921
Views
80
CrossRef citations to date
0
Altmetric
Review

The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems

, & ORCID Icon
Pages 469-479 | Received 28 Nov 2017, Accepted 26 Feb 2018, Published online: 06 Mar 2018

References

  • Juliano R. Nanomedicine: is the wave cresting? Nat Rev Drug Discov. 2013 Mar 1;12:171.
  • Wagner V, Dullaart A, Bock A-K, et al. The emerging nanomedicine landscape. Nat Biotech. 2006 10//print;24(10): 1211–1217.
  • Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano. 2013 Sep 24;7(9):7442–7447.
  • Liu D, Zhang H, Fontana F, et al. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliv Rev. 2017. DOI:10.1016/j.addr.2017.08.003.
  • Shi J, Votruba AR, Farokhzad OC, et al. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10(9):3223–3230.
  • Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004 April 30;2(1):3.
  • Haeberle S, Zengerle R. Microfluidic platforms for lab-on-a-chip applications. Lab Chip. 2007;7(9):1094–1110.
  • Liu D, Zhang H, Fontana F, et al. Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip. 2017;17(11):1856–1883.
  • Whitesides GM. The origins and the future of microfluidics. Nature. 2006 Jul 27;442(7101):368–373.
  • Chen M-C, Sonaje K, Chen K-J, et al. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011 Dec 1;32(36):9826–9838.
  • Junginger HE, Verhoef JC. Macromolecules as safe penetration enhancers for hydrophilic drugs—a fiction? Pharm Sci Technol Today. 1998 Dec 1;1(9):370–376.
  • Hoffman A, Ziv E. Pharmacokinetic considerations of new insulin formulations and routes of administration. Clin Pharmacokinet. 1997 Oct;33(4):285–301.
  • Liu D, Zhang H, Herranz-Blanco B, et al. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery. Small. 2014;10(10):2029–2038.
  • Ding S, Anton N, Vandamme TF, et al. Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview. Expert Opin Drug Deliv. 2016 Oct 2; 13(10):1447–1460.
  • Duncanson WJ, Lin T, Abate AR, et al. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip. 2012;12(12):2135–2145.
  • Yang S, Guo F, Kiraly B, et al. Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab Chip. 2012;12(12):2097–2102.
  • Zhao Y, Shum HC, Chen H, et al. Microfluidic generation of multifunctional quantum dot barcode particles. J Am Chem Soc. 2011 Jun 15;133(23):8790–8793.
  • Amstad E, Kim S-H, Weitz DA. Photo- and thermoresponsive polymersomes for triggered release. Angewandte Chemie Int Ed. 2012;51(50):12499–12503.
  • Valencia PM, Farokhzad OC, Karnik R, et al. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol. 2012 Oct;7(10):623–629.
  • Khan IU, Serra CA, Anton N, et al. Production of nanoparticle drug delivery systems with microfluidics tools. Expert Opin Drug Deliv. 2015 Apr;12(4):547–562.
  • van Dijke K, Veldhuis G, Schroen K, et al. Parallelized edge-based droplet generation (EDGE) devices. Lab Chip. 2009;9(19):2824–2830.
  • Serra CA, Chang Z. Microfluidic-assisted synthesis of polymer particles. Chem Eng Technol. 2008;31(8):1099–1115.
  • Wang JT, Wang J, Han JJ. Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics. Small. 2011 Jul 04;7(13):1728–1754.
  • Friend J, Yeo L. Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics. 2010 Jun;4(2).
  • Thu VT, Mai AN, Tam LT, et al. Fabrication of PDMS-based microfluidic devices: application for synthesis of magnetic nanoparticles. J Electron Mater. 2016 May 1;45(5):2576–2581.
  • Sia SK, Whitesides GM. Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies. Electrophoresis. 2003;24(21):3563–3576.
  • Iliescu C, Taylor H, Avram M, et al. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics. 2012 Mar;6(1):16505–1650516.
