249
Views
14
CrossRef citations to date
0
Altmetric
Review

Superparamagnetic lipid-based hybrid nanosystems for drug delivery

, &
Pages 523-540 | Received 31 May 2017, Accepted 14 Mar 2018, Published online: 29 Mar 2018

References

  • Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn. 1981;17:1247–1248.
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.
  • Kostopoulou A, Lappas A. Colloidal magnetic nanocrystal clusters: variable length-scale interaction mechanisms, synergetic functionalities and technological advantages. Nanotechnol Rev [Internet]. 2015;4. [cited 2017 Apr 19]. Available from: http://www.degruyter.com/view/j/ntrev.2015.4.issue-6/ntrev-2014-0034/ntrev-2014-0034.xml
  • Belin T, Guigue-Millot N, Caillot T, et al. Influence of grain size, oxygen stoichiometry, and synthesis conditions on the γ-Fe2O3 vacancies ordering and lattice parameters. J Solid State Chem. 2002;163:459–465.
  • Gossuin Y, Gillis P, Hocq A, et al. Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:299–310.
  • Shtykova EV, Huang X, Remmes N, et al. Structure and properties of iron oxide nanoparticles encapsulated by phospholipids with poly(ethylene glycol) tails. J Phys Chem C. 2007;111:18078–18086.
  • Marie H, Plassat V, Lesieur S. Magnetic-fluid-loaded liposomes for MR imaging and therapy of cancer. J Drug Deliv Sci Technol. 2013;23:25–37.
  • Knobel M, Nunes WC, Socolovsky LM, et al. Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotech. 2008;8:2836–2857.
  • Shin TH, Choi Y, Kim S, et al. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev. 2015;44(14):4501–4516.
  • Bourrinet P, Bengele HH, Bonnemain B, et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol. 2006;41:313–324.
  • Leenders W. Ferumoxtran-10 advanced magnetics. IDrugs Investig Drugs J. 2003;6:987–993.
  • Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications a review. J Drug Target. 1998;6:167–174.
  • Reddy LH, Arias JL, Nicolas J, et al. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 2012;112:5818–5878.
  • Choi HS, Liu W, Misra P, et al. Renal clearance of nanoparticles. Nat Biotechnol. 2007;25:1165–1170.
  • Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62:284–304.
  • Tanimoto A, Kuribayashi S. Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. Eur J Radiol. 2006;58:200–216.
  • Moghimi SM. Mechanisms of splenic clearance of blood cells and particles: towards development of new splenotropic agents. Adv Drug Deliv Rev. 1995;17:103–115.
  • Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 1997;57:765–772.
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392.
  • Passirani C, Barratt G, Devissaguet J-P, et al. Long-circulating nanopartides bearing heparin or dextran covalently bound to poly(Methyl methacrylate). Pharm Res. 1998;15:1046–1050.
  • Anzai Y, Piccoli CW, Outwater EK, et al. evaluation of neck and body metastases to nodes with ferumoxtran 10–enhanced MR imaging: phase III safety and efficacy study. Radiology. 2003;228:777–788.
  • Chambon C, Clement O, Le Blanche A, et al. Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn Reson Imaging. 1993;11:509–519.
  • Canet E, Revel D, Forrat R, et al. Superparamagnetic iron oxide particles and positive enhancement for myocardial perfusion studies assessed by subsecond T1-weighted MRI. Magn Reson Imaging. 1993;11:1139–1145.
  • Laurent S, Dutz S, Häfeli UO, et al. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166:8–23.
  • Qin J, Laurent S, Jo YS, et al. A high-Performance magnetic resonance imaging T2 contrast agent. Adv Mater. 2007;19:1874–1878.
  • Rohrer M, Bauer H, Mintorovitch J, et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005;40:715–724.
  • Xiao L, Li J, Brougham DF, et al. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano. 2011;5:6315–6324.
  • Zhang K, Liang Q, Ma S, et al. On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab Chip. 2009;9:2992.
  • Bacri J-C, Perzynski R, Salin D, et al. Magnetic colloidal properties of ionic ferrofluids. J Magn Magn Mater. 1986;62:36–46.
  • Tan MC. Nanostructured materials for biomedical applications. Kerala: Transworld research network; 2009.
  • Voit W, Kim DK, Zapka W, et al. Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids. MRS Online Proc Libr Arch [Internet]. 2001;676. cited 2016 Dec 7. Available from: https://www.cambridge.org/core/journals/mrs-online-proceedings-library-archive/article/magnetic-behavior-of-coated-superparamagnetic-iron-oxide-nanoparticles-in-ferrofluids/773F77C91B3DA675523D62C5E675E576
  • Yang J, Lee H, Hyung W, et al. Magnetic PECA nanoparticles as drug carriers for targeted delivery: synthesis and release characteristics. J Microencapsul. 2006;23:203–212.
