1,356
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Increasing trends (2001–2018) in photochemical activity and secondary aerosols in Santiago, Chile 

, , , &
Pages 1-18 | Received 12 Apr 2020, Accepted 04 Sep 2020, Published online: 18 Sep 2020

References

  • Ainsworth, E. A. 2017. Understanding and improving global crop response to ozone pollution. Plant J. 90, 886–897. doi:10.1111/tpj.13298
  • Alvarez, R., Weilenmann, M. and Favez, J. Y. 2008. Evidence of increased mass fraction of NO2 within real-world NOx emissions of modern light vehicles - derived from a reliable online measuring method. Atmos. Environ. 42, 4699–4707. doi:10.1016/j.atmosenv.2008.01.046
  • Atkinson, R. and Arey, J. 2003. Atmospheric degradation of volatile organic compounds. Chem. Rev. 103, 4605–4638. doi:10.1021/cr0206420
  • Atkinson, R. W., Kang, S., Anderson, H. R., Mills, I. C. and Walton, H. A. 2014. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: A systematic review and meta-analysis. Thorax 69, 660–665. doi:10.1136/thoraxjnl-2013-204492
  • Barraza, F., Lambert, F., Jorquera, H., Villalobos, A. M. and Gallardo, L. 2017. Temporal evolution of main ambient PM2.5 sources in Santiago, Chile, from 1998 to 2012. Atmos. Chem. Phys. 17, 10093–10107. doi:10.5194/acp-17-10093-2017
  • Bloomer, B. J., Stehr, J. W., Piety, C. A., Salawitch, R. J. and Dickerson, R. R. 2009. Observed relationships of ozone air pollution with temperature and emissions. Geophys. Res. Lett. 36, L09803.
  • Boisier, J. P., Alvarez-Garreton, C., Cordero, R. R., Damiani, A., Gallardo, L. and co-authors. 2018. Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elementa 6, 74.
  • Carbone, S., Saarikoski, S., Frey, A., Reyes, F., Reyes, P. and co-authors. 2013. Chemical characterization of submicron Aerosol particles in Santiago de Chile. Aerosol. Air Qual. Res. 13, 462–473. doi:10.4209/aaqr.2012.10.0261
  • Carslaw, D. C. 2005. Evidence of an increasing NO2/NOX emissions ratio from road traffic emissions. Atmos. Environ. 39, 4793–4802. doi:10.1016/j.atmosenv.2005.06.023
  • Carslaw, D. C., Beevers, S. D., Tate, J. E., Westmoreland, E. J. and Williams, M. L. 2011. Recent evidence concerning higher NOx emissions from passenger cars and light duty vehicles. Atmos. Environ. 45, 7053–7063. doi:10.1016/j.atmosenv.2011.09.063
  • Chang, S. C. and Lee, C. T. 2007. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003. Atmos. Environ. 41, 4002–4017. doi:10.1016/j.atmosenv.2007.01.040
  • Clapp, L. J. and Jenkin, M. E. 2001. Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmos. Environ. 35, 6391–6405. doi:10.1016/S1352-2310(01)00378-8
  • Corvalán, R. M. and Vargas, D. 2003. Experimental analysis of emission deterioration factors for light duty catalytic vehicles Case study: Santiago, Chile. Transp. Res. Part D: Transp. Environ. 8, 315–322. doi:10.1016/S1361-9209(03)00018-X
  • Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z. and co-authors. 2016. A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014. J. Geophys. Res. Atmos. 121, 976–996. doi:10.1002/2015JD024121
  • Elshorbany, Y. F., Kleffmann, J., Kurtenbach, R., Lissi, E., Rubio, M. and co-authors. 2010. Seasonal dependence of the oxidation capacity of the city of Santiago de Chile. Atmos. Environ. 44, 5383–5394. doi:10.1016/j.atmosenv.2009.08.036
  • Elshorbany, Y. F., Kleffmann, J., Kurtenbach, R., Rubio, M., Lissi, E. and co-authors. 2009. Summertime photochemical ozone formation in Santiago, Chile. Atmos. Environ. 43, 6398–6407. doi:10.1016/j.atmosenv.2009.08.047
  • Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M. and co-authors. 2009. Oxidation capacity of the city air of Santiago, Chile. Atmos. Chem. Phys. 9, 2257–2273. doi:10.5194/acp-9-2257-2009
  • Finlayson-Pitts, B. J. and Pitts, J. N. 2000. Overview of the chemistry of polluted and remote atmospheres. In: Chemistry of the Upper and Lower Atmosphere. Elsevier, San Diego, pp. 1–14. doi:https://doi.org/10.1016/B978-012257060-5/50003-4
  • Fleming, Z. L., Doherty, R. M., Von Schneidemesser, E., Malley, C. S., Cooper, O. R. and co-authors. 2018. Tropospheric ozone assessment report: Present-day ozone distribution and trends relevant to human health. Elem. Sci. Anth. 6, 12. doi:10.1525/elementa.273
  • Fujita, E. M., Stockwell, W. R., Campbell, D. E., Keislar, R. E. and Lawson, D. R. 2003. Evolution of the magnitude and spatial extent of the weekend ozone effect in California's South Coast Air Basin, 1981–2000. J. Air Waste Manag. Assoc. 53, 802–815. doi:10.1080/10473289.2003.10466225
  • Gallardo, L., Barraza, F., Ceballos, A., Galleguillos, M., Huneeus, N. and co-authors. 2018. Evolution of air quality in Santiago: The role of mobility and lessons from the science-policy interface. Elementa 6, 38.
  • Gallardo, L., Escribano, J., Dawidowski, L., Rojas, N., de Fátima Andrade, M. and co-authors. 2012. Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá, Buenos Aires, Santiago, and São Paulo. Atmos. Environ. 47, 12–19. doi:10.1016/j.atmosenv.2011.11.051
  • Gallardo, L., Olivares, G., Langner, J. and Aarhus, B. 2002. Coastal lows and sulfur air pollution in Central Chile. Atmos. Environ. 36, 3829–3841. doi:10.1016/S1352-2310(02)00285-6
  • Garreaud, R. D., Rutllant, J. A. and Fuenzalida, H. 2002. Coastal lows along the subtropical west coast of South America: Mean structure and evolution. Mon. Wea. Rev. 130, 75–88. doi:10.1175/1520-0493(2002)130<0075:CLATSW>2.0.CO;2
  • Grange, S. K., Lewis, A. C., Moller, S. J. and Carslaw, D. C. 2017. Lower vehicular primary emissions of NO2 in Europe than assumed in policy projections. Nat. Geosci. 10, 914–918. doi:10.1038/s41561-017-0009-0
  • Grosjean, D. 1989. Organic acids in Southern California Air: Ambient concentrations, mobile source emissions. Environ. Sci. Technol. 23, 1506–1514. doi:10.1021/es00070a009
  • Guicherit, R. 1988. Ozone on an urban and regional scale. In: Tropospheric Ozone. Springer, Netherlands, pp. 49–62. doi:https://doi.org/10.1007/978-94-009-2913-5_3
  • Hallquist, M., Munthe, J., Hu, M., Wang, T., Chan, C. K. and co-authors. 2016. Photochemical smog in China: Scientific challenges and implications for air-quality policies. Natl. Sci. Rev. 3, 401–403. doi:10.1093/nsr/nww080
  • Henriquez, A., Osses, A., Gallardo, L. and Resquin, M. D. 2015. Analysis and optimal design of air quality monitoring networks using a variational approach. Tellus, Ser. B: Chem. Phys. Meteorol. 67, 25385. doi:10.3402/tellusb.v67.25385
  • Héroux, M. E., Anderson, H. R., Atkinson, R., Brunekreef, B., Cohen, A. and co-authors. 2015. Quantifying the health impacts of ambient air pollutants: recommendations of a WHO/Europe project. Int. J. Public Health 60, 619–627. doi:10.1007/s00038-015-0690-y
  • Hou, P. and Wu, S. 2016. Long-term changes in extreme air pollution meteorology and the implications for air quality. Sci. Rep. 6, 23792. doi:10.1038/srep23792
  • Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J. and co-authors. 2014. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222. doi:10.1038/nature13774
  • Huneeus, N., Denier van der Gon, H., Castesana, P., Menares, C., Granier, C. and co-authors. 2020. Evaluation of anthropogenic air pollutant emission inventories for South America at national and city scale. Atmos. Environ. 235, 117606. doi:10.1016/j.atmosenv.2020.117606
  • Im, U. and Kanakidou, M. 2012. Impacts of East Mediterranean megacity emissions on air quality. Atmos. Chem. Phys. 12, 6335–6355. doi:10.5194/acp-12-6335-2012
  • INE. 2018. Tabulado de vehículos en circulación 2018. docs/default-source/parque-de-vehiculos/cuadros-estadisticos/resultados/cifras-2018.xlsx?sfvrsn=ced9a153_4
  • Jacob, D. J. and Winner, D. A. 2009. Effect of climate change on air quality. Atmos. Environ. 43, 51–63. doi:10.1016/j.atmosenv.2008.09.051
  • Jia, M., Zhao, T., Cheng, X., Gong, S., Zhang, X. and co-authors. 2017. Inverse relations of PM2.5 and O3 in air compound pollution between cold and hot seasons over an urban area of East China. Atmosphere 8, 59. doi:10.3390/atmos8030059
  • Kavouras, I. G., Lawrence, J., Koutrakis, P., Stephanou, E. G. and Oyola, P. 1999. Measurement of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago de Chile: Source reconciliation and evaluation of sampling artifacts. Atmos. Environ. 33, 4977–4986. doi:10.1016/S1352-2310(99)00281-2
  • Kley, D., Geiss, H. and Mohnen, V. A. 1994. Tropospheric ozone at elevated sites and precursor emissions in the United States and Europe. Atmos. Environ. 28, 149–158. doi:10.1016/1352-2310(94)90030-2
  • Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. A., Pickering, K. E. and co-authors. 2015. U.S. NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI). Atmos. Environ. 110, 130–143. doi:10.1016/j.atmosenv.2015.03.055
  • Langner, J., Engardt, M., Baklanov, A., Christensen, J. H., Gauss, M. and co-authors. 2012. A multi-model study of impacts of climate change on surface ozone in Europe. Atmos. Chem. Phys. 12, 10423–10440. doi:10.5194/acp-12-10423-2012
  • Langner, J., Gidhagen, L., Bergström, R., Gramsch, E., Oyola, P. and co-authors. 2020. Model-simulated source contributions to PM2.5 in Santiago and the central region of Chile. Aerosol. Air Qual. Res. 20, 1111–1126. doi:10.4209/aaqr.2019.08.0374
  • Latza, U., Gerdes, S. and Baur, X. 2009. Effects of nitrogen dioxide on human health: Systematic review of experimental and epidemiological studies conducted between 2002 and 2006. Int. J. Hyg. Environ. Health 212, 271–287. doi:10.1016/j.ijheh.2008.06.003
  • Mauzerall, D. L. and Wang, X. 2001. Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standard setting in the United States. Annu. Rev. Energy Environ. 26, 237–268. doi:10.1146/annurev.energy.26.1.237
  • Mazzeo, A., Huneeus, N., Ordoñez, C., Orfanoz-Cheuquelaf, A., Menut, L. and co-authors. 2018. Impact of residential combustion and transport emissions on air pollution in Santiago during winter. Atmos. Environ. 190, 195–208. doi:10.1016/j.atmosenv.2018.06.043
  • Mena-Carrasco, M., Oliva, E., Saide, P., Spak, S. N., de la Maza, C. and co-authors. 2012. Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile. Sci. Total Environ. 429, 257–265. doi:10.1016/j.scitotenv.2012.04.037
  • Molina, A., Falvey, M. and Rondanelli, R. 2017. A solar radiation database for Chile. Sci. Rep. 7, 1–11.
  • Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M. and co-authors. 2015. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 15, 8889–8973. doi:10.5194/acp-15-8889-2015
  • Montecinos, A. and Aceituno, P. 2003. Seasonality of the ENSO-related rainfall variability in Central Chile and associated circulation anomalies. J. Clim. 16, 281–296. doi:10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2
  • Muñoz, J. C., Batarce, M. and Hidalgo, D. 2014. Transantiago, five years after its launch. Res. Transp. Econ. 48, 184–193. doi:10.1016/j.retrec.2014.09.041
  • Muñoz, R. C. and Undurraga, A. A. 2010. Daytime mixed layer over the Santiago Basin: Description of two years of observations with a lidar ceilometer. J. Appl. Meteorol. Climatol. 49, 1728–1741. doi:10.1175/2010JAMC2347.1
  • Na, K., Sawant, A. A., Song, C. and Cocker, D. R. 2004. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmos. Environ. 38, 1345–1355. doi:10.1016/j.atmosenv.2003.11.023
  • Neri, F., Saitta, G. and Chiofalo, S. 1989. An accurate and straightforward approach to line regression analysis of error-affected experimental data. J. Phys. E: Sci. Instrum. 22, 215–217. doi:10.1088/0022-3735/22/4/002
  • Notario, A., Bravo, I., Adame, J. A., Díaz-de-Mera, Y., Aranda, A. and co-authors. 2012. Analysis of NO, NO 2, NO x, O 3 and oxidant (OX = O 3 + NO 2) levels measured in a metropolitan area in the southwest of Iberian Peninsula. Atmos. Res. 104–105, 217–226. doi:10.1016/j.atmosres.2011.10.008
  • Olivares, G., Gallardo, L., Langner, J. and Aarhus, B. 2002. Regional dispersion of oxidized sulfur in Central Chile. Atmos. Environ. 36, 3819–3828. doi:10.1016/S1352-2310(02)00286-8
  • Osses, A., Gallardo, L. and Faundez, T. 2013. Analysis and evolution of air quality monitoring networks using combined statistical information indexes. Tellus, Ser. B: Chem. Phys. Meteorol. 65, 19822–19817. doi:10.3402/tellusb.v65i0.19822
  • Pacifico, F., Folberth, G. A., Jones, C. D., Harrison, S. P. and Collins, W. J. 2012. Sensitivity of biogenic isoprene emissions to past, present, and future environmental conditions and implications for atmospheric chemistry. J. Geophys. Res. 117.
  • Parrish, D. D., Singh, H. B., Molina, L. and Madronich, S. 2011. Air quality progress in North American megacities: A review. Atmos. Environ. 45, 7015–7025. doi:10.1016/j.atmosenv.2011.09.039
  • Parrish, D. D., Xu, J., Croes, B. and Shao, M. 2016. Air quality improvement in Los Angeles—perspectives for developing cities. Front. Environ. Sci. Eng. 10, 11. doi:10.1007/s11783-016-0859-5
  • Pollack, I. B., Ryerson, T. B., Trainer, M., Neuman, J. A., Roberts, J. M. and co-authors. 2013. Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: A synthesis of measurements from 1960 to 2010. J. Geophys. Res. Atmos. 118, 5893–5911. doi:10.1002/jgrd.50472
  • Préndez, M., Carvajal, V., Corada, K., Morales, J., Alarcón, F. and co-authors. 2013. Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile. Environ. Pollut. 183, 143–150. doi:10.1016/j.envpol.2013.04.003
  • Prinn, R. G. 2003. The cleansing capacity of the atmosphere. Annu. Rev. Environ. Resour. 28, 29–57. doi:10.1146/annurev.energy.28.011503.163425
  • Rappenglück, B., Schmitz, R., Bauerfeind, M., Cereceda-Balic, F., Von Baer, D. and co-authors. 2005. An urban photochemistry study in Santiago de Chile. Atmos. Environ. 39, 2913–2931. doi:10.1016/j.atmosenv.2004.12.049
