1,553
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Activated Tim-3/Galectin-9 participated in the development of multiple myeloma by negatively regulating CD4 T cells

, , , &
Article: 2288481 | Received 11 Feb 2023, Accepted 15 Nov 2023, Published online: 18 Dec 2023

References

  • Furukawa Y, Kikuchi J. Molecular basis of clonal evolution in multiple myeloma. Int J Hematol. 2020;111(4):496–511. doi:10.1007/s12185-020-02829-6
  • Chim CS, Kumar SK, Orlowski RZ, et al. Management of relapsed and refractory multiple myeloma: novel agents, antibodies, immunotherapies and beyond. Leukemia. 2018;32(2):252–262. doi:10.1038/leu.2017.329
  • Goel U, Usmani S, Kumar S. Current approaches to management of newly diagnosed multiple myeloma. Am J Hematol. 2022;97(Suppl 1):S3–S25.
  • Kawano Y, Roccaro AM, Ghobrial IM, et al. Multiple myeloma and the immune microenvironment. Curr Cancer Drug Targets. 2017;17(9):806–818.
  • Sawant DV, Yano H, Chikina M, et al. Adaptive plasticity of IL-10(+) and IL-35(+) Treg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 2019;20(6):724–735. doi:10.1038/s41590-019-0346-9
  • Bedke T, Muscate F, Soukou S, et al. IL-10-producing T cells and their dual functions. Semin Immunol. 2019;44:101335. doi:10.1016/j.smim.2019.101335
  • Foglietta M, Castella B, Mariani S, et al. The bone marrow of myeloma patients is steadily inhabited by a normal-sized pool of functional regulatory T cells irrespectiveof the disease status. Haematologica. 2014;99(10):1605–1610. doi:10.3324/haematol.2014.105866
  • D’Arena G, Rossi G, Laurenti L, et al. Circulating regulatory T-cells in monoclonal gammopathies of uncertain significance and multiple myeloma: in search of a role. J Immunol Res. 2016;2016:9271469.
  • Muthu RK, Rihova L, Zahradova L, et al. Increased T regulatory cells are associated with adverse clinical features and predict progression in multiple myeloma. PLoS One. 2012;7(10):e47077. doi:10.1371/journal.pone.0047077
  • Chang SH. T helper 17 (Th17) cells and interleukin-17 (IL-17) in cancer. Arch Pharm Res. 2019;42(7):549–559. doi:10.1007/s12272-019-01146-9
  • Ruiz DMJ, Puig L, Dauden E, et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: an updated review of the evidence focusing in controversies. Autoimmun Rev. 2020;19(1):102429. doi:10.1016/j.autrev.2019.102429
  • Lopes R, Caetano J, Ferreira B, et al. The immune microenvironment in multiple myeloma: friend or foe? Cancers (Basel). 2021;13(4). doi:10.3390/cancers13040625
  • Sharma A, Khan R, Joshi S, et al. Dysregulation in T helper 1/T helper 2 cytokine ratios in patients with multiple myeloma. Leuk Lymphoma. 2010;51(5):920–927. doi:10.3109/10428191003699563
  • Seumois G, Ramirez-Suastegui C, Schmiedel BJ, et al. Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma[J]. Sci Immunol. 2020;5: eaba6087. doi: 10.1126/sciimmunol.aba6087
  • Feng P, Yan R, Dai X, et al. The alteration and clinical significance of Th1/Th2/Th17/Treg cells in patients with multiple myeloma. Inflammation. 2015;38(2):705–709. doi:10.1007/s10753-014-9980-4
  • Puzzolo MC, Del GI, Peragine N, et al. TH2/TH1 shift under ibrutinib treatment in chronic lymphocytic leukemia. Front Oncol. 2021;11:637186. doi:10.3389/fonc.2021.637186
  • Zhao D, Li C, Yang X, et al. Elevated soluble Tim-3 correlates with disease activity of systemic lupus erythematosus. Autoimmunity. 2021;54(2):97–103. doi:10.1080/08916934.2021.1891535
  • Mewes C, Alexander T, Buttner B, et al. TIM-3 genetic variants are associated with altered clinical outcome and susceptibility to gram-positive infections in patients with sepsis. Int J Mol Sci. 2020;21(21). doi:10.3390/ijms21218318
  • Datar I, Sanmamed MF, Wang J, et al. Expression analysis and significance of PD-1, LAG-3, and TIM-3 in human non-small cell lung cancer using spatially resolved and multiparametric single-cell analysis. Clin Cancer Res. 2019;25(15):4663–4673. doi:10.1158/1078-0432.CCR-18-4142
  • Curley J, Conaway MR, Chinn Z, et al. Looking past PD-L1: expression of immune checkpoint TIM-3 and its ligand galectin-9 in cervical and vulvar squamous neoplasia. Mod Pathol. 2020;33(6):1182–1192. doi:10.1038/s41379-019-0433-3
  • Dama P, Tang M, Fulton N, et al. Gal9/Tim-3 expression level is higher in AML patients who fail chemotherapy. J Immunother Cancer. 2019;7(1):175. doi:10.1186/s40425-019-0611-3
  • Huang X, Bai X, Cao Y, et al. Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J Exp Med. 2010;207(3):505–520. doi:10.1084/jem.20090397
