1,214
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Insights into the role of JAK2-I724T variant in myeloproliferative neoplasms from a unique cohort of New Zealand patients

, , , , & ORCID Icon
Article: 2297597 | Received 20 Aug 2023, Accepted 12 Dec 2023, Published online: 10 Jan 2024

References

  • Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood. 2023;141(16):1909–1921. doi:10.1182/blood.2022017578
  • Rolles B, Mullally A. Molecular pathogenesis of myeloproliferative neoplasms. Curr Hematol Malig Rep. 2022;17(6):319–329. doi:10.1007/s11899-022-00685-1
  • Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–397. doi:10.1016/j.ccr.2005.03.023
  • Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–1061. doi:10.1016/S0140-6736(05)71142-9
  • James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–1148. doi:10.1038/nature03546
  • Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–1790. doi:10.1056/NEJMoa051113
  • Scott LM. The JAK2 exon 12 mutations: a comprehensive review. Am J Hematol. 2011;86(8):668–676. doi:10.1002/ajh.22063
  • Ma W, Kantarjian H, Zhang X, et al. Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. J Mol Diagn. 2009;11(1):49–53. doi:10.2353/jmoldx.2009.080114
  • Gill H, Ip HW, Yim R, et al. Next-generation sequencing with a 54-gene panel identified unique mutational profile and prognostic markers in Chinese patients with myelofibrosis. Ann Hematol. 2019;98(4):869–879. doi:10.1007/s00277-018-3563-7
  • Magor GW, Tallack MR, Klose NM, et al. Rapid molecular profiling of myeloproliferative neoplasms using targeted exon resequencing of 86 genes involved in JAK-STAT signaling and epigenetic regulation. J Mol Diagn. 2016;18(5):707–718. doi:10.1016/j.jmoldx.2016.05.006
  • Inano T, Araki M, Morishita S, et al. Cell-autonomous megakaryopoiesis associated with polyclonal hematopoiesis in triple-negative essential thrombocythemia. Sci Rep. 2021;11(1):17702. doi:10.1038/s41598-021-97106-9
  • Puliuvea C. PhD thesis: the immuno-metabolic effects of Unique Māori and Pacific Gene variants. The University of Auckland. 2023. https://hdl.handle.net/2292/66670.
  • Varghese C, Immanuel T, Ruskova A, et al. The epidemiology of myeloproliferative neoplasms in New Zealand between 2010 and 2017: insights from the New Zealand cancer registry. Curr Oncol. 2021;28(2):1544–1557. doi:10.3390/curroncol28020146
  • Hanna MZ, Kalev-Zylinska ML, Jackson SR, et al. Distinctive features of polycythaemia vera in New Zealand polynesians. N Z Med J. 2018;131(1482):38–45.
  • Liu X, Jian X, Boerwinkle E. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat. 2011;32(8):894–899. doi:10.1002/humu.21517
  • Liu X, Li C, Mou C, et al. dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 2020;12(1):103. doi:10.1186/s13073-020-00803-9
  • Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99(4):877–885. doi:10.1016/j.ajhg.2016.08.016
  • Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33(Web Server issue):W306-310. doi:10.1093/nar/gki375
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimerax: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82. doi:10.1002/pro.3943
  • Bandaranayake RM, Ungureanu D, Shan Y, et al. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol. 2012;19(8):754–759. doi:10.1038/nsmb.2348
  • Glassman CR, Tsutsumi N, Saxton RA, et al. Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Science. 2022;376(6589):163–169. doi:10.1126/science.abn8933
  • Lupardus PJ, Ultsch M, Wallweber H, et al. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proc Natl Acad Sci U S A. 2014;111(22):8025–8030. doi:10.1073/pnas.1401180111
  • Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–2390. doi:10.1056/NEJMoa1311347
  • Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–2405. doi:10.1056/NEJMoa1312542