  • Rodrı́guez, S., Querol, X., Alastuey, A., and Mantilla, E. 2002. Origin of high summer PM10 and TSP concentrations at rural sites in Eastern Spain. Atmos. Environ. 36, 3101–3112. doi:10.1016/S1352-2310(02)00256-X
  • Rubio, M. A., Lissi, E. and Villena, G. 2002. Nitrite in rain and dew in Santiago city, Chile. Its possible impact on the early morning start of the photochemical smog. Atmos. Environ. 36, 293–297. doi:10.1016/S1352-2310(01)00356-9
  • Rubio, M. A., Zamorano, N., Lissi, E., Rojas, A., Gutiérrez, L. and co-authors. 2006. Volatile carbonylic compounds in downtown Santiago, Chile. Chemosphere 62, 1011–1020. doi:10.1016/j.chemosphere.2005.06.022
  • Rutllant, J. and Garreaud, R. 1995. Meteorological air pollution potential for Santiago, Chile: Towards an objective episode forecasting. Environ. Monit. Assess. 34, 223–244. doi:10.1007/BF00554796
  • Saide, P. E., Carmichael, G. R., Spak, S. N., Gallardo, L., Osses, A. E. and co-authors. 2011. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model. Atmos. Environ. 45, 2769–2780. doi:10.1016/j.atmosenv.2011.02.001
  • Saide, P. E., Mena-Carrasco, M., Tolvett, S., Hernandez, P. and Carmichael, G. R. 2016. Air quality forecasting for winter-time PM2.5episodes occurring in multiple cities in central and southern Chile. J. Geophys. Res. Atmos. 121, 558–575. doi:10.1002/2015JD023949
  • Saiz-Lopez, A., Borge, R., Notario, A., Adame, J. A., La Paz, D. D. and co-authors. 2017. Unexpected increase in the oxidation capacity of the urban atmosphere of Madrid, Spain. Sci. Rep. 7, 45956. doi:10.1038/srep45956
  • Scott, C. E., Arnold, S. R., Monks, S. A., Asmi, A., Paasonen, P. and co-authors. 2018. Substantial large-scale feedbacks between natural aerosols and climate. Nat. Geosci. 11, 44–48. doi:10.1038/s41561-017-0020-5
  • Seguel, R. J., Mancilla, C. A., Rondanelli, R., Leiva, M. A. and Morales, R. G. E. 2013. Ozone distribution in the lower troposphere over complex terrain in Central Chile. J. Geophys. Res. Atmos. 118, 2966–2980. doi:10.1002/jgrd.50293
  • Seguel, R. J., Morales, R. G. E. and Leiva, M. A. 2009. Estimations of primary and secondary organic carbon formation in PM2.5 aerosols of Santiago City, Chile. Atmos. Environ. 43, 2125–2131. doi:10.1016/j.atmosenv.2009.01.029
  • Seguel, R. J., Morales S, R. G. E. and Leiva G, M. A. 2012. Ozone weekend effect in Santiago, Chile. Environ. Pollut. 162, 72–79. doi:10.1016/j.envpol.2011.10.019
  • Seguel, R. J., Gallardo, L., Fleming, Z. L. and Landeros, S. 2020. Two decades of ozone standard exceedances in Santiago de Chile. Air Qual. Atmos. Health 13, 593–605. doi:10.1007/s11869-020-00822-w
  • Sheehy, P. M., Volkamer, R., Molina, L. T. and Molina, M. J. 2010. Oxidative capacity of the Mexico City atmosphere-Part 2: A ROx radical cycling perspective. Atmos. Chem. Phys. 10, 6993–7008. doi:10.5194/acp-10-6993-2010
  • Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B. and co-authors. 2017. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Rev. Geophys. 55, 509–559. doi:10.1002/2016RG000540
  • Sillman, S. and Samson, P. J. 1995. Impact of temperature on oxidant photochemistry in urban polluted rural and remote environments. J. Geophys. Res. 100, 11497–11508. doi:10.1029/94JD02146
  • Tagle, M., Reyes, F., Vásquez, Y., Carbone, S., Saarikoski, S. and co-authors. 2018. Spatiotemporal variation in composition of submicron particles in Santiago Metropolitan Region, Chile. Front. Environ. Sci. 6, 27. doi:10.3389/fenvs.2018.00027
  • Thompson, A. M. 1992. The oxidizing capacity of the earth's atmosphere: probable past and future changes. Science 256, 1157–1165. doi:10.1126/science.256.5060.1157