  • Goncalves SI, Gibbs BF, Bardelli M, et al. Differential expression and biochemical activity of the immune receptor Tim-3 in healthy and malignant human myeloid cells. Oncotarget. 2015;6(32):33823–33833. doi:10.18632/oncotarget.5257
  • Kumar SK, Callander NS, Alsina M, et al. NCCN guidelines insights: multiple myeloma, version 3.2018. J Natl Compr Canc Netw. 2018;16(1):11–20. doi:10.6004/jnccn.2018.0002
  • Acharya N, Sabatos-Peyton C, Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer. 2020;8(1):e000911. doi:10.1136/jitc-2020-000911
  • Zhao L, Cheng S, Fan L, et al. TIM-3: an update on immunotherapy. Int Immunopharmacol. 2021;99:107933. doi:10.1016/j.intimp.2021.107933
  • Jiao J, Jiao D, Yang F, et al. Galectin-9 expression predicts poor prognosis in hepatitis B virus-associated hepatocellular carcinoma. Aging (Albany NY). 2022;14(4):1879–1890. doi:10.18632/aging.203909
  • Kamal AM, Nabih NA, Elleboudy NS, et al. Expression of immune check point gene TIM-3 in patients newly diagnosed with acute myeloid leukemia: significance and impact on outcome. Oncol Lett. 2021;21(4):325. doi:10.3892/ol.2021.12587
  • Asayama T, Tamura H, Ishibashi M, et al. Functional expression of tim-3 on blasts and clinical impact of its ligand galectin-9 in myelodysplastic syndromes. Oncotarget. 2017;8(51):88904–88917. doi:10.18632/oncotarget.21492
  • An G, Acharya C, Feng X, et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood. 2016;128(12):1590–1603. doi:10.1182/blood-2016-03-707547
  • Batorov EV, Aristova TA, Sergeevicheva VV, et al. Quantitative and functional characteristics of circulating and bone marrow PD-1 and TIM-3-positive T cells in treated multiple myeloma patients. Sci Rep. 2020;10(1):20846. doi:10.1038/s41598-020-77941-y
  • Chou FC, Chen HY, Kuo CC, et al. Role of galectins in tumors and in clinical immunotherapy. Int J Mol Sci. 2018;19(2):430.
  • Yasinska IM, Sakhnevych SS, Pavlova L, et al. The Tim-3-Galectin-9 pathway and its regulatory mechanisms in human breast cancer. Front Immunol. 2019;10:1594. doi:10.3389/fimmu.2019.01594
  • Lee BH, Park Y, Kim JH, et al. Prognostic value of galectin-9 relates to programmed Death-Ligand 1 in patients with multiple myeloma. Front Oncol. 2021;11:669817. doi:10.3389/fonc.2021.669817
  • Miggelbrink AM, Jackson JD, Lorrey SJ, et al. CD4 T-Cell exhaustion: does it exist and what are its roles in cancer? Clin Cancer Res. 2021;27(21):5742–5752. doi:10.1158/1078-0432.CCR-21-0206
  • Leblay N, Maity R, Hasan F, et al. Deregulation of adaptive t cell immunity in multiple myeloma: insights into mechanisms and therapeutic opportunities. Front Oncol. 2020;10:636. doi:10.3389/fonc.2020.00636
  • Phan V, Ito T, Inaba M, et al. Immunomodulatory drugs suppress Th1-inducing ability of dendritic cells but enhance Th2-mediated allergic responses. Blood Adv. 2020;4(15):3572–3585. doi:10.1182/bloodadvances.2019001410
  • Rossi M, Altomare E, Botta C, et al. MiR-21 antagonism abrogates Th17 tumor promoting functions in multiple myeloma. Leukemia. 2021;35(3):823–834. doi:10.1038/s41375-020-0947-1
  • Butcher MJ, Zhu J. Recent advances in understanding the Th1/Th2 effector choice. Fac Rev. 2021;10:30. doi:10.12703/r/10-30
  • Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6(12):1245–1252. doi:10.1038/ni1271
  • Paroli M, Caccavale R, Fiorillo MT, et al. The Double game played by Th17 cells in infection: host defense and immunopathology. Pathogens. 2022;11(12):1547. doi:10.3390/pathogens11121547
  • Liu G, Chen XT, Zhang H, et al. Expression analysis of cytokines IL-5, IL-6, IL-8, IL-17 and VEGF in breast cancer patients. Front Oncol. 2022;12:1019247. doi: 10.3389/fonc.2022.1019247
  • Chen G, Zhang PG, Li JS, et al. Th17 cell frequency and IL-17A production in peripheral blood of patients with non-small-cell lung cancer. J Int Med Res. 2020;48(6):1220725500. doi:10.1177/0300060520925948
  • Calcinotto A, Brevi A, Chesi M, et al. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat Commun. 2018;9(1):4832. doi:10.1038/s41467-018-07305-8
  • Foglietta M, Castella B, Mariani S, et al. The bone marrow of myeloma patients is steadily inhabited by a normal-sized pool of functional regulatory T cells irrespectiveof the disease status. Haematologica. 2014;99(10):1605–1610. doi:10.3324/haematol.2014.105866
  • Li H, Wu K, Tao K, et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 2012;56(4):1342–1351. doi:10.1002/hep.25777