4,092
Views
15
CrossRef citations to date
0
Altmetric
Review Article

Antimicrobial resistance due to the content of potentially toxic metals in soil and fertilizing products

, &
Article: 1548248 | Received 14 Jun 2018, Accepted 08 Nov 2018, Published online: 11 Dec 2018

References

  • Roca I, Akova M, Baquero F, et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015;6:1–12.
  • Baker-Austin C, Wright MS, Stepanauskas R, et al. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006;14(4):176–182.
  • Knapp CW, McCluskey SM, Singh BK, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS One. 2011;6(11):e27300.
  • Nies DH. Microbial heavy-metal resistance. Appl Microbiol Biotechnol. 1999;51(6):730–750.
  • Seiler C, Berendonk TU. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol. 2012;3:399.
  • Yazdankhah S, Rudi K, Bernhoft A. Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb Ecol Health Dis. 2014;25: doi: 10.3402/mehd.v25.25862.
  • Alonso A, Sanchez P, Martinez JL. Environmental selection of antibiotic resistance genes. Environ Microbiol. 2001;3(1):1–9.
  • Summers AO, Wireman J, Vimy MJ, et al. Mercury released from dental “silver” fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrob Agents Chemother. 1993;37(4):825–834.
  • Stepanauskas R, Glenn TC, Jagoe CH, et al. Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol. 2005;39(10):3671–3678.
  • Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist. 2014;7:167–176.
  • Nielsen KM, Bøhn T, Townsend JP. Detecting rare gene transfer events in bacterial populations. Front Microbiol. 2014;4:415.
  • IFT. Antimicrobial resistance: implications for the food system. USA: Institute of Food Technologists; 2006.
  • Kahlmeter G. The 2014 Garrod lecture: EUCAST - are we heading towards international agreement? J Antimicrob Chemother. 2015;70(9):2427–2439.
  • Matuschek E, Brown DF, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect. 2014;20(4):O255–O266.
  • Rathnayake IV, Megharaj M, Krishnamurti GS, et al. Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere. 2013;90(3):1195–1200.
  • Wales AD, Davies RH. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics (Basel). 2015;4(4):567–604.
  • Yazdankhah SP, Scheie AA, Høiby EA, et al. Triclosan and antimicrobial resistance in bacteria: an overview. Microb Drug Resist. 2006;12(2):83–90.
  • Kochare T, Tamir B. Assessment of dairy feeds for heavy metals. Am Sci Res J Eng Technol Sci. 2015;11:20–31.
  • Duffus JH. “Heavy metals” - A meaningless term? (IUPAC technical report). Pure Appl Chem. 2002;74(5):793–807.
  • Mortvedt JJ. Heavy metal contaminants in inorganic and organic fertilizers. Ferti Res. 1996;43:55–61.
  • Fraise AP, Maillard J-Y SS. Principles and practice of disinfection, preservation and sterilization. Chichester, West Sussex: John Wiley & Sons; 2012.
  • Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11(6):371–384.
  • Silver S, Phung LT. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996;50:753–789.
  • Harrison JJ, Ceri H, Turner RJ. Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol. 2007;5(12):928–938.
  • Teitzel GM, Parsek MR. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol. 2003;69(4):2313–2320.
  • Schiering N, Kabsch W, Moore MJ, et al. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature. 1991;352(6331): 168–172.
  • Nies DH, Silver S. Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol. 1995;14(2):186–199.
  • Pal C, Bengtsson-Palme J, Rensing C, et al. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42(Databaseissue):D737–D743.
  • Herland BJ, Taylor D, Wither K. The distribution of mercury and other trace metals in the sediments of the Mersey Estuary over 25 years 1974–1998. Sci Total Environ. 2000;253:45–62.
  • Giller KE, Witter E, Mcgrath SP. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem. 1998;30:1389–1414.
  • Roane TM, Kellogg ST. Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol. 1996;42(6):593–603.
  • Xie Y, Fan J, Zhu W, et al. Effect of heavy metals pollution on soil microbial diversity and Bermudagrass genetic variation. Front Plant Sci. 2016;7:755.
  • Hobman JL, Crossman LC. Bacterial antimicrobial metal ion resistance. J Med Microbiol. 2015;64(Pt 5):471–497.
  • Pikkemaat MG, Yassin H, van der Fels-Klerx HJ, et al. Antibiotic residues and resistance in the environment, RIKILT report 2016.009. The Netherlands: RIKILT Wageningen UR (University & Research centre); 2016.
