203
Views
32
CrossRef citations to date
0
Altmetric
Original Research

Lactoferrin-decorated vs PEGylated zein nanospheres for combined aromatase inhibitor and herbal therapy of breast cancer

, , , & ORCID Icon
Pages 835-850 | Received 16 Mar 2018, Accepted 24 Jul 2018, Published online: 10 Aug 2018

References

  • Howell S, Johnston S, Howell A. The use of selective estrogen receptor modulators and selective estrogen receptor down-regulators in breast cancer. Best Pract Res Clin Endocrinol Metab. 2004;18(1):47–66.
  • Elzoghby AO, El-Lakany SA, Helmy MW, et al. Shell-crosslinked zein nanocapsules for oral codelivery of exemestane and resveratrol in breast cancer therapy. Nanomedicine. 2017;12(24):2785–2805.
  • Milani A, Geuna E, Mittica G, et al. Overcoming endocrine resistance in metastatic breast cancer: current evidence and future directions. World J Clin Oncol. 2014;5(5):990.
  • Elzoghby AO, Mostafa SK, Helmy MW, et al. Multi-reservoir phospholipid shell encapsulating protamine nanocapsules for co-delivery of letrozole and celecoxib in breast cancer therapy. Pharm Res. 2017;34(9):1956–1969.
  • Elzoghby AO, Mostafa SK, Helmy MW, et al. Superiority of aromatase inhibitor and cyclooxygenase-2 inhibitor combined delivery: hyaluronate-targeted versus PEGylated protamine nanocapsules for breast cancer therapy. Int J Pharm. 2017;529(1–2):178–192.
  • Lee E, Oh S, Sung M. Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem Toxicol. 2012;50(11):4136–4143.
  • Jukanti R, Sheela S, Bandari S, et al. Enhanced bioavailability of exemestane via proliposomes based transdermal delivery. J Pharm Sci. 2011;100(8):3208–3222.
  • Xie X, Tao Q, Zou Y, et al. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem. 2011;59(17):9280–9289.
  • Estanqueiro M, Amaral MH, Conceição J, et al. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B. 2015;126:631–648.
  • Fanciullino R, Ciccolini J, Milano G. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: a focus on nano-albumin-bound drugs. Crit Rev Oncol Hematol. 2013;88(3):504–513.
  • Elzoghby A. Editorial (thematic issue: nanocarriers based on natural polymers as platforms for drug and gene delivery applications). Curr Pharm Des. 2016;22(22):3303–3304.
  • Kabary, DM, Helmy MW, Elkhodairy KA, et al. Hyaluronate/lactoferrin layer-by-layer-coated lipid nanocarriers for targeted co-delivery of rapamycin and berberine to lung carcinoma. Colloids Surf B Biointerfaces. 2018;169:183–194.
  • Podaralla S, Averineni R, Alqahtani M, et al. Synthesis of novel biodegradable methoxy poly(ethylene glycol)-zein micelles for effective delivery of curcumin. Mol Pharm. 2012;9(9):2778–2786.
  • Yin CM, Wong JH, Xia J, et al. Studies on anticancer activities of lactoferrin and lactoferricin. Curr Protein Pept Sci. 2013;14(6):492–503.
  • Mehra N, Mishra V, Jain N. Receptor-based targeting of therapeutics. Ther Deliv. 2013;4(3):369–394.
  • Su Z, Xing L, Chen Y, et al. Lactoferrin-modified poly(ethylene glycol)-grafted BSA nanoparticles as a dual-targeting carrier for treating brain gliomas. Mol Pharm. 2014;11(6):1823–1834.
  • Li H, Tong Y, Bai L, et al. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int J Biol Macromol. 2018;107(Pt A):204–211.
  • Pan F, Zhao X, Waigh TA, et al. Interfacial adsorption and denaturization of human milk and recombinant rice lactoferrin. Biointerphases. 2008;3(2):32–36.
  • Sabra S, Abdelmoneem M, Abdelwakil M, et al. Self-assembled nanocarriers based on amphiphilic natural polymers for anti-cancer drug delivery applications. Curr Pharm Des. 2017;23(35):5213–5229.
  • Elzoghby A, Freag M, Mamdouh H, et al. Zein-based nanocarriers as potential natural alternatives for drug and gene delivery: focus on cancer therapy. Curr Pharm Des. 2017;23(35):5261–5271.
  • Podaralla S, Perumal O. Influence of formulation factors on the preparation of zein nanoparticles. AAPS PharmSciTech. 2012;13(3):919–927.