  • Huang Y, Mao K, Zhang B, et al. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater Sci Eng C. 2017;70(Part 1):763–771.
  • Kim D-H, Lee S-H, Kim K-N, et al. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application. J Magn Magn Mater. 2005;293:320–327.
  • Wang X, Gu H, Yang Z. The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater. 2005;293:334–340.
  • Shellman YG, Howe WR, Miller LA, et al. Hyperthermia induces endoplasmic reticulum-mediated apoptosis in melanoma and non-melanoma skin cancer cells. J Invest Dermatol. 2008;128:949–956.
  • Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43:33–56.
  • Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3:487–497.
  • Brusentsov NA, Brusentsova TN, Sergeev AV, et al. Ferrimagnetic fluids and ferro-and ferrimagnetic suspensions for the RF-induction hyperthermia of tumors. Pharm Chem J. 2000;34:201–207.
  • Matsuoka F, Shinkai M, Honda H, et al. Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn Res Technol. 2004;2:1.
  • Kikumori T, Kobayashi T, Sawaki M, et al. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Res Treat. 2009;113:435.
  • Same S, Aghanejad A, Akbari Nakhjavani S, et al. Radiolabeled theranostics: magnetic and gold nanoparticles. Bioimpacts. 2016;6:169–181.
  • Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res. 2011;44:853–862.
  • Thomas R, Park I-K, Jeong Y. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci. 2013;14:15910–15930.
  • Laurent S, Saei AA, Behzadi S, et al. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11:1449–1470.
  • Hauss DJ. Oral lipid-based formulations. Enhancing the bioavailability of poorly water soluble drugs. Boca Rato, FL: CRC press, Taylor and Francis Group; 2007.
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–IN27.
  • Li G, Zhou Z, Li Y, et al. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae. J Magn Magn Mater. 2010;322:3862–3868.
  • Zhang Y, Liu J-Y, Ma S, et al. Synthesis of PVP-coated ultra-small Fe3O4 nanoparticles as a MRI contrast agent. J Mater Sci Mater Med. 2010;21:1205–1210.
  • Harisinghani M, Ross RW, Guimaraes AR, et al. Utility of a new bolus-injectable nanoparticle for clinical cancer staging. Neoplasia. 2007;9:1160–1165.
  • Mahmoudi M, Simchi A, Imani M, et al. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging †. J Phys Chem B. 2008;112:14470–14481.
  • Carvalho A, Martins MBF, Corvo ML, et al. Enhanced contrast efficiency in MRI by PEGylated magnetoliposomes loaded with PEGylated SPION: effect of SPION coating and micro-environment. Mater Sci Eng C. 2014;43:521–526.
  • Ma H, Qi X, Maitani Y, et al. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm. 2007;333:177–186.
  • Fattahi H, Laurent S, Liu F, et al. Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics. Nanomed. 2011;6:529–544.
  • Monnier CA, Burnand D, Rothen-Rutishauser B, et al. Magnetoliposomes: opportunities and challenges. Eur J Nanomedicine [Internet]. 2014;6. cited 2017 May 19. Available from: https://www.degruyter.com/view/j/ejnm.2014.6.issue-4/ejnm-2014-0042/ejnm-2014-0042.xml
  • Soenen SJ, Velde GV, Ketkar-Atre A, et al. Magnetoliposomes as magnetic resonance imaging contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3:197–211.
  • Ji B, Wang M, Gao D, et al. Combining nanoscale magnetic nimodipine liposomes with magnetic resonance image for Parkinson’s disease targeting therapy. Nanomed. 2017;12:237–253.
  • Martina M-S, Fortin J-P, Ménager C, et al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc. 2005;127:10676–10685.
  • Plassat V, Martina MS, Barratt G, et al. Sterically stabilized superparamagnetic liposomes for MR imaging and cancer therapy: pharmacokinetics and biodistribution. Int J Pharm. 2007;344:118–127.
  • Marie H, Lemaire L, Franconi F, et al. Superparamagnetic liposomes for MRI monitoring and external magnetic field-induced selective targeting of malignant brain tumors. Adv Funct Mater. 2015;25:1258–1269.
  • Plassat V, Wilhelm C, Marsaud V, et al. Anti-estrogen-loaded superparamagnetic liposomes for intracellular magnetic targeting and treatment of breast cancer tumors. Adv Funct Mater. 2011;21:83–92.
