2008. Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Clim. Dyn. 30, 581–603. doi:10.1007/s00382-007-0309-y
  • McKee, T. B., Doesken, N. J. and Kleist, J. 1993. The relationship of drought frequency and duration to time scales. Proc.8th Conf. Appl. Climatol. 17, 179–183.
  • Miralles, M., van den Berg, J., Teuling, A. J. and de Jeu, R. A. M. 2012. Soil moisture temperature coupling: a multiscale observational analysis. Geophys. Res. Lett. 39, L21707. doi:10.1029/2012GL053703
  • Moberg, A., Bergström, H., Ruiz Krigsman, J. and Svanered, O. 2002a. Daily air temperature and pressure series for Stockholm (1756–1998). Clim. Change 53, 171–212. doi:10.1023/A:1014966724670
  • Moberg, A., Bergström, H., Ruiz Krigsman, J. and Svanered, O. 2002b. Erratum. Clim. Change 53, 171–250. doi:10.1023/A:1014966724670
  • Moberg, A., Jones, P. D., Lister, D., Walther, A., Brunet, M., and co-authors. 2006. Indices for daily temperature and precipitation extremes in Europe analysed for the period 1901-2000. J. Geophys. Res 111, D22106. doi:10.1029/2006JD007103
  • Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F., and co-authors. 2018. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change 8, 808–812. doi:10.1038/s41558-018-0236-4
  • Otto, F. E. L. 2017. Attribution of weather and climate events. Annu. Rev. Environ. Resour. 42, 627–646. doi:10.1146/annurev-environ-102016-060847
  • Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J. L. and Hong, T. 2020. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 5, 150–159. doi:10.1038/s41560-020-0558-0
  • Prein, A. F., Liu, C., Ikeda, K., Trier, S. B., Rasmussen, R. M., and co-authors. 2017. Increased rainfall volume from future convective storms in the US. Nat. Clim. Change 7, 880–884. doi:10.1038/s41558-017-0007-7
  • Rechid, D., Meier, H. E., Schrum, C., Rummukainen, M., Moseley, C. G. and co-authors. 2016. Climate model simulation for the North Sea Region. In: North Sea Regional Climate Change Assessment (eds. M. Quante and F. Colijn). Springer International Publishing, Cham. 495 pp. doi:10.1007/978-3-319-39745-0
  • Reichler, T. and Kim, J. 2008. How well do coupled models simulate today's climate? Bull. Amer. Meteor. Soc. 89, 303–312. doi:10.1175/BAMS-89-3-303
  • Romero, R. and Emanuel, K. 2017. Climate change and hurricane-like extratropical cyclones: projections for north Atlantic polar lows and Medicanes based on CMIP5 models. J. Clim. 30, 279–299. doi:10.1175/JCLI-D-16-0255.1
  • Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., and co-authors. 2008. Flood or drought: how do aerosols affect precipitation? Science 321, 1309–1313. doi:10.1126/science.1160606
  • Rutgersson, A., Jaagus, J., Schenk, F. and Stendel, M. 2014. Observed changes and variability of atmospheric parameters in the Baltic Sea region during the last 200 years. Clim. Res. 61, 177–190. doi:10.3354/cr01244
  • Schenk, F., Väliranta, M., Muschitiello, F., Tarasov, L., Heikkilä, M., and co-authors. 2018. Warm summers during the Younger Dryas cold reversal. Nat. Commun. 9, 1634. doi:10.1038/s41467-018-04071-5
  • Seftigen, S., Goosse, H., Klein, F. and Chen, D. 2017. Hydroclimate variability in Scandinavia over the last millennium – insights from a climate model-proxy data comparison. Clim. Past 13, 1831–1850. doi:10.5194/cp-13-1831-2017
  • Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B. and co-authors. 2010. Investigating soil moisture climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161. doi:10.1016/j.earscirev.2010.02.004
  • Seneviratne, S. I., Donat, M., Mueller, B. and Alexander, L. V. 2014. No pause in the increase of hot temperature extremes. Nat. Clim. Change 4, 161–163. doi:10.1038/nclimate2145
  • Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R., Wilby, R. L, and co-authors. 2016. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483. doi:10.1038/nature16542
  • Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E., Knutti, R, and co-authors. 2020. Climate change now detectable from any single day of weather at global scale. Nat. Clim. Change. 10, 35–41. doi:10.1038/s41558-019-0666-7
  • Smith, B., Samuelsson, P., Wramneby, A. and Rummukainen, M. 2011. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications. Tellusa. 63, 87–106. doi:10.1111/j.1600-0870.2010.00477.x
  • Sporre, M. K., Swietlicki, E., Glantz, P. and Kulmala, M. 2014. A long-term satellite study of aerosol effects on convective clouds in Nordic background air. Atmos. Chem. Phys. 14, 2203–2217. doi:10.5194/acp-14-2203-2014
  • Stoll, P. J., Graversen, R. G., Noer, G. and Hodges, K. 2018. An objective global climatology of polar lows based on reanalysis data. Q J. R Meteorol. Soc. 144, 2099–2117. doi:10.1002/qj.3309
  • Stott, P. A., Stone, D. A. and Allen, M. R. 2004. Human contribution to the European heatwave of 2003. Nature 432, 610–614. doi:10.1038/nature03089
  • Ulbrich, U., Leckebusch, G. C. and Pinto, J. G. 2009. Extra-tropical cyclones in the present and future climate: a review. Theor. Appl. Climatol. 96, 117–131. doi:10.1007/s00704-008-0083-8
  • Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718. doi:10.1175/2009JCLI2909.1
  • Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., and co-authors. 2012. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 16, 1–27. doi:10.1175/2012EI000434.1
  • Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D. and Seneviratne, S. I. 2019. Concurrent 2018 hot extremes across northern hemisphere due to human-induced climate change. Earths Future. 7, 692–703.
  • Wartenburger, R., Hirschi, M., Donat, M. G., Greve, P., Pitman, A. J. and co-authors. 2017. Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geosci. Model Dev. 10, 3609–3634. doi:10.5194/gmd-10-3609-2017
  • Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M. and Seneviratne, S. I. 2019. Identifying key driving processes of major recent heat waves. J. Geophys. Res. Atmos. 124, 11746–11765. doi:10.1029/2019JD030635
  • Wu, L., Breivik, O. and Rutgersson, A. 2019. Ocean-wave-atmosphere interaction processes in a fully coupled modeling system. J. Adv. Model. Earth Syst. 11, 3852–3874. doi:10.1029/2019MS001761
  • Wu, L., Sproson, D., Sahlée, E. and Rutgersson, A. 2017. Surface wave impact when simulating midlatitude storm development. J. Atmos. Oceanic Technol. 34, 233–248. doi:10.1175/JTECH-D-16-0070.1
  • Zahn, M. and von Storch, H. 2010. Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature 467, 309–312. doi:10.1038/nature09388
  • Zhan, R. F. and Wang, Y. Q. 2017. Weak tropical cyclones dominate the poleward migration of the annual mean location of lifetime maximum intensity of northwest Pacific tropical cyclones since 1980. J. Clim. 30, 6873–6882. doi:10.1175/JCLI-D-17-0019.1
  • Zhang, P., Ionita, M., Lohmann, G., Chen, D. and Linderholm, H. W. 2017. Can tree-ring density data reflect summer temperature extremes and associated circulation patterns over Fennoscandia? Clim. Dyn. 49, 2721–2736. doi:10.1007/s00382-016-3452-5
  • Zhang, Z., Wang, K., Chen, D., Li, J. and Dickinson, R. 2019. Increase in surface friction dominates the observed surface wind speed decline during 1973–2014 in the Northern Hemisphere lands. J. Clim. 32, 7421–7435. doi:10.1175/JCLI-D-18-0691.1
  • Zhou, C., Chen, D., Wang, K., Dai, A. and Qi, D. 2020. Conditional attribution of the 2018 summer extreme heat over Northeast China: roles of urbanization, global warming and warming-induced circulation changes. Bull. Amer. Meteorol. Soc. 101, S1–S128. doi:10.1175/BAMS-ExplainingExtremeEvents2018.1.
  • Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., and co-authors. 2018. Future climate risk from compound events. Nat. Clim. Change 8, 469–477.