1,998
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Greenhouse gas observation network design for Africa

, , , , , , , , , , & show all
Pages 1-30 | Received 04 Feb 2020, Accepted 10 Sep 2020, Published online: 19 Oct 2020

References

  • Abdi, A. M., Vrieling, A., Yengoh, G. T., Anyamba, A., Seaquist, J. W. and co-authors. 2016. The El Niño - La Niña cycle and recent trends in supple and demand of net primary productivity in African drylands. Clim. Change 138, 111–125. doi:10.1007/s10584-016-1730-1
  • Aubinet, M. 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv. Ecol. Res. 30, 113–175.
  • Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P. and co-authors. 2006. TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988. Global Biogeochem. Cy. 20, 2003.
  • Beck, J., López-Ballesteros, A., Hugo, W., Scholes, R., Saunders, M. and co-authors. 2019. Development of a climate forcing observation system for Africa: data-related considerations. Codata. 18, 42. doi:10.5334/dsj-2019-042
  • Bergamaschi, P., Corazza, M., Karstens, U., Athanassiadou, M., Thompson, R. L. and co-authors. 2015. Top-down estimates of European CH4 and N2O emissions based on four different inverse models. Atmos. Chem. Phys. 15, 715–736. doi:10.5194/acp-15-715-2015
  • Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R. and co-authors. 2017. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). Geosci. Model Dev. 10, 2141–2156. doi:10.5194/gmd-10-2141-2017
  • Bloom, A. A., Palmer, P. I., Fraser, A. and Reay, D. S. 2012. Seasonal variability of tropical wetland CH4 emissions: the role of the methanogen-available carbon pool. Biogeosciences 9, 2821–2830. doi:10.5194/bg-9-2821-2012
  • Boden, T. A., Marland, G. and Andres, R. J. 2017. Global, regional, and national fossil – fuel CO2 emissions, Carbon Dioxide Information Analysis Center (CDIAC). Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, USA. Online at: http://cdiac.essdive.lbl.gov/trends/emis/methreg.html V2017.
  • Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F. and co-authors. 2015. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 8, 637–642. doi:10.1038/ngeo2486
  • Bousquet, P., Ciais, P., Peylin, P., Ramonet, M. and Monfray, P. 1999. Inverse modeling of annual atmospheric CO2 sources and sinks: 1. Method and control inversion. J. Geophys. Res. 104, 26161–26178. doi:10.1029/1999JD900342
  • Broquet, G., Chevallier, F., Bréon, F.-M., Kadygrov, N., Alemanno, M. and co-authors. 2013. Regional inversion of CO2 ecosystem fluxes from atmospheric measurements: reliability of the uncertainty estimates. Atmos. Chem. Phys. 13, 9039–9056. doi:10.5194/acp-13-9039-2013
  • Carpenter, L. J., Fleming, Z. L., Read, K. A., Lee, J. D., Moller, S. J. and co-authors. 2010. Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde atmospheric observatory. J. Atmos. Chem. 67, 87–140. doi:10.1007/s10874-011-9206-1
  • Cerutti, P. O., Sola, P., Chenevoy, A., Iiyama, M., Yila, J. and co-authors. 2015. The socioeconomic and environmental impacts of wood energy value chains in Sub-Saharan Africa: a systematic map protocol. Environ. Evid. 4, 12. doi:10.1186/s13750-015-0038-3
  • Chevallier, F., Ciais, P., Conway, T. J., Aalto, T., Anderson, B. E. and co-authors. 2010. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res. 115, D21307. doi:10.1029/2010JD013887
  • Chevallier, F., Palmer, P. I., Feng, L., Boesch, H., O'Dell, C. W. and co-authors. 2014. Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophys. Res. Lett. 41, 1065–1070. doi:10.1002/2013GL058772
  • Ciais, P., Rayner, P., Chevallier, F., Bousquet, P., Logan, M. and co-authors. 2010. Atmospheric inversions for estimating CO2 fluxes: methods and perspectives. Clim. Change 103, 69–92. doi:10.1007/s10584-010-9909-3
  • Enting, I. G. 2002. Inverse Problems in Atmospheric Constituent Transport. Cambridge University Press, New York.