  • Ye H, Tong J, Liu J, et al. Combination of gemcitabine-containing magnetoliposome and Oxaliplatin-containing magnetoliposomes in breast cancer treatment: a possible mechanism with potential for clinical application. Oncotarget. 2016;7:43762–43778.
  • Viroonchatapan E, Sato H, Ueno M, et al. Release of 5-fluorouracil from thermosensitive magnetoliposomes induced by an electromagnetic field. J Controlled Release. 1997;46:263–271.
  • Yoshida M, Watanabe Y, Sato M, et al. Feasibility of chemohyperthermia with docetaxel-embedded magnetoliposomes as minimally invasive local treatment for cancer. Int J Cancer. 2010;126:1955–1965.
  • Yoshida M, Sato M, Yamamoto Y, et al. Tumor local chemohyperthermia using docetaxel-embedded magnetoliposomes: interaction of chemotherapy and hyperthermia. J Gastroenterol Hepatol. 2012;27:406–411.
  • Bolfarini GC, Siqueira-Moura MP, Demets GJF, et al. In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbit[7]uril zinc phthalocyanine complex on melanoma. J Photochem Photobiol B. 2012;115:1–4.
  • Di Corato R, Béalle G, Kolosnjaj-Tabi J, et al. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano. 2015;9:2904–2916.
  • Ferreira RV, Martins TM, Goes AM, et al. Thermosensitive gemcitabine-magnetoliposomes for combined hyperthermia and chemotherapy. Nanotechnology. 2016;27:085105.
  • Kulshrestha P, Gogoi M, Bahadur D, et al. In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia. Colloids Surf B Biointerfaces. 2012;96:1–7.
  • Clares B, Biedma-Ortiz RA, Sáez-Fernández E, et al. Nano-engineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer. Eur J Pharm Biopharm. 2013;85:329–338.
  • Chen Y, Chen Y, Xiao D, et al. Low-dose chemotherapy of hepatocellular carcinoma through triggered-release from bilayer-decorated magnetoliposomes. Colloids Surf B Biointerfaces. 2014;116:452–458.
  • Bothun GD, Lelis A, Chen Y, et al. Multicomponent folate-targeted magnetoliposomes: design, characterization, and cellular uptake. Nanomedicine Nanotechnol Biol Med. 2011;7:797–805.
  • Sharma S, Rasool HI, Palanisamy V, et al. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano. 2010;4:1921–1926.
  • Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6:287–296.
  • Sun D, Zhuang X, Zhang S, et al. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev. 2013;65:342–347.
  • Hood JL, Scott MJ, Wickline SA. Maximizing exosome colloidal stability following electroporation. Anal Biochem. 2014;448:41–49.
  • Hu L, Wickline SA, Hood JL. Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn Reson Med. 2015;74:266–271.
  • Chung T-H, Hsiao J-K, Yao M, et al. Ferucarbotran, a carboxydextran-coated superparamagnetic iron oxide nanoparticle, induces endosomal recycling, contributing to cellular and exosomal EGFR overexpression for cancer therapy. RSC Adv. 2015;5:89932–89939.
  • Silva AKA, Luciani N, Gazeau F, et al. Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. Nanomedicine Nanotechnol Biol Med. 2015;11:645–655.
  • Qi H, Liu C, Long L, et al. Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano. 2016;10:3323–3333.
  • Piffoux M, Silva AKA, Lugagne J-B, et al. Extracellular vesicle production loaded with nanoparticles and drugs in a trade-off between loading, yield and purity: towards a personalized drug delivery system. Adv Biosyst. 2017;1:1700044.
  • Stroem P, Anderson DM. The cubic phase region in the system didodecyldimethylammonium bromide-water-styrene. Langmuir. 1992;8:691–709.
  • Lynch ML, Kochvar KA, Burns JL, et al. Aqueous-phase behavior and cubic phase-containing emulsions in the C 12 E 2 −Water System. Langmuir. 2000;16:3537–3542.
  • Nanjwade BK, Hundekar YR, Kamble MS, et al. Development of cuboidal nanomedicine by nanotechnology. Austin J Nanomed Nanotechnol. 2014;2:1023.
  • Garg G, Saraf S, Saraf S. Cubosomes: an overview. Biol Pharm Bull. 2007;30:350–353.
  • Drummond CJ, Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci. 1999;4:449–456.
  • Acharya DP, Moffat BA, Polyzos A, et al. Cubic mesophase nanoparticles doped with superparamagnetic iron oxide nanoparticles: a new class of MRI contrast agent. RSC Adv. 2012;2:6655–6662.