  • Zhang L, Wang W, Ju X-J, et al. Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Advances. 2015;5(8):5638–5646.
  • He F, Cheng Y, Xu Z, et al. Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. Opt Lett. 2010 Feb 1;35(3):282–284.
  • Bings NH, Wang C, Skinner CD, et al. Microfluidic devices connected to fused-silica capillaries with minimal dead volume. Anal Chem. 1999 Aug 01;71(15):3292–3296.
  • Axel G, Matthias G, Henning F. Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices. J Micromech Microeng. 2001;11(3):257.
  • Cheng SY, Heilman S, Wasserman M, et al. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip. 2007 Jun;7(6):763–769.
  • Yajima Y, Yamada M, Yamada E, et al. Facile fabrication processes for hydrogel-based microfluidic devices made of natural biopolymers. Biomicrofluidics. 2014 Mar;8(2):024115.
  • Cosson S, Lutolf MP. Hydrogel microfluidics for the patterning of pluripotent stem cells. Sci Rep. 2014 Mar 25;4:4462. online.
  • Lizotte TE. Vacuum isostatic micro molding of microfluidic structures into polytetrafluoroethylene (PTFE) materials. SPIE Photonics Europe (SPIE); Strasbourg, France. 2008. p. 8.
  • Li H, Fan Y, Kodzius R, et al. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol. 2012 Mar 1;18(3):373–379.
  • Li X, Li D, Liu X, et al. Ultra-monodisperse droplet formation using PMMA microchannels integrated with low-pulsation electrolysis micropumps. Sensors Actuators B Chem. 2016 Jun 28;229(Supplement C):466–475.
  • Ren K, Zhou J, Wu H. Materials for microfluidic chip fabrication. Acc Chem Res. 2013 Nov 19;46(11):2396–2406.
  • Herranz-Blanco B, Ginestar E, Zhang H, et al. Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication. Int J Pharm. 2017 Jan 10;516(1):100–105.
  • Qin D, Xia Y, Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nat Protoc. 2010 Feb 18 online;5:491.
  • Begolo S, Colas G, Viovy J-L, et al. New family of fluorinated polymer chips for droplet and organic solvent microfluidics. Lab Chip. 2011;11(3):508–512.
  • Odera T, Hirama H, Kuroda J, et al. Droplet formation behavior in a microfluidic device fabricated by hydrogel molding. Microfluid Nanofluidics. 2014 Sep 01;17(3):469–476.
  • Mukhopadhyay R. When PDMS isn’t the best. Anal Chem. 2007 may 01;79(9):3248–3253.
  • Shah RK, Shum HC, Rowat AC, et al. Designer emulsions using microfluidics. Mater Today. 2008 Apr 01;11(4):18–27.
  • Fontana F, Ferreira MPA, Correia A, et al. Microfluidics as a cutting-edge technique for drug delivery applications. J Drug Deliv Sci Technol. 2016 Aug 01;34(Supplement C):76–87.
  • Zhao C-X, Middelberg APJ. Two-phase microfluidic flows. Chem Eng Sci. 2011 Apr 01;66(7):1394–1411.
  • Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008 Sep;8(9):2906–2912.
  • Liu D, Cito S, Zhang Y, et al. Robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv Mater. 2015;27(14):2298–2304.
  • Stepanyan R, Lebouille JG, Slot JJ, et al. Controlled nanoparticle formation by diffusion limited coalescence. Phys Rev Lett. 2012 Sep 28;109(13):138301.
  • Yang A-S, Chuang F-C, Chen C-K, et al. A high-performance micromixer using three-dimensional Tesla structures for bio-applications. Chem Eng J. 2015 mar 01;263(Supplement C):444–451.
  • Sharp KV, Adrian RJ. Transition from laminar to turbulent flow in liquid filled microtubes. Exp Fluids. 2004 May 01;36(5):741–747.
  • Atencia J, Beebe DJ. Controlled microfluidic interfaces. Nature. 2005 Sep 29;437(7059):648–655.