  • Boyd EM, Bench AJ, Goday-Fernandez A, et al. Clinical utility of routine MPL exon 10 analysis in the diagnosis of essential thrombocythaemia and primary myelofibrosis. Br J Haematol. 2010;149(2):250–257. doi:10.1111/j.1365-2141.2010.08083.x
  • He X, Chen Z, Jiang Y, et al. Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases. J Hematol Oncol. 2013;6:11. doi:10.1186/1756-8722-6-11
  • Wang Y, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021;39(11):1348–1365. doi:10.1038/s41587-021-01108-x
  • Robinson JT, Thorvaldsdottir H, Wenger AM, et al. Variant review with the integrative genomics viewer. Cancer Res. 2017;77(21):e31–e34. doi:10.1158/0008-5472.CAN-17-0337
  • Mambet C, Babosova O, Defour JP, et al. Cooccurring JAK2 V617F and R1063H mutations increase JAK2 signaling and neutrophilia in myeloproliferative neoplasms. Blood. 2018;132(25):2695–2699. doi:10.1182/blood-2018-04-843060
  • Benton CB, Boddu PC, DiNardo CD, et al. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Cancer. 2019;125(11):1855–1866. doi:10.1002/cncr.31986
  • Eder-Azanza L, Hurtado C, Navarro-Herrera D, et al. P.Y317H is a new JAK2 gain-of-function mutation affecting the FERM domain in a myelofibrosis patient with CALR mutation. Haematologica. 2017;102(8):e328–e331. doi:10.3324/haematol.2017.166439
  • Maslah N, Verger E, Schlageter MH, et al. Next-generation sequencing for JAK2 mutation testing: advantages and pitfalls. Ann Hematol. 2019;98(1):111–118. doi:10.1007/s00277-018-3499-y
  • Feenstra JD M, Nivarthi H, Gisslinger H, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127(3):325–332. doi:10.1182/blood-2015-07-661835
  • Wu QY, Ma MM, Tong YX, et al. Effects of JAK2 V556F mutation on the JAK2's activity, structural stability and the transformation of Ba/F3 cells. Int J Biol Macromol. 2018;117:271–279. doi:10.1016/j.ijbiomac.2018.05.185
  • Etheridge SL, Cosgrove ME, Sangkhae V, et al. A novel activating, germline JAK2 mutation, JAK2R564Q, causes familial essential thrombocytosis. Blood. 2014;123(7):1059–1068. doi:10.1182/blood-2012-12-473777
  • Lee TS, Ma W, Zhang X, et al. Structural effects of clinically observed mutations in JAK2 exons 13-15: comparison with V617F and exon 12 mutations. BMC Struct Biol. 2009;9:58. doi:10.1186/1472-6807-9-58
  • Luo M, Tian T, Zhang Y, et al. Functional analysis of atypical mutations in exons 13 and 15 of JAK2 gene in myeloproliferative neoplasms. Int J Lab Hematol. 2021;43(3):e110–e113. doi:10.1111/ijlh.13398
  • Hammaren HM, Ungureanu D, Grisouard J, et al. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation. Proc Natl Acad Sci U S A. 2015;112(15):4642–4647. doi:10.1073/pnas.1423201112
  • Acharya A, Vaniawala S, Parekh H, et al. A resequencing program in India detects the rare JAK2 L579F mutation in patients suffering from polycythemia vera and negative for JAK2 V617F. Int J Lab Hematol. 2014;36(4):e30–33. doi:10.1111/ijlh.12141
  • Zhao L, Dong H, Zhang CC, et al. A JAK2 interdomain linker relays Epo receptor engagement signals to kinase activation. J Biol Chem. 2009;284(39):26988–26998. doi:10.1074/jbc.M109.011387
  • Dusa A, Staerk J, Elliott J, et al. Substitution of pseudokinase domain residue Val-617 by large non-polar amino acids causes activation of JAK2. J Biol Chem. 2008;283(19):12941–12948. doi:10.1074/jbc.M709302200
  • Wu S, Luo P, Yu Y, et al. Next-generation sequencing redefines the diagnosis of triple-negative myeloproliferative neoplasms. Ann Hematol. 2022;101(3):705–708. doi:10.1007/s00277-021-04561-5
  • Beucher A, Dib M, Orvain C, et al. Next generation sequencing redefines a triple negative essential thrombocythaemia as double-positive with rare mutations on JAK2 V617 and MPL W515 hotspots. Br J Haematol. 2019;186(5):785–788. doi:10.1111/bjh.15954
