695
Views
0
CrossRef citations to date
0
Altmetric
Research Article

TIM3 and CTLA4 immune checkpoint polymorphisms are associated with acute myeloid leukemia in Saudi Arabia

, , , & ORCID Icon
Article: 2329024 | Received 29 Nov 2023, Accepted 05 Mar 2024, Published online: 27 Mar 2024

References

  • Passegué E, Jamieson CH, Ailles LE, et al. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A. 2003;100(Suppl 1):11842–11849. doi:10.1073/pnas.2034201100
  • Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and etiology of leukemia and lymphoma. Cold Spring Harb Perspect Med. 2020;10:1–22.
  • Bawazir A, Al-Zamel N, Amen A, et al. The burden of leukemia in the kingdom of Saudi arabia: 15 years period (1999-2013). BMC Cancer. 2019;19:703. doi:10.1186/s12885-019-5897-5
  • Grimwade D. The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol 1999;106:591–613. doi:10.1046/j.1365-2141.1999.01501.x
  • Hobo W, Hutten TJA, Schaap NPM, et al. Immune checkpoint molecules in acute myeloid leukaemia: managing the double-edged sword. Br J Haematol. 2018;181:38–53. doi:10.1111/bjh.15078
  • Taghiloo S, Asgarian-Omran H. Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways. Crit Rev Oncol Hematol. 2021;157:103164. doi:10.1016/j.critrevonc.2020.103164
  • Salik B, Smyth MJ, Nakamura K. Targeting immune checkpoints in hematological malignancies. J Hematol Oncol. 2020;13:111), doi:10.1186/s13045-020-00947-6
  • Fallarino F, Fields PE, Gajewski TF. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J Exp Med 1998;188:205–210. doi:10.1084/jem.188.1.205
  • Hafler DA, Kuchroo V. TIMs: central regulators of immune responses. J Exp Med 2008;205:2699–2701. doi:10.1084/jem.20082429
  • Darvin P, Toor SM, Sasidharan Nair V, et al. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018;50:1–11. doi:10.1038/s12276-018-0191-1
  • Gonzalez-Montes Y, Rodriguez-Romanos R, Villavicencio A, et al. Genetic variants of CTLA4 are associated with clinical outcome of patients with multiple myeloma. Front Immunol. 2023;14:1158105. doi:10.3389/fimmu.2023.1158105
  • Al-Harbi N, Abdulla M-H, Vaali-Mohammed M-A, et al. Evidence of association between CTLA-4 gene polymorphisms and colorectal cancers in Saudi patients. Genes. 2023;14:874. doi:10.3390/genes14040874
  • Pan H, Shi Z, Gao L, et al. Impact of the cytotoxic T-lymphocyte associated antigen-4 rs231775 A/G polymorphism on cancer risk. Heliyon. 2023;9:1–9. doi:10.1016/j.heliyon.2023.e23164
  • Wagner M, Jasek M, Karabon L. Immune checkpoint molecules-inherited variations as markers for cancer risk. Front Immunol. 2021;11:606721. doi:10.3389/fimmu.2020.606721
  • Chae SC, Song JH, Pounsambath P, et al. Molecular variations in Th1-specific cell surface gene Tim-3. Exp Mol Med. 2004;36:274–278. doi:10.1038/emm.2004.37
  • Chen F, Chen Q, Zhong L, et al. Prospects of TIM-3 as a promising diagnostic and prognostic biomarker for cancer patients. Discov Med. 2021;31:15–20.
