886
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pre-treatment [18F]FDG PET/CT for assessing bone marrow involvement and prognosis in patients with newly diagnosed peripheral T-cell lymphoma

& ORCID Icon
Article: 2325317 | Received 31 Dec 2023, Accepted 26 Feb 2024, Published online: 11 Mar 2024

Reference

  • Niitsu N, et al. Clinico-pathologic features and outcome of Japanese patients with peripheral T-cell lymphomas. Hematol Oncol. 2008;26:152–158. doi:10.1002/hon.853
  • Sundaram S, et al. Utility of bone marrow aspirate and biopsy in staging of patients with T-cell lymphoma in the PET-Era - tissue remains the issue. Leuk Lymphoma. 2020;61:3226–3233. doi:10.1080/10428194.2020.1798950
  • Gallamini A, et al. Peripheral T-cell lymphoma unspecified (PTCL-U): a new prognostic model from a retrospective multicentric clinical study. Blood. 2004;103:2474–2479. doi:10.1182/blood-2003-09-3080
  • Jung SH, et al. Prognostic significance of interim PET/CT based on visual, SUV-based, and MTV-based assessment in the treatment of peripheral T-cell lymphoma. BMC Cancer. 2015;15:198. doi:10.1186/s12885-015-1193-1
  • Mehta N, et al. A retrospective analysis of peripheral T-cell lymphoma treated with the intention to transplant in the first remission. Clin Lymphoma Myeloma Leuk. 2013;13:664–670. doi:10.1016/j.clml.2013.07.005
  • Al-Ibraheem A, et al. FDG-PET/CT in the monitoring of lymphoma immunotherapy response: current status and future prospects. Cancers (Basel). 2023;15(4):1063. doi:10.3390/cancers15041063.
  • Al-Ibraheem A, Mottaghy FM, Juweid ME. Pet/CT in hodgkin lymphoma: An update. Semin Nucl Med. 2023;53:303–319. doi:10.1053/j.semnuclmed.2022.10.006
  • Zanoni L, et al. Pet/CT in Non-hodgkin lymphoma: An update. Semin Nucl Med. 2023;53:320–351. doi:10.1053/j.semnuclmed.2022.11.001
  • El-Galaly TC, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with hodgkin lymphoma. J Clin Oncol. 2012;30:4508–4514. doi:10.1200/JCO.2012.42.4036
  • Adams HJ, Nievelstein RA, Kwee TC. Opportunities and limitations of bone marrow biopsy and bone marrow FDG-PET in lymphoma. Blood Rev. 2015;29:417–425. doi:10.1016/j.blre.2015.06.003
  • Ujjani CS, et al. 18F-FDG PET-CTand trephine biopsy assessment of bone marrow involvement in lymphoma. Br J Haematol. 2016;174:410–416. doi:10.1111/bjh.14071
  • Cheson BD, et al. Recommendations for initial evaluation, staging, and response assessment of hodgkin and non-hodgkin lymphoma: the lugano classification. J Clin Oncol. 2014;32:3059–3067. doi:10.1200/JCO.2013.54.8800
  • Jackson AE, et al. The utility of restaging bone marrow biopsy in PET-negative patients with diffuse large B-cell lymphoma and baseline bone marrow involvement. Am J Hematol. 2014;89:865–867. doi:10.1002/ajh.23760
  • Abe Y, et al. Diagnostic and prognostic value of using 18F-FDG PET/CT for the evaluation of bone marrow involvement in peripheral T-cell lymphoma. Clin Nucl Med. 2019;44:e336–e341. doi:10.1097/RLU.0000000000002516
  • El-Galaly TC, et al. Utility of interim and end-of-treatment PET/CT in peripheral T-cell lymphomas: A review of 124 patients. Am J Hematol. 2015;90:975–980. doi:10.1002/ajh.24128
  • Koh Y, et al. Fdg PET for evaluation of bone marrow status in T-cell lymphoma. Clin Nucl Med. 2019;44:4–10. doi:10.1097/RLU.0000000000002320
  • Alaggio R, et al. The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36:1720–1748. doi:10.1038/s41375-022-01620-2