  • Tiao, G. C., Reinsel, G. C., Xu, D., Pedrick, J. H., Zhu, X. and co-authors. 1990. Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation. J. Geophys. Res. 95, 20507. doi:10.1029/JD095iD12p20507
  • Tolvett-Caro, S., Henríquez, P. and Osses, M. 2016. Análisis de variables significativas para la generación deun inventario de emisiones de fuentes móviles y su proyección. Ingeniare. Rev. chil. Ing. 24, 32–39. doi:10.4067/S0718-33052016000500005
  • Toro, R. A., Campos, C., Molina, C., Morales, R. G. E. and Leiva-Guzmán, M. A. 2015. Accuracy and reliability of Chile's National Air Quality Information System for measuring particulate matter: Beta attenuation monitoring issue. Environ. Int. 82, 101–109. doi:10.1016/j.envint.2015.02.009
  • Toro, R. and Seguel, R. J. 2015. Ozone, nitrogen oxides, and volatile organic compounds in a central zone of Chile. Air Qual. Atmos. Health 8, 545–557. doi:10.1007/s11869-014-0306-3
  • Tsigaridis, K. and Kanakidou, M. 2018. The present and future of secondary organic aerosol direct forcing on climate. Curr. Clim. Change Rep. 4, 84–98. doi:10.1007/s40641-018-0092-3
  • Turnbull, A. B. and Harrison, R. M. 2000. Major component contributions to PM10 composition in the UK atmosphere. Atmos. Environ. 34, 3129–3137. doi:10.1016/S1352-2310(99)00441-0
  • Turpin, B. J. and Huntzicker, J. J. 1995. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 29, 3527–3544. doi:10.1016/1352-2310(94)00276-Q
  • USACH. 2014. Actualización y sistematización del inventario de emisiones de contaminantes atmosféricos en la Región Metropolitana. http://metadatos.mma.gob.cl/sinia/articles-56914_Inf_Inventarios_FINAL.pdf
  • Villalobos, A. M., Barraza, F., Jorquera, H. and Schauer, J. J. 2015. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Sci. Total Environ. 512–513, 133–142. doi:10.1016/j.scitotenv.2015.01.006
  • Villena, G., Kleffmann, J., Kurtenbach, R., Wiesen, P., Lissi, E. and co-authors. 2011. Vertical gradients of HONO, NOx and O3 in Santiago de Chile. Atmos. Environ. 45, 3867–3873. doi:10.1016/j.atmosenv.2011.01.073
  • Volkamer, R., Sheehy, P., Molina, L. T. and Molina, M. J. 2010. Oxidative capacity of the Mexico City atmosphere-Part 1: A radical source perspective. Atmos. Chem. Phys. 10, 6969–6991. doi:10.5194/acp-10-6969-2010
  • Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q. and co-authors. 2006. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophys. Res. Lett. 33, L17811. doi:10.1029/2006GL026899
  • Von Schneidemesser, E., Monks, P. S., Allan, J. D., Bruhwiler, L., Forster, P. and co-authors. 2015. Chemistry and the linkages between air quality and climate change. Chem. Rev. 115, 3856–3897. doi:10.1021/acs.chemrev.5b00089
  • Walcek, C. J. and Yuan, H. H. 1995. Calculated influence of temperature-related factors on ozone formation rates in the lower troposphere. J. Appl. Meteor. 34, 1056–1069. doi:10.1175/1520-0450(1995)034<1056:CIOTRF>2.0.CO;2
  • Wang, S., Ye, J., Soong, R., Wu, B., Yu, L. and co-authors. 2018. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons. Atmos. Chem. Phys. 18, 3987–4003. doi:10.5194/acp-18-3987-2018
  • Wilks, D. S. 2011. Statistical Methods in the Atmospheric Sciences. Vol. 100, Academic press, San Diego.
  • Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q. and co-authors. 2015. Formation of urban fine particulate matter. Chem. Rev. 115, 3803–3855. doi:10.1021/acs.chemrev.5b00067