  • Cui SJ, Li Y, Zhou RM, et al. TIM-3 polymorphism is involved in the progression of esophageal squamous cell carcinoma by regulating gene expression. Environ Mol Mutagen. 2021;62:273–283. doi:10.1002/em.22432
  • Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–w102. doi:10.1093/nar/gkx247
  • Solé X, Guinó E, Valls J, et al. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22:1928–1929. doi:10.1093/bioinformatics/btl268
  • Martínez-Jiménez F, Priestley P, Shale C, et al. Genetic immune escape landscape in primary and metastatic cancer. Nat Genet 2023;55:820–831. doi:10.1038/s41588-023-01367-1
  • Sayaman RW, Saad M, Thorsson V, et al. Germline genetic contribution to the immune landscape of cancer. Immunity. 2021;54:367–386.e368. doi:10.1016/j.immuni.2021.01.011
  • Kim TK, Vandsemb EN, Herbst RS, et al. Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities. Nat Rev Drug Discovery. 2022;21:529–540. doi:10.1038/s41573-022-00493-5
  • Zheng H, Zheng WJ, Wang ZG, et al. Decreased expression of programmed death ligand-L1 by seven in absentia homolog 2 in cholangiocarcinoma enhances T-cell-mediated antitumor activity. Front Immunol. 2022;13:845193. doi:10.3389/fimmu.2022.845193
  • Pavkovic M, Georgievski B, Cevreska L, et al. CTLA-4 exon 1 polymorphism in patients with autoimmune blood disorders. Am J Hematol 2003;72:147–149. doi:10.1002/ajh.10278
  • Monne M, Piras G, Palmas A, et al. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) gene polymorphism and susceptibility to non-Hodgkin’s lymphoma. Am J Hematol 2004;76:14–18. doi:10.1002/ajh.20045
  • Piras G, Monne M, Uras A, et al. Genetic analysis of the 2q33 region containing CD28–CTLA4–ICOS genes: association with non-Hodgkin’s lymphoma. Br J Haematol. 2005;129:784–790. doi:10.1111/j.1365-2141.2005.05525.x
  • Hui L, Lei Z, Peng Z, et al. Polymorphism analysis of CTLA-4 in childhood acute lymphoblastic leukemia. Pak J Pharm Sci. 2014;27:1005–1013.
  • Suwalska K, Pawlak E, Karabon L, et al. Association studies of CTLA-4, CD28, and ICOS gene polymorphisms with B-cell chronic lymphocytic leukemia in the Polish population. Hum Immunol 2008;69:193–201. doi:10.1016/j.humimm.2008.01.014
  • Dai Z, Feng C, Zhang W, et al. Lack of association between cytotoxic T-lymphocyte antigen-4 gene polymorphisms and lymphoid malignancy risk: evidence from a meta-analysis. Ann Hematol 2016;95:1685–1694. doi:10.1007/s00277-016-2753-4
  • Wan H, Zhou H, Feng Y, et al. Comprehensive analysis of 29,464 cancer cases and 35,858 controls to investigate the effect of the cytotoxic T-lymphocyte antigen 4 gene rs231775 A/G polymorphism on cancer risk. Front Oncol. 2022;12:1–18. doi:10.3389/fonc.2022.878507
  • Oyewole-Said D, Konduri V, Vazquez-Perez J, et al. Beyond T-cells: functional characterization of CTLA-4 expression in immune and Non-immune cell types. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.608024
  • Hossen MM, Ma Y, Yin Z, et al. Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front Immunollogy. 2023;14. doi:10.3389/fimmu.2023.1198365
  • Cai C, Wang L, Wu Z, et al. T-cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and renal cell carcinoma. DNA Cell Biol. 2012;31:1285–1289. doi:10.1089/dna.2012.1625
  • Cao B, Zhu L, Zhu S, et al. Genetic variations and haplotypes in TIM-3 gene and the risk of gastric cancer. Cancer Immunol Immunother. 2010;59:1851–1857. doi:10.1007/s00262-010-0910-5
  • Tong D, Zhou Y, Chen W, et al. T cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and susceptibility to pancreatic cancer. Mol Biol Rep. 2012;39:9941–9946. doi:10.1007/s11033-012-1862-y
  • Liu Y, Duan Y, Yang N, et al. The TIM-3 Rs10053538 polymorphism Is associated with clinical prognosis of colorectal cancer. Immunol Invest 2022;51:1302–1312. doi:10.1080/08820139.2021.1936011
  • Wu J-L, Zhao J, Zhang H-B, et al. Genetic variants and expression of the TIM-3 gene are associated with clinical prognosis in patients with epithelial ovarian cancer. Gynecol Oncol 2020;159:270–276.