  • Enting, I. G. and Mansbridge, J. V. 1989. Seasonal sources and sinks of atmospheric CO2: direct inversion of filtered data. Tellus B 41, 111–126. doi:10.3402/tellusb.v41i2.15056
  • Etminan, M., Myhre, G., Highwood, E. J. and Shine, K. P. 2016. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methan radiative forcing. Geophys. Res. Lett. 43, 12614–12623. doi:10.1002/2016GL071930
  • Exbrayat, J.-F., Pitman, A. J., Abramowitz, G. and Wang, Y.-P. 2013. Sensitivity of net ecosystem exchange and heterotrophic respiration to parameterization uncertainty. J. Geophys. Res. Atmos. 118, 1640–1651. doi:10.1029/2012JD018122
  • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M. and co-authors. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. 96, 13033–13065. doi:10.1029/91JD01247
  • Ganesan, A. L., Manning, A. J., Grant, A., Young, D., Oram, D. E. and co-authors. 2015. Quantifying methane and nitrous oxide emissions from the UK and Ireland using a national-scale monitoring network. Atmos. Chem. Phys. 15, 6393–6406. doi:10.5194/acp-15-6393-2015
  • Gaudry, A., Monfray, P., Polian, G., Bonsang, G., Ardouin, B. and co-authors. 1991. Non-seasonal variations of atmospheric CO2 concentrations at Amsterdam Island. Tellus B 43, 136–143. doi:10.3402/tellusb.v43i2.15258
  • Gomez-Pelaez, A. J., Ramos, R., Cuevas, E., Gomez-Trueba, V. and Reyes, E. 2019. Atmospheric CO2, CH4, and CO with the CRDS technique at the Izanã Global GAW station: instrumental tests, developments, and first measurement results. Atmos. Meas. Tech. 12, 2043–2066. doi:10.5194/amt-12-2043-2019
  • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 405, 626–630.
  • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D. and co-authors. 2003. TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus B 55, 555–579. doi:10.3402/tellusb.v55i2.16728
  • Haszpra, L., Barcza, Z., Haszpra, T., Pátkai, Z. and Davis, K. J. 2015. How well do tall-tower measurements characterize the CO2 mole fraction distribution in the planetary boundary layer? Atmos. Meas. Tech. 8, 1657–1671. doi:10.5194/amt-8-1657-2015
  • Howarth, R. W. 2019. Ideas and perspectives: is shale gas a major driver of recent increase in global atmospheric methane? Biogeosciences 16, 3033–3046. doi:10.5194/bg-16-3033-2019
  • ICOS ERIC. 2020. ICOS Handbook (K. Ahlgren & M. Keski-Nisula (eds.); 2020th–2nd ed. ICOS ERIC, Helsinki.
  • Janssens-Maenhout, G., Pagliari, V., Guizzardi, D. and Muntean, M. 2012. Global Emission Inventories in the Emission Database for Global Atmospheric Research (EDGAR) — Manual (I), Gridding: EDGAR Emissions Distribution on Global Gridmaps. Luxembourg: European Union, Joint Research Centre, 33 pp.