  • Qian M, Wu H, Wang J, et al. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China. Sci Total Environ. 2016;559:174–181.
  • Lin H, Sun W, Zhang Z, et al. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system. Environ Pollut. 2016;211:332–337.
  • Li Y, Liu B, Zhang X, et al. Effects of Cu exposure on enzyme activities and selection for microbial tolerances during swine-manure composting. J Hazard Mater. 2015;283:512–518.
  • Riber L, Poulsen PH, Al-Soud WA, et al. Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance. FEMS Microbiol Ecol. 2014;90(1):206–224.
  • Ji X, Shen Q, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J Hazard Mater. 2012;235–236:178–185.
  • Rahube TO, Yost CK. Characterization of a mobile and multiple resistance plasmid isolated from swine manure and its detection in soil after manure application. J Appl Microbiol. 2012;112(6):1123–1133.
  • Holzel CS, Muller C, Harms KS, et al. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance. Environ Res. 2012;113:21–27.
  • Caldini G, Cenci G, Morozzi G. Resistotype heterogeneity of Escherichia coli strains isolated from humans, animals and sewage waters. Zentralbl Bakteriol Mikrobiol Hyg B. 1987;184(3–4):206–213.
  • Collignon PC, Conly JM, Andremont A, World Health Organization Advisory Group BMoISoAR, et al. World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin Infect Dis. 2016;63(8):1087–1093.
  • Anssour L, Messai Y, Estepa V, et al. Characteristics of ciprofloxacin-resistant Enterobacteriaceae isolates recovered from wastewater of an Algerian hospital. J Infect Dev Ctries. 2016;10(7):728–734.
  • Gao P, He S, Huang S, et al. Impacts of coexisting antibiotics, antibacterial residues, and heavy metals on the occurrence of erythromycin resistance genes in urban wastewater. Appl Microbiol Biotechnol. 2015;99(9):3971–3980.
  • Heck K, De Marco EG, Duarte MW, et al. Pattern of multiresistant to antimicrobials and heavy metal tolerance in bacteria isolated from sewage sludge samples from a composting process at a recycling plant in southern Brazil. Environ Monit Assess. 2015;187(6):328.
  • Varela AR, Andre´ S, Nunes OC, et al. Insights into the relationship between antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant system. Water Res. 2014;54:327–336.
  • Martins VV, Zanetti MO, Pitondo-Silva A, et al. Aquatic environments polluted with antibiotics and heavy metals: a human health hazard. Environ Sci Pollut Res Int. 2014;21(9):5873–5878.
  • Filali BK, Taoufik J, Zeroual Y, et al. Waste water bacterial isolates resistant to heavy metals and antibiotics. Curr Microbiol. 2000;41(3):151–156.
  • Dhakephalkar PK, Chopade BA. High levels of multiple metal resistance and its correlation to antibiotic resistance in environmental isolates of Acinetobacter. Biometals. 1994;7(1):67–74.
  • Silveira E, Freitas AR, Antunes P, et al. Co-transfer of resistance to high concentrations of copper and first-line antibiotics among Enterococcus from different origins (humans, animals, the environment and foods) and clonal lineages. J Antimicrob Chemother. 2014;69(4):899–906.
  • Hasman H, Aarestrup FM. Relationship between copper, glycopeptide, and macrolide resistance among Enterococcus faecium strains isolated from pigs in Denmark between 1997 and 2003. Antimicrob Agents Chemother. 2005;49(1):454–456.
  • Hasman H. The tcrB gene is part of the tcrYAZB operon conferring copper resistance in Enterococcus faecium and Enterococcus faecalis. Microbiology. 2005;151(Pt 9):3019–3025.
  • Borgen K, Simonsen GS, Sundsfjord A, et al. Continuing high prevalence of VanA-type vancomycin-resistant enterococci on Norwegian poultry farms three years after avoparcin was banned. J Appl Microbiol. 2000;89(3):478–485.
  • Borgen K, Sørum M, Kruse H, et al. Persistence of vancomycin-resistant enterococci (VRE) on Norwegian broiler farms. FEMS Microbiol Lett. 2000;191(2):255–258.
  • Borgen K, Sørum M, Wasteson Y, et al. VanA-type vancomycin-resistant enterococci (VRE) remain prevalent in poultry carcasses 3 years after avoparcin was banned. Int J Food Microbiol. 2001;64(1–2):89–94.
  • Sørum M, Holstad G, Lillehaug A, et al. Prevalence of vancomycin resistant enterococci on poultry farms established after the ban of avoparcin. Avian Dis. 2004;48(4):823–828.
