1,500
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of observation angle change on satellite retrieval of aerosol optical depth

, , &
Pages 1-14 | Received 09 Oct 2020, Accepted 07 Jun 2021, Published online: 13 Jul 2021

References

  • Abdou, W. A., Diner, D. J., Martonchik, J. V., Bruegge, C. J., Kahn, R. A. and co-authors. 2005. Comparison of coincident multiangle imaging spectroradiometer and moderate resolution imaging spectroradiometer aerosol optical depths over land and ocean scenes containing aerosol robotic network sites. J. Geophys. Res. 110, 1–12.
  • Abelleyra, D. and Verón, S. R. 2014. Comparison of different Brdf correction methods to generate daily normalized Modis 250m time series. Remote Sens. Environ. 140, 46–59. doi:https://doi.org/10.1016/j.rse.2013.08.019
  • Angal, A., Xiong, X. and Wu, A. 2016. Monitoring the on-orbit calibration of terra MODIS reflective solar bands using simultaneous terra MISR observations. IEEE Trans. Geosci. Remote Sens., 1–12.
  • Ångström, A. 1964. The parameters of atmospheric turbidity. Tellus. 16, 64–75.
  • Cohen, J. B., Wang, C. and Prinn, R. G. 2010. The impact of detailed urban-scale processing on the aerosol direct effect and its impacts on the climate. In: AGU Fall Meeting. Abstracts.
  • Diner, D. J., Bruegge, C. J., Martonchik, J. V., Bothwell, G. W., Danielson, E. D. and co-authors. 1991. A multi-angle imaging spectroradiometer for terrestrial remote sensing from the earth observing system. Int. J. Imaging Syst. Technol. 3, 92–107. John Wiley & sons Inc, USA, NJ. doi:https://doi.org/10.1002/ima.1850030206
  • Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E. and co-authors. 1998. Multi-angle imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 36, 1072–1087. doi:https://doi.org/10.1109/36.700992
  • Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A. and co-authors. 1999. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 104, 31333–31349. doi:https://doi.org/10.1029/1999JD900923
  • Gao, F., Jin, Y., Schaaf, C. B. and Strahler, A. H. 2002. Bidirectional ndvi and atmospherically resistant BRDF inversion for vegetation canopy. IEEE Trans. Geosci. Remote Sens. 40, 1269–1278.
  • Garay, M. J., Bull, M. A., Nastan, A. M., Witek, M. L., Seidel, F. C. and co-authors. 2018. Data Product Specification for the MISR Level 2Aerosol Product.
  • Garay, M. J., Witek, M. L., Kahn, R. A., Seidel, F. C., Limbacher, J. A. and co-authors. 2020. Introducing the 4.4 km spatial resolution multi-angle imaging SpectroRadiometer (MISR) aerosol product. Atmos. Meas. Tech. 13, 593–628. doi:https://doi.org/10.5194/amt-13-593-2020
  • Goloub, P., Tanre, D., Deuze, J. L., Herman, M., Marchand, A. and co-authors. 1999. Validation of the first algorithm applied for deriving the aerosol properties over the ocean using the polder/adeos measurements. IEEE Trans. Geosci. Remote Sens. 37, 1586–1596. doi:https://doi.org/10.1109/36.763270
  • He, J., Zha, Y., Zhang, J., Gao, J., Li, Y. and co-authors. 2015. Retrieval of aerosol optical thickness from hj-1 CCD data based on MODIS-derived surface reflectance. Int. J. Remote Sens. 36, 882–898. doi:https://doi.org/10.1080/01431161.2014.999171
  • Kahn, R. A., Garay, M. J., Nelson, D. L., Yau, K. K., Bull, M. A. and co-authors. 2007. Satellite-derived aerosol optical depth over dark water from MISR and MODIS:  Comparisons with aeronet and implications for climatological studies. J. Geophys. Res. 112, D18205. doi:https://doi.org/10.1029/2006JD008175.
  • Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A. and co-authors. 1997. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. 102, 17051–17067. doi:https://doi.org/10.1029/96JD03988
  • Lee, H. H., Iraqui, O., Gu, Y., Yim, S. H. L. and Wang, C. 2017. Impacts of particulate pollution from fossil fuel and biomass burnings on the air quality and human health in Southeast Asia. In: AGU Fall Meeting. Abstracts.