  • Kaminski, T., Heimann, M. and Giering, R. 1999. A coarse grid three dimensional global inverse model of the atmospheric transport, 2. Inversion of the transport of CO2 in the 1980s. J. Geophys. Res. 104, 18555–18581. doi:10.1029/1999JD900146
  • Kaminski, T. and Rayner, P. J. 2017. Reviews and syntheses: guiding the evolution of the observing system for the carbon cycle through quantitative network design. Biogeosciences 14, 4755–4766. doi:10.5194/bg-14-4755-2017
  • Kong, Y., Chen, B. and Measho, S. 2019. Spatio-temporal consistency evaluation of XCO2 retrievals from GOSAT and OCO-2 based on TCCON and model data for joint utilization in carbon cycle research. Atmosphere 10, 354. doi:10.3390/atmos10070354
  • Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F. and co-authors. 2012. Constraining a global ecosystem model with multisite eddy-covariance data. Biogeosciences 9, 3757–3776. doi:10.5194/bg-9-3757-2012
  • Labuschagne, C., Kuyper, B., Brunke, E.-G., Mokolo, T., van der Spuy, D. and co-authors. 2018. A review of four decades of atmospheric trace gas measurements at Cape Point, South Africa. Trans. R. Soc. S. Afr. 73, 113–132. doi:10.1080/0035919X.2018.1477854
  • Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O. and co-authors. 2016. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX). J. Geophys. Res. Atmos. 121, 5213–5236. doi:10.1002/2015JD024473
  • Lauvaux, T., Schuh, A. E., Uliasz, M., Richardson, S., Miles, N. and co-authors. 2012. Constraining the CO2 budget of the corn belt: exploring uncertainties from the assumptions in a mesoscale inverse system. Atmos. Chem. Phys. 12, 337–354. doi:10.5194/acp-12-337-2012
  • Law, R. M., Chen, Y., Gurney, K. R. and Transcom 3 Modellers. 2003. TransCom 3 CO2 inversion intercomparison: 2. Sensitivity of annual mean results to data choices. Tellus B 55, 580–595. doi:10.3402/tellusb.v55i2.16736
  • Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J. and co-authors. 2018. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194. doi:10.5194/essd-10-2141-2018
  • Leip, A., Skiba, U., Vermeulen, A. and Thompson, R. 2018. A complete rethink is needed on how greenhouse gas emissions are quantified for national reporting. Atmos. Environ. 174, 237–240. doi:10.1016/j.atmosenv.2017.12.006
  • Li, W., Ciais, P., Peng, S., Yue, C., Wang, Y. and co-authors. 2017. Landuse and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences 14, 5053–5067. doi:10.5194/bg-14-5053-2017
  • López-Ballesteros, A., Beck, J., Bombelli, A., Grieco, E., Lorencová, E. K. and co-authors. 2018. Towards a feasible and representative pan-African Research Infrastructure network for GHG observations. Environ. Res. Lett. 13, 085003. doi:10.1088/1748-9326/aad66c
  • Lopez-Coto, I., Ghosh, S., Prasad, K. and Whetstone, J. 2017. Tower-based greenhouse gas measurement network design—The National Institute of Standards and Technology North East Corridor Testbed. Adv. Atmos. Sci. 34, 1095–1105. doi:10.1007/s00376-017-6094-6
  • Lunt, M. F., Palmer, P. I., Feng, L., Taylor, C. M., Boesch, H. and co-authors. 2019. An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data. Atmos. Chem. Phys. 19, 14721–14740. doi:10.5194/acp-19-14721-2019
  • McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G. and co-authors. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cy. 15, 183–206. doi:10.1029/2000GB001298
  • Morgan, E. J., Lavrič, J. V., Seifert, T., Chicoine, T., Day, A. and co-authors. 2015. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory. Atmos. Meas. Tech. 8, 2233–2250. doi:10.5194/amt-8-2233-2015
  • Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J. and co-authors 2013. Anthropogenic and natural radiative forcing, in climate change 2013: the physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Doschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley). Cambridge University Press, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 659–740.
  • Nathan, B. J., Lauvaux, T., Turnbull, J. C., Richardson, S. J., Niles, N. L. and co-authors. 2018. Source sector attribution of CO2 emissions using an urban CO/CO2 Bayesian inversion system. J. Geophys. Res. Atmos. 123, 13611–13621.
  • Nickless, A., Rayner, P. J., Engelbrecht, F., Brunke, E.-G., Erni, B. and co-authors. 2018a. Estimates of CO2 fluxes over the city of Cape Town, South Africa, through Bayesian inverse modelling. Atmos. Chem. Phys. 18, 4765–4801. doi:10.5194/acp-18-4765-2018
  • Nickless, A., Rayner, P. J., Erni, B. and Scholes, R. J. 2018b. Comparison of the genetic algorithm and incremental optimisation routines for a Bayesian inverse modelling based network design. Inverse Prob. 34, 055006. doi:10.1088/1361-6420/aab46c
  • Nickless, A., Rayner, P. J., Scholes, R. J., Engelbrecht, F. and Erni, B. 2019b. An atmospheric inversion over the city of Cape Town: sensitivity analyses. Atmos. Chem. Phys. 19, 7789–7816. doi:10.5194/acp-19-7789-2019
  • Nickless, A., Scholes, R. J., Vermeulen, A., Beck, J., Lopez´-Ballesteros, A. and co-authors. 2019a. Greenhouse gas observation network design for Africa. OSF. doi:https://doi.org/10.17605/OSF.