  • Montis C, Castroflorio B, Mendozza M, et al. Magnetocubosomes for the delivery and controlled release of therapeutics. J Colloid Interface Sci. 2015;449:317–326.
  • Hong SK, Ma JY, Kim J-C. Preparation of iron oxide nanoparticles within monoolein cubic phase. J Ind Eng Chem. 2012;18:1977–1982.
  • Wang MH, Kim J-C. Magnetic field-responsive cubosomes containing magnetite and poly(N-isopropylacrylamide). J Controlled Release. 2013;172:e139.
  • Gupta A, Eral HB, Hatton TA, et al. Nanoemulsions: formation, properties and applications. Soft Matter. 2016;12:2826–2841.
  • Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Controlled Release. 2017;252:28–49.
  • Salcido A. Equilibrium properties of the cellular automata models for traffic flow in a single lane. In: Salcido A, editor. Cell autom - Simplicity Complex [Internet]. InTech; 2011. [cited 2017 May 19]. Rijeka, Croatia. Available from: http://www.intechopen.com/books/cellular-automata-simplicity-behind-complexity/equilibrium-properties-of-the-cellular-automata-models-for-traffic-flow-in-a-single-lane
  • Bates TR, Carrigan PJ. Apparent absorption kinetics of micronized griseofulvin after its oral administration on single- and multiple-dose regimens to rats as a corn oil-in-water emulsion and aqueous suspension. J Pharm Sci. 1975;64:1475–1481.
  • Sainsbury F, Zeng B, Middelberg AP. Towards designer nanoemulsions for precision delivery of therapeutics. Curr Opin Chem Eng. 2014;4:11–17.
  • Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6:928–939.
  • Kretzer IF, Maria DA, Maranhão RC. Drug-targeting in combined cancer chemotherapy: tumor growth inhibition in mice by association of paclitaxel and etoposide with a cholesterol-rich nanoemulsion. Cell Oncol. 2012;35:451–460.
  • Chuan YP, Zeng BY, O’Sullivan B, et al. Co-delivery of antigen and a lipophilic anti-inflammatory drug to cells via a tailorable nanocarrier emulsion. J Colloid Interface Sci. 2012;368:616–624.
  • Song Y-C, Cheng H-Y, Leng C-H, et al. A novel emulsion-type adjuvant containing CpG oligodeoxynucleotides enhances CD8+ T-cell-mediated anti-tumor immunity. J Controlled Release. 2014;173:158–165.
  • Sadurní N, Solans C, Azemar N, et al. Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur J Pharm Sci. 2005;26:438–445.
  • Lan Q, Liu C, Yang F, et al. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions. J Colloid Interface Sci. 2007;310:260–269.
  • Bloemen M, Brullot W, Luong TT, et al. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J Nanoparticle Res. 2012;14:1–10.
  • Zhang L, He R, Gu H-C. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci. 2006;253:2611–2617.
  • Ramella D, Polito L, Mazzini S, et al. A strategy for multivalent presentation of carba analogues from N. meningitidis a capsular polysaccharide. Eur J Org Chem. 2014;2014:5915–5924.
  • Lartigue L, Oumzil K, Guari Y, et al. Water-soluble rhamnose-coated Fe 3 O 4 nanoparticles. Org Lett. 2009;11:2992–2995.
  • Lu C, Bhatt LR, Jun HY, et al. Carboxyl–polyethylene glycol–phosphoric acid: a ligand for highly stabilized iron oxide nanoparticles. J Mater Chem. 2012;22:19806.
  • White MA, Johnson JA, Koberstein JT, et al. Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J Am Chem Soc. 2006;128:11356–11357.
  • Liang S, Wang Y, Yu J, et al. Surface modified superparamagnetic iron oxide nanoparticles: as a new carrier for bio-magnetically targeted therapy. J Mater Sci Mater Med. 2007;18:2297–2302.
  • Koh I, Wang X, Varughese B, et al. Magnetic iron oxide nanoparticles for biorecognition: evaluation of surface coverage and activity. J Phys Chem B. 2006;110:1553–1558.
  • Zhang C, Wängler B, Morgenstern B, et al. Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging. Langmuir. 2007;23:1427–1434.
  • Alwi R, Telenkov S, Mandelis A, et al. Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics. Biomed Opt Express. 2012;3:2500–2509.
  • Jarzyna PA, Skajaa T, Gianella A, et al. Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials. 2009;30:6947–6954.