  • Li, Z., Zhao, X., Kahn, R., Mishchenko, M., Remer, L. and co-authors. 2009. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its longterm trend: A review and perspective. Ann. Geophys. 27, 2755–2770. doi:https://doi.org/10.5194/angeo-27-2755-2009
  • Loehnert, U., Ebell, K. and Orlandi, E. 2015. Improving the retrieval of atmospheric stability indices by combining ground-based and satellite remote sensing. In: AGU Fall Meeting. Abstracts.
  • Martonchik, J. V., Diner, D. J., Crean, K. A. and Bull, M. A. 2002. Regional aerosol retrieval results from MISR. IEEE Trans. Geosci. Remote Sens. 40, 1520–1531. doi:https://doi.org/10.1109/TGRS.2002.801142
  • Martonchik, J. V., Diner, D. J., Kahn, R. A., Gaitley, B. J. and Holben, B. N. 2004. Comparison of MISR and AERONET aerosol optical depths over desert sites. Geophys. Res. Lett. 31, 171–184.
  • Monique, W., Amanda, V., Krassimir, B., Sabrina, L., Prue, T. and co-authors. 2013. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS One. 8, e57987.
  • Prasad, A. K. and Singh, R. P. 2007. Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sens. Environ. 107, 109–119. doi:https://doi.org/10.1016/j.rse.2006.09.026
  • She, L., Xue, Y., Yang, X., Leys, J., Guang, J. and co-authors. 2019. Joint retrieval of aerosol optical depth and surface reflectance over land using geostationary satellite data. IEEE Trans. Geosci. Remote Sens. 57, 1489–1501. doi:https://doi.org/10.1109/TGRS.2018.2867000
  • Shinozuka, Y., Redemann, J., Livingston, J. M., Russell, P. B. and Mcarthur, L. J. B. 2010. Airborne observation of aerosol optical depth during ARCTAS: Vertical profiles, inter-comparison, fine-mode fraction and horizontal variability. Atmos. Chem. Phys. 10, 18315–18363.
  • Sun, L., Sun, C. K., Liu, Q. H. and Zhong, B. 2010. Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data. Sci. China Earth Sci. 53, 74–80. doi:https://doi.org/10.1007/s11430-010-4134-5
  • Tang, W., Yang, K., Qin, J., Niu, X., Lin, C. and co-authors. 2017. A revisit to decadal change of aerosol optical depth and its impact on global radiation over china. Atmos. Environ. 150, 106–e115. doi:https://doi.org/10.1016/j.atmosenv.2016.11.043
  • Tian, X., Liu, S., Sun, L. and Qiang, L. 2018. Retrieval of aerosol optical depth in the arid or semiarid region of Northern Xinjiang, China. Remote Sens. 10, 197. doi:https://doi.org/10.3390/rs10020197
  • Tian, X., Liu, Q., Gao, Z., Wang, Y. and Wei, J. 2020. Improving MODIS aerosol estimates over land with the surface BRDF reflectances using the three-dimensional discrete cosine transform and RossThick-LiSparse models. IEEE Transactions on Geoscience and Remote Sensing.
  • Wang, Z., Li, Q., Wang, Q., Li, X., Chen, L. and co-authors. 2012. HJ-1 terrestrial aerosol data retrieval using deep blue algorithm. J. Remote Sens. 16, 596–610.
  • Wei, J., Li, Z., Peng, Y., Sun, L. and Yan, X. 2019. A regionally robust high-spatial-resolution aerosol retrieval algorithm for MODIS images over Eastern China. IEEE Trans. Geosci. Remote Sens. 57, 4748–4757. doi:https://doi.org/10.1109/TGRS.2019.2892813
  • Xu, Q., Obradovic, Z., Han, B., Li, Y., Braverman, A. and co-authors. 2005. Improving aerosol retrieval accuracy by integrating AERONET, MISR and MODIS data. In: 8th IEEE International Conference on Information Fusion, 10, 1–7.
  • Yan, X., Luo, N., Liang, C., Zang, Z., Zhao, W. and co-authors. 2020. Simplified and fast atmospheric radiative transfer model for satellite-based aerosol optical depth retrieval. Atmos. Environ. 224, 117362. doi:https://doi.org/10.1016/j.atmosenv.2020.117362
  • Zhou, S., Dai, J. and Bu, J. 2013. City size distributions in China 1949 to 2010 and the impacts of government policies. Cities. 32, S51–S57. doi:https://doi.org/10.1016/j.cities.2013.04.011