  • NORM/NORM-VET. Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway. Tromsø/Oslo, Norway; 2012. ISSN:1502-2307 (print)/1890-9965 (electronic). 2011.
  • NORM/NORM-VET. Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway. Tromsø/Oslo, Norway; 2014. ISSN:1502-2307 (print)/1890-9965 (electronic). 2013.
  • VKM. Zinc and copper in pig and poultry production – fate and effects in the food chain and the environment. Norwegian Scientific Committee for Food Safety. ISBN 978-82-8259-093-8; 2014. Contract No: 13-603 Final.
  • Jensen J, Larsen MM, Bak J. National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry. Environ Pollut. 2016;214:334–340.
  • Song J, Rensing C, Holm PE, et al. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil. Environ Sci Technol. 2017;7;51(5):3040–3047.
  • Cavaco LM, Hasman H, Aarestrup FM. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Vet Microbiol. 2011;150(3–4):344–348.
  • Kaur S, Kamli MR, Ali A. Role of arsenic and its resistance in nature. Can J Microbiol. 2011;57(10):769–774.
  • Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ Pollut. 2000;107(3):263–283.
  • Wise SS, Holmes AL, Ketterer ME, et al. Chromium is the proximate clastogenic species for lead chromate-induced clastogenicity in human bronchial cells. Mutat Res. 2004;560(1):79–89.
  • Ackerley DF, Barak Y, Lynch SV, et al. Effect of chromate stress on Escherichia coli K-12. J Bacteriol. 2006;188(9):3371–3381.
  • Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metal toxicity and the environment. EXS. 2012;101:133–164.
  • Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36(8):609–662.
  • Macomber L, Hausinger RP. Mechanisms of nickel toxicity in microorganisms. Metallomics. 2011;3(11):1153–1162.
  • Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003;57:395–418.
  • Phan TN, Buckner T, Sheng J, et al. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol Immunol. 2004;19(1):31–38.
  • Carlin A, Shi W, Dey S, et al. The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol. 1995;177(4):981–986.
  • Rosen BP. Biochemistry of arsenic detoxification. FEBS Lett. 2002;529(1):86–92.
  • Silver S. Genes for all metals–a bacterial view of the periodic table. The 1996 Thom award lecture. J Ind Microbiol Biotechnol. 1998;20(1):1–12.
  • Kruger MC, Bertin PN, Heipieper HJ, et al. Bacterial metabolism of environmental arsenic–mechanisms and biotechnological applications. Appl Microbiol Biotechnol. 2013;97(9):3827–3841.
  • Viti C, Marchi E, Decorosi F, et al. Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. FEMS Microbiol Rev. 2014;38(4):633–659.
  • Amachawadi RG, Shelton NW, Shi X, et al. Selection of fecal enterococci exhibiting tcrB-mediated copper resistance in pigs fed diets supplemented with copper. Appl Environ Microbiol. 2011;77(16):5597–5603.
  • Freitas AR, Coque TM, Novais C, et al. Human and swine hosts share vancomycin-resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 clonal clusters harboring Tn1546 on indistinguishable plasmids. J Clin Microbiol. 2011;49(3):925–931.
  • Jacob ME, Fox JT, Nagaraja TG, et al. Effects of feeding elevated concentrations of copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle. Foodborne Pathog Dis. 2010;7(6):643–648.
  • Aarestrup FM, Hasman H, Jensen LB, et al. Antimicrobial resistance among enterococci from pigs in three European countries. Appl Environ Microbiol. 2002;68(8):4127–4129.
  • Jaroslawiecka A, Piotrowska-Seget Z. Lead resistance in micro-organisms. Microbiology. 2014;160(Pt 1):12–25.
  • Naik MM, Dubey SK. Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol Environ Saf. 2013;98:1–7.
  • Foster TJ. The genetics and biochemistry of mercury resistance. Crit Rev Microbiol. 1987;15(2):117–140.
  • Khesin RB, Karasyova EV. Mercury-resistant plasmids in bacteria from a mercury and antimony deposit area. Mol Gen Genet. 1984;197(2):280–285.
  • Silver S, Phung LT. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol. 2005;32(11–12):587–605.
  • Zscheck KK, Murray BE. Genes involved in the regulation of beta-lactamase production in enterococci and staphylococci. Antimicrob Agents Chemother. 1993;37(9):1966–1970.
  • Bednorz C, Oelgeschlager K, Kinnemann B, et al. The broader context of antibiotic resistance: zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. Int J Med Microbiol. 2013;303(6–7):396–403.