  • Warshawsky I, Mularo F, Hren C, et al. Failure of the Ipsogen MutaScreen kit to detect the JAK2 617V>F mutation in samples with additional rare exon 14 mutations: implications for clinical testing and report of a novel 618C>F mutation in addition to 617V>F. Blood. 2010;115(15):3175–3176. doi:10.1182/blood-2009-12-257501
  • Wu QY, Li F, Guo HY, et al. Amino acid residue E543 in JAK2 C618R is a potential therapeutic target for myeloproliferative disorders caused by JAK2 C618R mutation. Arch Biochem Biophys. 2012;528(1):57–66. doi:10.1016/j.abb.2012.08.010
  • Yoo JH, Park TS, Maeng HY, et al. JAK2 v617f/C618R mutation in a patient with polycythemia vera: a case study and review of the literature. Cancer Genet Cytogenet. 2009;189(1):43–47. doi:10.1016/j.cancergencyto.2008.09.010
  • Kahraman CY, Sincan G, Tatar A. Next-generation sequencing panel test in myeloid neoplasms and evaluation with the clinical results. Eurasian J Med. 2022;54(2):181–185. doi:10.5152/eurasianjmed.2022.21102
  • Karow A, Waller C, Reimann C, et al. JAK2 mutations other than V617F: a novel mutation and mini review. Leuk Res. 2008;32(2):365–366. doi:10.1016/j.leukres.2007.02.018
  • Tiong IS, Casolari DA, Moore S, et al. Apparent ‘JAK2-negative’ polycythaemia vera due to compound mutations in exon 14. Br J Haematol. 2017;178(2):333–336. doi:https://doi.org/10.1111/bjh.14126.
  • Grinfeld J, Nangalia J, Baxter EJ, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379(15):1416–1430. doi:10.1056/NEJMoa1716614
  • Wu Q-Y, Guo H-Y, Li F, et al. Disruption of E627 and R683 interaction is responsible for B-cell acute lymphoblastic leukemia caused by JAK2 R683G(S) mutations. Leuk Lymphoma. 2013;54(12):2693–2700. doi:10.3109/10428194.2013.781171
  • Marty C, Saint-Martin C, Pecquet C, et al. Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors. Blood. 2014;123(9):1372–1383. doi:10.1182/blood-2013-05-504555
  • Yoshimitsu M, Hachiman M, Uchida Y, et al. Essential thrombocytosis attributed to JAK2-T875N germline mutation. Int J Hematol. 2019;110(5):584–590. doi:10.1007/s12185-019-02725-8
  • Siemiatkowska A, Bieniaszewska M, Hellmann A, et al. JAK2 and MPL gene mutations in V617F-negative myeloproliferative neoplasms. Leuk Res. 2010;34(3):387–389. doi:10.1016/j.leukres.2009.06.017
  • Schulze S, Stengel R, Jaekel N, et al. Concomitant and noncanonical JAK2 and MPL mutations in JAK2V617F- and MPLW515 L-positive myelofibrosis. Gene Chromosome Canc. 2019;58(11):747–755. doi:10.1002/gcc.22781
  • Passamonti F, Thiele J, Girodon F, et al. A prognostic model to predict survival in 867 world health organization-defined essential thrombocythemia at diagnosis: a study by the international working group on myelofibrosis research and treatment. Blood. 2012;120(6):1197–1201. doi:10.1182/blood-2012-01-403279
  • Wang L, Wheeler DA, Prchal JT. Acquired uniparental disomy of chromosome 9p in hematologic malignancies. Exp Hematol. 2016;44(8):644–652. doi:10.1016/j.exphem.2015.11.005
  • Ferrao R, Lupardus PJ. The Janus Kinase (JAK) FERM and SH2 domains: bringing specificity to JAK-receptor interactions. Front Endocr (Lausanne). 2017;8:71. doi:10.3389/fendo.2017.00071
  • Bader MS, Meyer SC. JAK2 in myeloproliferative neoplasms: still a protagonist. Pharmaceuticals (Basel). 2022;15(2). doi:10.3390/ph15020160
  • Argetsinger LS, Kouadio JL, Steen H, et al. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol Cell Biol. 2004;24(11):4955–4967. doi:10.1128/MCB.24.11.4955-4967.2004
  • Robertson SA, Koleva RI, Argetsinger LS, et al. Regulation of Jak2 function by phosphorylation of Tyr317 and Tyr637 during cytokine signaling. Mol Cell Biol. 2009;29(12):3367–3378. doi:10.1128/MCB.00278-09