  • Nickless, A., Ziehn, T., Rayner, P. J., Scholes, R. J. and Engelbrecht, F. 2015. Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: sensitivity analyses and South African test case. Atmos. Chem. Phys. 15, 2051–2069. doi:10.5194/acp-15-2051-2015
  • Nisbet, E. G., Dlugokencky, E. J., Manning, M. R., Lowry, D., Fisher, R. E. and co-authors. 2016. Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochem. Cy. 30, 1356–1370. doi:10.1002/2016GB005406
  • Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D. and co-authors. 2019. Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris Agreement. Global Biogeochem. Cy. 33, 318–342. doi:10.1029/2018GB006009
  • Northrop, E., Dagnet, Y., Höhne, N., Thwaites, J. and Mogelgaard, K. 2018. Achieving the ambition of Paris: designing the global stocktake. Working Paper. Project for Advancing Climate Transparency (PACT), Washington, DC. Online at: http://www.wri.org/publication/pact-global-stocktakedesign
  • Oda, T., Lauvaux, T., Lu, D., Rao, P., Miles, N. L. and co-authors. 2017. On the impact of granularity of space-based urban CO2 emissions in urban atmospheric inversions: a case study for Indianapolis, IN. Elementa 5, 28.
  • Oda, T. and Maksyutov, S. 2011. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 11, 543–556. doi:10.5194/acp-11-543-2011
  • Oda, T., Maksyutov, S. and Andres, R. J. 2018. The open-source data inventory for anthropogenic carbon dioxide (CO2), version 2016 (ODIAC2016): a global, monthly fossil-fuel CO2 gridded emission data product for tracer transport simulations and surface flux inversions. Earth Syst. Sci. Data 10, 87–107. doi:10.5194/essd-10-87-2018
  • Palmer, P. I., O'Doherty, S., Allen, G., Bower, K., Bösch, H. and co-authors. 2018. A measurement-based verification framework for UK greenhouse gas emissions: an overview of the Greenhouse gAs UK and global emissions (GAUGE) project. Atmos. Chem. Phys. 18, 11753–11777. doi:10.5194/acp-18-11753-2018
  • Patra, P. K., Houweling, S., Krol, M., Bousquet, P., Belikov, D. and co-authors. 2011. TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere. Atmos. Chem. Phys. 11, 12813–12837. doi:10.5194/acp-11-12813-2011
  • Patra, P. K. and Maksyutov, S. 2002. Incremental approach to the optimal network design for CO2 surface source inversion. Geophys. Res. Lett. 29, 97–1–97-4.