  • Nunes JK, Tsai SS, Wan J, et al. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. J Phys D Appl Phys. 2013 Mar 20;46(11).
  • Utada AS, Fernandez-Nieves A, Stone HA, et al. Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett. 2007 Aug 31;99(9):094502.
  • Guillot P, Colin A, Ajdari A. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys Rev E Statistical Nonlinear Soft Matter Phys. 2008 Jul;78(1 Pt 2):016307.
  • Tan Y-C, Fisher JS, Lee AI, et al. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip. 2004;4(4):292–298.
  • Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review. Lab Chip. 2017;17(1):34–75.
  • Garstecki P, Fuerstman MJ, Stone HA, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip. 2006 Mar;6(3):437–446.
  • Nabavi SA, Vladisavljević GT, Gu S, et al. Double emulsion production in glass capillary microfluidic device: parametric investigation of droplet generation behaviour. Chem Eng Sci. 2015 Jul 07;130(Supplement C):183–196.
  • Chen C-H, Shah RK, Abate AR, et al. Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir. 2009 Apr 21;25(8):4320–4323.
  • Rondeau E, Cooper-White JJ, Microparticle B. and nanoparticle formation within a microfluidic device. Langmuir. 2008 Jul 1;24(13):6937–6945.
  • Baroud CN, Gallaire F, Dangla R. Dynamics of microfluidic droplets. Lab Chip. 2010 Aug 21;10(16):2032–2045.
  • Cramer C, Fischer P, Windhab EJ. Drop formation in a co-flowing ambient fluid. Chem Eng Sci. 2004 Aug 1;59(15):3045–3058.
  • Utada AS, Chu LY, Fernandez-Nieves A, et al. Dripping, Jetting, drops, and wetting: the magic of microfluidics. MRS Bulletin. 2011;32(9):702–708.
  • Utada AS, Fernandez-Nieves A, Gordillo JM, et al. Absolute instability of a liquid jet in a coflowing stream. Phys Rev Lett. 2008 Jan 11;100(1):014502.
  • Guillot P, Colin A, Utada AS, et al. Stability of a jet in confined pressure-driven biphasic flows at low reynolds numbers. Phys Rev Lett. 2007 Sep 07;99(10):104502.
  • Prentis RA, Lis Y, Walker SR. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964-1985). Br J Clin Pharmacol. 1988;25(3):387–396.
  • Rabinow BE. Nanosuspensions Drug Delivery. 2004 Sep 01 online;3:785.
  • Panagiotou T, Mesite SV, Fisher RJ. Production of norfloxacin nanosuspensions using microfluidics reaction technology through solvent/antisolvent crystallization. Ind Eng Chem Res. 2009 Feb 18; 48(4):1761–1771.
  • Myerson AS. Handbook of industrial crystallization. Boston (MA): Butterworth-Heinemann; 2002.
  • Midler M, Paul EL, Whittington EF, et al.; inventors; Google Patents, assignee. Crystallization method to improve crystal structure and size. 1994. Available from: https://patents.google.com/patent/US5314506A/en?q=Crystallization&q=method&q=improve&q=crystal&q=structure&q=size&oq=Crystallization+method+to+improve+crystal+structure+and+size
  • Ali HSM, York P, Ali AMA, et al. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Controlled Release. 2011 Jan 20;149(2):175–181.
  • Miyazaki M, Yamaguchi H, Honda T, et al. Polymer chemistry in microfluidic reaction system. Micro Nanosystems. 2009;1(3):193–204.
  • Hasani-Sadrabadi MM, Pour Hajrezaei S, Hojjati Emami S, et al. Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomed Nanotechnol Biol Med. 2015;11(7):1809–1819
  • Valencia PM, Pridgen EM, Rhee M, et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano. 2013 Dec 23; 7(12):10671–10680.