  • Jain V, Swarnakar NK, Mishra PR, et al. Paclitaxel loaded PEGylated gleceryl monooleate based nanoparticulate carriers in chemotherapy. Biomaterials. 2012;33(29):7206–7220.
  • El-Lakany SA, Elzoghby AO, Elgindy NA, et al. HPLC methods for quantitation of exemestane-luteolin and exemestane-resveratrol mixtures in nanoformulations. J Chromatogr Sci. 2016;54(8):1282–1289.
  • Elzoghby AO, Vranic BZ, Samy WM, et al. Swellable floating tablet based on spray-dried casein nanoparticles: near-infrared spectral characterization and floating matrix evaluation. Int J Pharm. 2015;491(1–2):113–122.
  • Khattab SN, Abdel Naim SE, El-Sayed M, et al. Design and synthesis of new s-triazine polymers and their application as nanoparticulate drug delivery systems. New J Chem. 2016;40(11):9565–9578.
  • Elzoghby AO, Mostafa SK, Helmy MW, et al. Superiority of aromatase inhibitor and cyclooxygenase-2 inhibitor combined delivery: hyaluronate-targeted versus PEGylated protamine nanocapsules for breast cancer therapy. Int J Pharm. 2017;529(1–2):178–192.
  • Zhang Y, Huo M, Zhou J, et al. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99(3):306–314.
  • Freag MS, Elnaggar YS, Abdelmonsif DA, et al. Layer-by-layer-coated lyotropic liquid crystalline nanoparticles for active tumor targeting of rapamycin. Nanomed. 2016;11(22):2975–2996.
  • Jelovac D, Macedo L, Handratta V, et al. Effects of exemestane and tamoxifen in a postmenopausal breast cancer model. Clin Cancer Res. 2004;10(21):7375–7381.
  • Yaqiong Z, Niu Y, Luo Y, et al. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chem. 2014;142:269–275.
  • Lai L, Guo H. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int J Pharm. 2011;404(1–2):317–323.
  • Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights. 2007;2:147–157.
  • Yu DH, Lu Q, Xie J, et al. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Biomaterials. 2010;31(8):2278–2292.
  • Feng S-S, Huang G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol®) from nanospheres of biodegradable polymers. J Control Release. 2001;71(1):53–69.
  • Weiss V, Naolou T, Hause G, et al. Poly(glycerol adipate)-fatty acid esters as versatile nanocarriers: from nanocubes over ellipsoids to nanospheres. J Control Release. 2012;158(1):156–164.
  • Perumal O, Podaralla S, Kaushik R. Method of forming non-immunogenic hydrophobic protein nanoparticles and uses therefor. Madison, CT: IFI CLAIMS Patent Services; 2009.
  • Kang-Kang L, Yin S-W, Yin Y-C, et al. Preparation of water-soluble antimicrobial zein nanoparticles by a modified antisolvent approach and their characterization. J Food Eng. 2013;119(2):343–352.
  • Li Z, Percival SS, Bonard S, et al. Fabrication of nanoparticles using partially purified pomegranate ellagitannins and gelatin and their apoptotic effects. Mol Nutr Food Res. 2011;55(7):1096–1103.
  • Alargova RG, Paunov VN, Velev OD. Formation of polymer microrods in shear flow by emulsification-solvent attrition mechanism. Langmuir. 2006;22(2):765–774.
  • Cauchetier E, Deniau M, Fessi H, et al. Atovaquone-loaded nanocapsules: influence of the nature of the polymer on their in vitro characteristics. Int J Pharm. 2003;250(1):273–281.
  • Lau E, Johnson SK, Mikkelsen D, et al. Preparation and in vitro release of zein microparticles loaded with prednisolone for oral delivery. J Microencapsul. 2012;29(7):706–712.
  • Ashok P, Hu Y, Tiwari JK, et al. Synthesis and characterisation of zein-curcumin colloidal particles. Soft Matter. 2010;6(24):6192–6199.
  • Shimoi K, Saka N, Kaji K, et al. Metabolic fate of luteolin and its functional activity at focal site. Biofactors. 2000;12(1–4):181–186.
  • Mu L, Feng S. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol). J Control Release. 2002;80(1–3):129–144.
  • Parris N, Cooke P, Hicks K. Encapsulation of essential oils in zein nanospherical particles. J Agric Food Chem. 2005;53(12):4788–4792.
  • Qixin Z, Minfeng J. Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocoll. 2009;23(8):2380–2387.