  • Deddens LH, Jarzyna PA, Griffioen AW, et al. RGD-Functionalized Superparamagnetic Nanoemulsions for Target-Specific Imaging of Tumor Angiogenesis. [cited 2016 Jun 30]. Available from: http://cds.ismrm.org/protected/10MProceedings/files/3749_1153.pdf.
  • Gianella A, Jarzyna PA, Mani V, et al. Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano. 2011;5:4422–4433.
  • Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Controlled Release. 2005;107:215–228.
  • Varshosaz J, Tabbakhian M, Mohammadi MY. Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J Liposome Res. 2010;20:286–296.
  • Sarmento B, Martins S, Ferreira D, et al. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine. 2007;2:743.
  • Yang R, Gao R, Li F, et al. The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process. Drug Dev Ind Pharm. 2011;37:139–148.
  • Luo Y, Chen D, Ren L, et al. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Controlled Release. 2006;114:53–59.
  • Chen -C-C, Tsai T-H, Huang Z-R, et al. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm. 2010;74:474–482.
  • Müller RH, Runge SA, Ravelli V, et al. Cyclosporine-loaded solid lipid nanoparticles (SLN®): drug–lipid physicochemical interactions and characterization of drug incorporation. Eur J Pharm Biopharm. 2008;68:535–544.
  • Müller RH, Maaβen S, Weyhers H, et al. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. Int J Pharm. 1996;138:85–94.
  • Grillone A, Riva ER, Mondini A, et al. Active targeting of sorafenib: preparation, characterization, and in vitro testing of drug-loaded magnetic solid lipid nanoparticles. Adv Healthc Mater. 2015;4:1681–1690.
  • Zhao S, Zhang Y, Han Y, et al. Preparation and characterization of cisplatin Magnetic Solid Lipid Nanoparticles (MSLNs): effects of loading procedures of Fe3O4 nanoparticles. Pharm Res. 2014;32:482–491.
  • Oumzil K, Ramin MA, Lorenzato C, et al. Solid lipid nanoparticles for image-guided therapy of atherosclerosis. Bioconjug Chem. 2016;27:569–575.
  • Pang X, Cui F, Tian J, et al. Preparation and characterization of magnetic solid lipid nanoparticles loaded with ibuprofen. Asian J Pharm Sci. 2009;4:132–137.
  • Ying X-Y, Du Y-Z, Hong L-H, et al. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: preparation and characteristics. J Magn Magn Mater. 2011;323:1088–1093.
  • Hsu M-H, Su Y-C. Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery. Biomed Microdevices. 2008;10:785–793.
  • Albuquerque J, Moura C, Sarmento B, et al. Solid lipid nanoparticles: a potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules. 2015;20:11103–11118.
  • Du B, Han S, Li H, et al. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy. Nanoscale. 2015;7:5411–5426.
  • De Cuyper M, Joniau M. Magnetoliposomes. Eur Biophys J. 1988;15:311–319.
  • Hodenius MAJ, Schmitz-Rode T, Baumann M, et al. Absorption of 10-hydroxycamptothecin into the coat of magnetoliposomes. Colloids Surf Physicochem Eng Asp. 2009;343:20–23.
  • Benyettou F, Guenin E, Lalatonne Y, et al. Microwave assisted nanoparticle surface functionalization. Nanotechnology. 2011;22:055102.
  • Benyettou F, Chebbi I, Motte L, et al. Magnetoliposome for alendronate delivery. J Mater Chem. 2011;21:4813–4820.
  • Amstad E, Kohlbrecher J, Müller E, et al. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett. 2011;11:1664–1670.
  • Chen Y, Bose A, Bothun GD. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano. 2010;4:3215–3221.
  • Budime Santhosh P, Drasler B, Drobne D, et al. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes. Int J Nanomedicine. 2015;10: 6089–6104.
  • Szlezak M, Nieciecka D, Joniec A, et al. Monoolein cubic phase gels and cubosomes doped with magnetic nanoparticles–hybrid materials for controlled drug release. ACS Appl Mater Interfaces. 2017;9:2796–2805.
  • Tran L-T-C, Lesieur S, Faivre V. Janus nanoparticles: materials, preparation and recent advances in drug delivery. Expert Opin Drug Deliv. 2014;11:1061–1074.
  • Bonnaud C, Monnier CA, Demurtas D, et al. Insertion of nanoparticle clusters into vesicle bilayers. ACS Nano. 2014;8:3451–3460.
  • Walther A, Müller AHE. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev. 2013;113:5194–5261.
  • Truong-Cong T, Millart E, Tran L-T-C, et al. Nanoscale. 2018;10:3654–3662.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.