  • Kucuk I, Edirisinghe M. Microfluidic preparation of polymer nanospheres. J Nanoparticle Res. 2014 Dec 04;16:2626.
  • Jahn A, Reiner JE, Vreeland WN, et al. Preparation of nanoparticles by continuous-flow microfluidics. J Nanoparticle Res. 2008 Aug 01;10(6):925–934.
  • Jahn A, Vreeland WN, Gaitan M, et al. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc. 2004 Mar 01; 126(9):2674–2675.
  • Koh CG, Zhang X, Liu S, et al. Delivery of antisense oligodeoxyribonucleotide lipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing. J Controlled Release. 2010 Jan 04;141(1):62–69.
  • Dias N, Stein CA. Potential roles of antisense oligonucleotides in cancer therapy. The example of Bcl-2 antisense oligonucleotides. Eur J Pharmaceutics Biopharmaceutics. 2002 Nov 01;54(3):263–269.
  • Belliveau NM, Huft J, Lin PJC, et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids. 2012 Aug 14;1(8):e37.
  • Leung AKK, Tam YYC, Chen S, et al. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J Phys Chem B. 2015 Jul 16;119(28):8698–8706.
  • Hood RR, Shao C, Omiatek DM, et al. Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm Res. 2013 Jun 01;30(6):1597–1607.
  • Zhang L, Chan JM, Gu FX, et al. Self-assembled lipid−polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008 Aug 26;2(8):1696–1702.
  • Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharmaceutics Biopharm. 2013 11 01;85(3, Part A):427–443.
  • Jahn A, Vreeland WN, DeVoe DL, et al. Microfluidic directed formation of liposomes of controlled size. Langmuir. 2007 May 01;23(11):6289–6293.
  • Hong JS, Stavis SM, DePaoli Lacerda SH, et al. Microfluidic directed self-assembly of liposome−hydrogel hybrid nanoparticles. Langmuir. 2010 Jul 06;26(13):11581–11588.
  • Chan JM, Zhang L, Yuet KP, et al. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials. 2009 3;30(8):1627–1634.
  • Valencia PM, Basto PA, Zhang L, et al. Single-step assembly of homogenous lipid−polymeric and lipid−quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano. 2010 Mar 23;4(3):1671–1679.
  • Kim Y, Lee Chung B, Ma M, et al. Mass production and size control of lipid–polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 2012 Jul 11;12(7):3587–3591.
  • Araújo F, Shrestha N, Shahbazi M-A, et al. Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs. ACS Nano. 2015 Aug 25;9(8):8291–8302.
  • Liu D, Zhang H, Cito S, et al. Core/shell nanocomposites produced by superfast sequential microfluidic nanoprecipitation. Nano Lett. 2017 Feb 08;17(2):606–614.
  • Herranz-Blanco B, Liu D, Mäkilä E, et al. On-chip self-assembly of a smart hybrid nanocomposite for antitumoral applications. Adv Funct Mater. 2015;25(10):1488–1497.
  • Fontana F, Shahbazi M-A, Liu D, et al. Multistaged nanovaccines based on porous silicon@acetalated dextran@Cancer cell membrane for cancer immunotherapy. Adv Mater. 2017;29(7):1603239.
  • Wagner V, Dullaart A, Bock A-K, et al. The emerging nanomedicine landscape. Nat Biotechnol. 2006 Oct 1 online;24:1211.
  • Liu Z, Li Y, Li W, et al. Multifunctional nanohybrid based on porous silicon nanoparticles, gold nanoparticles, and acetalated dextran for liver regeneration and acute liver failure theranostics. Adv Mater. 2017;1703393-n/a.
  • Russo M, Grimaldi AM, Bevilacqua P, et al. PEGylated crosslinked hyaluronic acid nanoparticles designed through a microfluidic platform for nanomedicine. Nanomedicine. 2017;12(18):2211–2222.
  • Lim J-M, Swami A, Gilson LM, et al. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano. 2014 Jun 24;8(6):6056–6065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.