  • Alqahtani MS, Islam MS, Podaralla S, et al. Food protein based core–shell nanocarriers for oral drug delivery: effect of shell composition on in vitro and in vivo functional performance of zein nanocarriers. Mol Pharm. 2017;14(3):757–769.
  • Sabra SA, Elzoghby AO, Sheweita SA, et al. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Eur J Pharm Biopharm. 2018;128:156–169.
  • Angelov B, Angelova A, Papahadjopoulos-Sternberg B, et al. Protein-containing PEGylated cubosomic particles: freeze-fracture electron microscopy and synchrotron radiation circular dichroism study. J Phys Chem B. 2012;116(26):7676–7686.
  • Garbuzenko O, Zalipsky S, Qazen M, et al. Electrostatics of PEGylated micelles and liposomes containing charged and neutral lipopolymers. Langmuir. 2005;21(6):2560–2568.
  • Jain A, Thanki K, Jain S. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol Pharm. 2013;10(9):3459–3474.
  • Hsu MN, Luo R, Kwek KZ, et al. Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co-glycolic acid) nanoparticle composites. Biomicrofluidics. 2015;9(5):052601.
  • Dash S, Murthy PN, Nath L, et al. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–223.
  • Yavuz B, Bilensoy E, Vural I, et al. Alternative oral exemestane formulation: improved dissolution and permeation. Int J Pharm. 2010;398(1–2):137–145.
  • Kumar A, Sawant K. Encapsulation of exemestane in polycaprolactone nanoparticles: optimization, characterization, and release kinetics. Cancer Nanotechnol. 2013;4(4–5):57–71.
  • Liu Y, Wang L, Zhao Y, et al. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin. Int J Pharm. 2014;476(1–2):169–177.
  • Wu Y, Luo Y, Wang Q. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT Food Sci Technol. 2012;48(2):283–290.
  • Santander-Ortega M, Jódar-Reyes AB, Csaba N, et al. Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilisation mechanisms. J Colloid Interface Sci. 2006;302(2):522–529.
  • Owens D, Peppas N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.
  • Chasteigner SD, Cavé G, Fessi H, et al. Freeze-drying of itraconazole-loaded nanosphere suspensions: a feasibility study. Drug Develop Res. 1996;38(2):116–124.
  • Gratton S, Ropp PA, Pohlhaus PD, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci. 2008;105(33):11613–11618.
  • Letchford K, Liggins R, Wasan KM, et al. In vitro human plasma distribution of nanoparticulate paclitaxel is dependent on the physicochemical properties of poly(ethylene glycol)-block-poly(caprolactone) nanoparticles. Eur J Pharm Biopharm. 2009;71(2):196–206.
  • Yao K, Li J, Yao F, et al. Chitosan-based hydrogels: functions and applications. Boca Raton, Florida, USA: CRC Press; 2011.
  • Dobrovolskaia MA, Aggarwal P, Hall JB, et al. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5(4):487–495.
  • Aravind A, Jeyamohan P, Nair R, et al. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng. 2012;109(11):2920–2931.
  • El-Far SW, Helmy MW, Khattab SN, et al. Phytosomal bilayer-enveloped casein micelles for codelivery of monascus yellow pigments and resveratrol to breast cancer. Nanomed. 2018.
  • Rochard E, Legrand D, Lecocq M, et al. Characterization of lactotransferrin receptor in epithelial cell lines from non-malignant human breast, benign mastopathies and breast carcinomas. Anticancer Res. 1992;12(6B):2047–2051.
  • Qu Z, Wang H-J, Tang -T-T, et al. Evaluation of the zein/inorganics composite on biocompatibility and osteoblastic differentiation. Acta Biomater. 2008;4(5):1360–1368.
  • Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release. 2014;189:108–122.
  • Huang J, Si L, Jiang L, et al. Effect of pluronic F68 block copolymer on P-glycoprotein transport and CYP3A4 metabolism. Int J Pharm. 2008;356(1–2):351–353.
  • Brannon-Peppas L, Blanchette J. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliver Rev. 2004;56(11):1649–1659.
  • Owens Iii DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.
  • Walker G, Xenophontos M, Chen L, et al. Long-term efficacy and safety of exemestane in the treatment of breast cancer. Patient Prefer Adherence. 2013;7:245–258.
  • Balunas MJ, Su B, Brueggemeier RW, et al. Natural Products as Aromatase Inhibitors. Anticancer Agents Med Chem. 2008;8(6):646–682.
  • Berezov TT, Ovchinnikova LK, Kuznetsova OM, et al. Vascular endothelial growth factor in the serum of breast cancer patients. Bull Exp Biol Med. 2009;148(3):419–424.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.