  • Peylin, P., Baker, D., Sarmiento, J., Ciais, P. and Bousquet, P. 2002. Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data. J. Geophys. Res. 107, 4385. doi:10.1029/2001JD000857
  • Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M. and co-authors. 2019. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev. 12, 4955–4997. doi:10.5194/gmd-12-4955-2019
  • Rayner, P. J. 2004. Optimizing CO2 observing networks in the presence of model error: results from TransCom 3. Atmos. Chem. Phys. 4, 413–421. doi:10.5194/acp-4-413-2004
  • Rayner, P. J., Enting, I. G., Francey, R. J. and Langenfelds, R. L. 1999. Reconstructing the recent carbon cycle from atmospheric CO2, 13C and O2/N2 observations. Tellus B 51, 213–232. doi:10.3402/tellusb.v51i2.16273
  • Rayner, P. J., Enting, I. G. and Trudinger, C. M. 1996. Optimizing the CO2 observing network for constraining sources and sinks. Tellus B 48, 433–444. doi:10.3402/tellusb.v48i4.15924
  • Reuter, M., Buchwitz, M., Schneising, O., Krautwurst, S., O'Dell, C. W. and co-authors. 2019. Towards monitoring localized CO2 emissions from space: co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. Atmos. Chem. Phys. 19, 9371–9383. doi:10.5194/acp-19-9371-2019
  • Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D. and co-authors. 2017. Role of atmospheric oxidation in recent methane growth. Proc. Natl. Acad. Sci. USA. 114, 5373–5377. doi:10.1073/pnas.1616426114
  • Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M. 2003. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964. doi:10.5194/acp-3-1919-2003
  • Saikawa, E., Schlosser, C. A. and Prinn, R. G. 2013. Global modeling of soil nitrous oxide emissions from natural processes. Global Biogeochem. Cy. 27, 972–989. doi:10.1002/gbc.20087
  • Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P. and co-authors. 2016. The global methane budget 2000–2012. Earth Syst. Sci. Data 8, 697–751. doi:10.5194/essd-8-697-2016
  • Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., Burrows, J. P. and co-authors. 2019. A scientific algorithm to simultane-ously retrieve carbon monoxide and methane from TROPOMI on-board Sentinel-5 Precursor. Atmos. Meas. Tech. 12, 6771–6802. doi:10.5194/amt-12-6771-2019
  • Seibert, P. and Frank, A. 2004. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos. Chem. Phys. 4, 51–63. doi:10.5194/acp-4-51-2004
  • Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G. and co-authors. 2015. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679. doi:10.5194/bg-12-653-2015
  • Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A. and co-authors. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol. 9, 161–185. doi:10.1046/j.1365-2486.2003.00569.x
  • Tarantola, A. 2005. Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, Philadelphia.
  • Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C. and co-authors. 2019. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993–998. doi:10.1038/s41558-019-0613-7
  • Thompson, R. L. and Stohl, A. 2014. FLEXINVERT: an atmospheric Bayesian inversion framework for determining surface fluxes of trace species using an optimized grid. Geosci. Model Dev. 7, 2223–2242. doi:10.5194/gmd-7-2223-2014
  • United Nations. 2019. World population prospects: the 2018 revision, Department of Economic and Social Affairs, Population Division. Online at: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
  • van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y. and co-authors. 2017. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720. doi:10.5194/essd-9-697-2017
  • Vesala, T., Kljun, N., Rannik, U., Rinne, J., Sogachev, A. and co-authors. 2008. Flux and concentration footprint modelling: State of the art. Environ. Pollut. 152, 653–666. doi:10.1016/j.envpol.2007.06.070
  • Wang, H., Jiang, F., Wang, J., Ju, W. and Chen, J. M. 2019. Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO2 retrievals. Atmos. Chem. Phys. 19, 12067–12082. doi:10.5194/acp-19-12067-2019
  • Wang, J. S., Kawa, S. R., Collatz, G. J., Sasakawa, M., Gatti, L. V. and co-authors. 2018. A global synthesis inversion analysis of recent variability in CO2 fluxes using GOSAT and in situ observations. Atmos. Chem. Phys. 18, 11097–11124.
  • White, E. D., Rigby, M., Lunt, M. F., Smallman, T. L., Comyn-Platt, E. and co-authors. 2019. Quantifying the UK’s carbon diox-ide flux: an atmospheric inverse modelling approach using a regional measurement network. Atmos. Chem. Phys. 19, 4345–4365. doi:10.5194/acp-19-4345-2019.
  • Whittlestone, S., Kowalczyk, E., Brunke, E. G. and Labuschagne, C. 2009. Source Regions for CO2 at Cape Point Assessed by Modelling 222Rn and Meteorological Data. Technical Report for the South African Weather Service, Pretoria, South Africa.
  • Wu, Z., Hugelius, G., Luo, Y., Smith, B., Xia, J. and co-authors. 2019. Approaching the potential of model-data comparisons of global land carbon storage. Sci. Rep. 9, 3367. doi:10.1038/s41598-019-38976-y
  • Ziehn, T., Nickless, A., Rayner, P. J., Law, R. M., Roff, G. and co-authors. 2014. Greenhouse gas network design using backward La-grangian particle dispersion modelling - Part 1: methodology and Australian test case. Atmos. Chem. Phys. 14, 9363–9378. doi:10.5194/acp-14-9363-2014