  • Cheng S, Ju Y, Han F, et al. T cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and susceptibility to invasive breast cancer. Ann Clin Lab Sci. 2017;47:668–675.
  • Heryanto YD, Imoto S. The transcriptome signature analysis of the epithelial-mesenchymal transition and immune cell infiltration in colon adenocarcinoma. Sci Rep. 2023;13:18383. doi:10.1038/s41598-023-45792-y
  • Omura Y, Toiyama Y, Okugawa Y, et al. Prognostic impacts of tumoral expression and serum levels of PD-L1 and CTLA-4 in colorectal cancer patients. Cancer Immunol Immunother. 2020;69:2533–2546. doi:10.1007/s00262-020-02645-1
  • Laurent S, Queirolo P, Boero S, et al. The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-α production. J Transl Med. 2013;11:108. doi:10.1186/1479-5876-11-108
  • Pistillo MP, Carosio R, Grillo F, et al. Phenotypic characterization of tumor CTLA-4 expression in melanoma tissues and its possible role in clinical response to Ipilimumab. Clin Immunol. 2020;215:108428. doi:10.1016/j.clim.2020.108428
  • Liao P, Wang H, Tang YL, et al. The common costimulatory and coinhibitory signaling molecules in head and neck squamous cell carcinoma. Front Immunol. 2019;10:2457. doi:10.3389/fimmu.2019.02457
  • Yu GT, Bu LL, Zhao YY, et al. CTLA4 blockade reduces immature myeloid cells in head and neck squamous cell carcinoma. Oncoimmunology. 2016;5:e1151594. doi:10.1080/2162402X.2016.1151594
  • Chen Y, Li M, Cao J, et al. CTLA-4 promotes lymphoma progression through tumor stem cell enrichment and immunosuppression. Open Life Sci. 2021b;16:909–919. doi:10.1515/biol-2021-0094
  • Huber M, Brehm CU, Gress TM, et al. The immune microenvironment in pancreatic cancer. Int J Mol Sci. 2020;21:7307. doi:10.3390/ijms21197307
  • Zhang Y, Lazarus J, Steele NG, et al. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 2020;10:422–439. doi:10.1158/2159-8290.CD-19-0958
  • Antczak A, Pastuszak-Lewandoska D, Górski P, et al. CTLA-4 expression and polymorphisms in lung tissue of patients with diagnosed Non-small-cell lung cancer. Biomed Res Int. 2013;2013:576486.
  • Kern R, Panis C. CTLA-4 expression and Its clinical significance in breast cancer. Arch Immunol Ther Exp. 2021;69:16. doi:10.1007/s00005-021-00618-5
  • Peng Z, Su P, Yang Y, et al. Identification of CTLA-4 associated with tumor microenvironment and competing interactions in triple negative breast cancer by co-expression network analysis. J Cancer. 2020;11:6365–6375. doi:10.7150/jca.46301
  • Tuccilli C, Baldini E, Sorrenti S, et al. CTLA-4 and PD-1 ligand gene expression in epithelial thyroid cancers. Int J Endocrinol. 2018;2018:1742951.
  • Olson BM, Jankowska-Gan E, Becker JT, et al. Human prostate tumor antigen–specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade. J. Immunol. 2012;189:5590–5601. doi:10.4049/jimmunol.1201744
  • Zhang T, Agarwal A, Almquist RG, et al. Expression of immune checkpoints on circulating tumor cells in men with metastatic prostate cancer. Biomark Res. 2021;9:14. doi:10.1186/s40364-021-00267-y
  • Kosmaczewska A, Bocko D, Ciszak L, et al. Dysregulated expression of both the costimulatory CD28 and inhibitory CTLA-4 molecules in PB T cells of advanced cervical cancer patients suggests systemic immunosuppression related to disease progression. Pathol Oncol Res. 2012;18:479–489. doi:10.1007/s12253-011-9471-y
  • Qin S, Dong B, Yi M, et al. Prognostic values of TIM-3 expression in patients With solid tumors: A meta-analysis and database evaluation. Front Oncol. 2020;10:1–13. doi:10.3389/fonc.2020.01288