485
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Increased Th17 and Treg levels in peripheral blood positively correlate with minimal residual disease in acute myeloid leukaemia

, , , &
Article: 2346971 | Received 24 Apr 2023, Accepted 18 Apr 2024, Published online: 29 Apr 2024

References

  • Pelcovits A, Niroula R. Acute myeloid leukemia: a review. R I Med J. 2020;103(3):38–40.
  • Gurney M, O'Dwyer M. Realizing innate potential: CAR-NK cell therapies for acute myeloid leukemia. Cancers. 2021;13(7). doi: 10.3390/cancers13071568
  • Stief SM, Hanneforth A-L, Weser S, et al. Loss of KDM6A confers drug resistance in acute myeloid leukemia. Leukemia. 2020;34(1):50–62. doi: 10.1038/s41375-019-0497-6
  • Wasylyshyn A, Linder KA, Castillo CG, et al. Breakthrough invasive fungal infections in patients with acute myeloid leukemia. Mycopathologia. 2020;185(2):299–306.
  • Tettamanti S, Pievani A, Biondi A, et al. Catch me if you can: how AML and its niche escape immunotherapy. Leukemia. 2022;36(1):13–22. doi: 10.1038/s41375-021-01350-x
  • Damiani D, Tiribelli M. Checkpoint inhibitors in acute myeloid leukemia. Biomedicines. 2023;11(6). doi: 10.3390/biomedicines11061724
  • Dong Y, Han Y, Huang Y, et al. PD-L1 Is expressed and promotes the expansion of regulatory T cells in acute myeloid leukemia. Front Immunol. 2020;11:1710. doi: 10.3389/fimmu.2020.01710
  • Wan Y, Zhang C, Xu Y, et al. Hyperfunction of CD4 CD25 regulatory T cells in de novo acute myeloid leukemia. BMC Cancer. 2020;20(1):472. doi: 10.1186/s12885-020-06961-8
  • Cader FZ, Schackmann RCJ, Hu X, et al. Mass cytometry of hodgkin lymphoma reveals a CD4(+) regulatory T-cell-rich and exhausted T-effector microenvironment. Blood. 2018;132(8):825–836. doi: 10.1182/blood-2018-04-843714
  • Cheng H, Luo G, Jin K, et al. Kras mutation correlating with circulating regulatory T cells predicts the prognosis of advanced pancreatic cancer patients. Cancer Med. 2020;9(6):2153–2159. doi: 10.1002/cam4.2895
  • Wang Q, Xiang Q, Yu L, et al. Changes in tumor-infiltrating lymphocytes and vascular normalization in breast cancer patients after neoadjuvant chemotherapy and their correlations with DFS. Front Oncol. 2020;9:1545. doi: 10.3389/fonc.2019.01545
  • Ersvaer E, Liseth K, Skavland J, et al. Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1, TH1, TH17 and TREG cells. BMC Immunol. 2010;11(1):38. doi: 10.1186/1471-2172-11-38
  • Li P, Ji M, Park J, et al. Th17 related cytokines in acute myeloid leukemia. Front Biosci. 2012;17(6):2284–2294. doi: 10.2741/4052
  • Guo W, Xu F, Zhuang Z, et al. Ebosin ameliorates psoriasis-like inflammation of mice via miR-155 targeting tnfaip3 on IL-17 pathway. Front Immunol. 2021;12:662362. doi: 10.3389/fimmu.2021.662362
  • Van Luijn MM, van den Ancker W, Chamuleau MED, et al. Impaired antigen presentation in neoplasia: basic mechanisms and implications for acute myeloid leukemia. Immunotherapy. 2010;2(1):85–97. doi: 10.2217/imt.09.84
  • Walter RB, Ofran Y, Wierzbowska A, et al. Measurable residual disease as a biomarker in acute myeloid leukemia: theoretical and practical considerations. Leukemia. 2021;35(6):1529–1538. doi: 10.1038/s41375-021-01230-4
  • Hasserjian RP, Steensma DP, Graubert TA, et al. Clonal hematopoiesis and measurable residual disease assessment in acute myeloid leukemia. Blood. 2020;135(20):1729–1738. doi: 10.1182/blood.2019004770
  • Xue L, Hu Y, Wang J, et al. T cells targeting multiple tumor-associated antigens as a postremission treatment to prevent or delay relapse in acute myeloid leukemia. Cancer Manag Res. 2019;11:6467–6476. doi: 10.2147/CMAR.S205296
  • Bennett JM, Catovsky D, Daniel M-T, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–458. doi: 10.1111/j.1365-2141.1976.tb03563.x
  • Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447. doi: 10.1182/blood-2016-08-733196
  • Cheson BD, Cassileth PA, Head DR, et al. Report of the national cancer institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol. 1990;8(5):813–819. doi: 10.1200/JCO.1990.8.5.813
  • Schreck RR, Disteche CM, Adler D. ISCN standard idiograms. Curr Protoc Hum Genet. 2001;Appendix 4:Appendix 4B.