  • Bonicelli G, Abdulkarim K, Mounier M, et al. Leucocytosis and thrombosis at diagnosis are associated with poor survival in polycythaemia vera: a population-based study of 327 patients. Br J Haematol. 2013;160(2):251–254. doi:10.1111/bjh.12117
  • Shallis RM, Zeidan AM, Wang R, et al. Epidemiology of the Philadelphia chromosome-negative classical myeloproliferative neoplasms. Hematol Oncol Clin North Am. 2021;35(2):177–189. doi:10.1016/j.hoc.2020.11.005
  • Crisa E, Venturino E, Passera R, et al. A retrospective study on 226 polycythemia vera patients: impact of median hematocrit value on clinical outcomes and survival improvement with anti-thrombotic prophylaxis and non-alkylating drugs. Ann Hematol. 2010;89(7):691–699. doi:10.1007/s00277-009-0899-z
  • Tefferi A, Rumi E, Finazzi G, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27(9):1874–1881. doi:10.1038/leu.2013.163
  • Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124(16):2507–2513. quiz 2615. doi:10.1182/blood-2014-05-579136
  • Carobbio A, Ferrari A, Masciulli A, et al. Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: a systematic review and meta-analysis. Blood Adv. 2019;3(11):1729–1737. doi:10.1182/bloodadvances.2019000211
  • Gangat N, Wolanskyj AP, McClure RF, et al. Risk stratification for survival and leukemic transformation in essential thrombocythemia: a single institutional study of 605 patients. Leukemia. 2007;21(2):270–276. doi:10.1038/sj.leu.2404500
  • Accurso V, Santoro M, Raso S, et al. Splenomegaly impacts prognosis in essential thrombocythemia and polycythemia vera: A single center study. Hematol Rep. 2019;11(4):8281. doi:10.4081/hr.2019.8281
  • Cerquozzi S, Barraco D, Lasho T, et al. Risk factors for arterial versus venous thrombosis in polycythemia vera: a single center experience in 587 patients. Blood Cancer J. 2017;7(12):662. doi:10.1038/s41408-017-0035-6
  • Sobas M, Kiladjian JJ, Beauverd Y, et al. Real-world study of children and young adults with myeloproliferative neoplasms: identifying risks and unmet needs. Blood Adv. 2022;6(17):5171–5183. doi:10.1182/bloodadvances.2022007201
  • Paz D L, Bader MS, Nienhold R, et al. Impact of clonal architecture on clinical course and prognosis in patients with myeloproliferative neoplasms. Hemasphere. 2023;7(5):e885. doi:10.1097/HS9.0000000000000885
  • Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics. 2006;22(22):2729–2734. doi:10.1093/bioinformatics/btl423
  • Wisniewska-Chudy E, Szylberg L, Dworacki G, et al. pSTAT5 and ERK exhibit different expression in myeloproliferative neoplasms. Oncol Rep. 2017;37(4):2295–2307. doi:10.3892/or.2017.5476
  • Shallis RM, Wang R, Davidoff A, et al. Epidemiology of the classical myeloproliferative neoplasms: The four corners of an expansive and complex map. Blood Rev. 2020;42:100706. doi:10.1016/j.blre.2020.100706
  • Jones AV, Campbell PJ, Beer PA, et al. The JAK2 46/1 haplotype predisposes to MPL-mutated myeloproliferative neoplasms. Blood. 2010;115(22):4517–4523. doi:10.1182/blood-2009-08-236448
  • Cabagnols X, Favale F, Pasquier F, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood. 2016;127(3):333–342. doi:10.1182/blood-2015-07-661983
  • Regimbeau M, Mary R, Hermetet F, et al. Genetic background of polycythemia vera. Genes (Basel). 2022;13(4). doi:10.3390/genes13040637
  • Hirsch P, Zhang Y, Tang R, et al. Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia. Nat Commun. 2016;7:12475. doi:10.1038/ncomms12475
  • Cavagna R, Guinea Montalvo ML, Tosi M, et al. Capture-based next-generation sequencing improves the identification of immunoglobulin/T-cell receptor clonal markers and gene mutations in adult acute lymphoblastic leukemia patients lacking molecular probes. Cancers (Basel). 2020;12(6). doi:10.3390/cancers12061505