  • Adams HJA, et al. Systematic review and meta-analysis on the diagnostic performance of FDG-PET/CT in detecting bone marrow involvement in newly diagnosed hodgkin lymphoma: is bone marrow biopsy still necessary? Ann Oncol. 2014;25:921–927. doi:10.1093/annonc/mdt533
  • Barrington SF, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol. 2014;32:3048–3058. doi:10.1200/JCO.2013.53.5229
  • Grogg KL, Morice WG, Macon WR. The expression of the novel cytotoxic protein granzyme M by large granular lymphocytic leukaemias of both T-cell and NK-cell lineage: an unexpected finding with implications regarding the pathobiology of these disorders. Br J Haematol. 2007;137:237–239. doi:10.1111/j.1365-2141.2007.06564.x
  • Dogan A, Morice WG. Bone marrow histopathology in peripheral T-cell lymphomas. Br J Haematol. 2004;127:140–154. doi:10.1111/j.1365-2141.2004.05144.x
  • Chiba S, Sakata-Yanagimoto M. Advances in understanding of angioimmunoblastic T-cell lymphoma. Leukemia. 2020;34:2592–2606. doi:10.1038/s41375-020-0990-y
  • Montes-Mojarro I-A, et al. CD147 a direct target of miR-146a supports energy metabolism and promotes tumor growth in ALK+ ALCL. Leukemia. 2022;36:2050–2063. doi:10.1038/s41375-022-01617-x
  • Yao Z, et al. Concordant bone marrow involvement of diffuse large B-cell lymphoma represents a distinct clinical and biological entity in the era of immunotherapy. Leukemia. 2018;32:353–363. doi:10.1038/leu.2017.222
  • Xie C, Li X, Zeng H, et al. Molecular insights into pathogenesis and targeted therapy of peripheral T cell lymphoma. Exp Hematol Oncol. 2020;9:30. doi:10.1186/s40164-020-00188-w
  • Heavican TB, et al. Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood. 2019;133:1664–1676. doi:10.1182/blood-2018-09-872549
  • McKinney M, et al. The genetic basis of hepatosplenic T-cell lymphoma. Cancer Discov. 2017;7:369–379. doi:10.1158/2159-8290.CD-16-0330
  • Moffitt AB, et al. Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J Exp Med. 2017;214:1371–1386. doi:10.1084/jem.20160894
  • Veloza L, et al. Monomorphic epitheliotropic intestinal T-cell lymphoma comprises morphologic and genomic heterogeneity impacting outcome. Haematologica. 2023;108:181–195.
  • Adams HJ, et al. Diffusely increased bone marrow FDG uptake in recently untreated lymphoma: incidence and relevance. Eur J Haematol. 2015;95:83–89. doi:10.1111/ejh.12483
  • Cerci JJ, et al. Combined PET and biopsy evidence of marrow involvement improves prognostic prediction in diffuse large B-cell lymphoma. J Nucl Med. 2014;55:1591–1597. doi:10.2967/jnumed.113.134486
  • Pepper NB, Oertel M, Rehn S, et al. Modern PET-guided radiotherapy planning and treatment for malignant lymphoma. Semin Nucl Med. 2023;53:389–399. doi:10.1053/j.semnuclmed.2022.09.001
  • Albano D, et al. 18F-FDG PET or PET/CT in mantle cell lymphoma. Clin Lymphoma Myeloma Leuk. 2020;20:422–430. doi:10.1016/j.clml.2020.01.018
  • Paschali A, et al. A proposed index of diffuse bone marrow [18F]-FDG uptake and PET skeletal patterns correlate with myeloma prognostic markers, plasma cell morphology, and response to therapy. Eur J Nucl Med Mol Imaging. 2021;48:1487–1497. doi:10.1007/s00259-020-05078-1
  • Pham AQ, et al. Accuracy of 18-F FDG PET/CT to detect bone marrow clearance in patients with peripheral T-cell lymphoma - tissue remains the issue. Leuk Lymphoma. 2017;58:2342–2348. doi:10.1080/10428194.2017.1300891
  • Adams HJA, Kwee TC. Proportion of false-positive lesions at interim and end-of-treatment FDG-PET in lymphoma as determined by histology: systematic review and meta-analysis. Eur J Radiol. 2016;85:1963–1970. doi:10.1016/j.ejrad.2016.08.011