  • Schoch C, Schnittger S, Klaus M, et al. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood. 2003;102(7):2395–2402. doi: 10.1182/blood-2003-02-0434
  • Rawstron AC, Child JA, de Tute RM, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the medical research council myeloma IX study. J Clin Oncol. 2013;31(20):2540–2547. doi: 10.1200/JCO.2012.46.2119
  • DiNardo CD, Lachowiez CA, Takahashi K, et al. Venetoclax combined with FLAG-IDA induction and consolidation in newly diagnosed and relapsed or refractory acute myeloid leukemia. J Clin Oncol. 2021;39(25):2768–2778. doi: 10.1200/JCO.20.03736
  • Zhang H, Savage S, Schultz AR, et al. Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nat Commun. 2019;10(1):244. doi: 10.1038/s41467-018-08263-x
  • Guo R, Lü M, Cao F, et al. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment. Biomark Res. 2021;9(1):15. doi: 10.1186/s40364-021-00265-0
  • Tang L, Wu J, Li C-G, et al. Characterization of immune dysfunction and identification of prognostic immune-related risk factors in acute myeloid leukemia. Clin Cancer Res. 2020;26(7):1763–1772. doi: 10.1158/1078-0432.CCR-19-3003
  • Guo Z, Chen Z, Xu Y, et al. The association of circulating T follicular helper cells and regulatory cells with acute myeloid leukemia patients. Acta Haematol. 2020;143(1):19–25. doi: 10.1159/000500588
  • Dong Q, Li G, Fozza C, et al. Levels and clinical significance of regulatory B cells and T cells in acute myeloid leukemia. Biomed Res Int. 2020;2020:7023168.
  • Magalhães-Gama F, Kerr MWA, de Araújo ND, et al. Imbalance of chemokines and cytokines in the bone marrow microenvironment of children with B-cell acute lymphoblastic leukemia. J Oncol. 2021;2021:5530650. doi: 10.1155/2021/5530650
  • Hao F, Sholy C, Wang C, et al. The role of T cell immunotherapy in acute myeloid leukemia. Cells. 2021;10(12):9193–9202.
  • Knaus HA, Berglund S, Hackl H, et al. Signatures of CD8+ T cell dysfunction in AML patients and their reversibility with response to chemotherapy. JCI Insight. 2018;3(21). doi: 10.1172/jci.insight.120974
  • Wu C, Wang S, Wang F, et al. Increased frequencies of T helper type 17 cells in the peripheral blood of patients with acute myeloid leukaemia. Clin Exp Immunol. 2009;158(2):199–204. doi: 10.1111/j.1365-2249.2009.04011.x
  • Szczepanski MJ, Szajnik M, Czystowska M, et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res. 2009;15(10):3325–3332. doi: 10.1158/1078-0432.CCR-08-3010
  • Sanchez-Correa B, Bergua JM, Campos C, et al. Cytokine profiles in acute myeloid leukemia patients at diagnosis: survival is inversely correlated with IL-6 and directly correlated with IL-10 levels. Cytokine. 2013;61(3):885–891. doi: 10.1016/j.cyto.2012.12.023
  • Zhao W, Zhao G, Zhang S, et al. Clearance of HBeAg and HBsAg of HBV in mice model by a recombinant HBV vaccine combined with GM-CSF and IFN-α as an effective therapeutic vaccine adjuvant. Oncotarget. 2018;9(76):34213–34228. doi: 10.18632/oncotarget.25789
  • Zhang CJ, Wang C, Jiang M, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9(1):2745. doi: 10.1038/s41467-018-04974-3
  • Tian T, Yu S, Wang M, et al. Aberrant T helper 17 cells and related cytokines in bone marrow microenvironment of patients with acute myeloid leukemia. Clin Dev Immunol. 2013;2013:915873. doi: 10.1155/2013/915873
  • Símová J, Bubeník J, Bieblová J, et al. Depletion of treg cells inhibits minimal residual disease after surgery of HPV16-associated tumours. Int J Oncol. 2007;29(6):1567–1571.
  • Sung PJ, Luger SM. Minimal residual disease in acute myeloid leukemia. Curr Treat Options Oncol. 2017;18(1):1. doi: 10.1007/s11864-017-0447-3
  • Short NJ, Zhou S, Fu C, et al. Association of measurable residual disease With survival outcomes in patients With acute myeloid leukemia: A systematic review and meta-analysis. JAMA Oncol. 2020;6(12):1890–1899. doi: 10.1001/jamaoncol.2020.4600
  • Niedźwiecki M, Budziło O, Zieliński M, et al. CD4(+)CD25(high)CD127(low/-)FoxP(3)(+) regulatory T cell subpopulations in the bone marrow and peripheral blood of children with ALL: brief report. J Immunol Res. 2018;2018:1292404. doi: 10.1155/2018/1292404