468
Views
61
CrossRef citations to date
0
Altmetric
Review

In situ gelling and mucoadhesive polymers: why do they need each other?

, , &
Pages 1007-1019 | Received 22 Mar 2017, Accepted 27 Aug 2018, Published online: 07 Sep 2018

References

  • Johnson TD, Christman KL. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin Drug Deliv. 2013 Jan 01;10(1):59–72.
  • Mayol L, Quaglia F, Borzacchiello A, et al. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties. Eur J Pharmaceutics Biopharmaceutics. 2008;70(1):199–206.
  • Rençber S, Karavana SY, Şenyiğit ZA, et al. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: formulation, preparation, and in vitro/in vivo evaluation. Pharm Dev Technol. 2017 May 19;22(4):551–561.
  • Ruel-Gariépy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharmaceutics Biopharmaceutics. 2004 Sep 01;58(2):409–426.
  • Singh RM, Kumar A, Pathak K. Mucoadhesive in situ nasal gelling drug delivery systems for modulated drug delivery. Expert Opin Drug Deliv. 2013;10(1):115–130.
  • Yang J-A, Yeom J, Hwang BW, et al. In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci. 2014;39(12):1973–1986.
  • Chenite A, Buschmann M, Wang D, et al. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym. 2001;46(1):39–47.
  • Braccini I, Pérez S. Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules. 2001 Dec 01;2(4):1089–1096.
  • Bernkop-Schnürch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev. 2005 Nov 03;57(11):1569–1582.
  • Park KM, Shin YM, Joung YK, et al. In situ forming hydrogels based on tyramine conjugated 4-Arm-PPO-PEO via enzymatic oxidative reaction. Biomacromolecules. 2010;11(3):706–712.
  • Truong VX, Ablett MP, Richardson SM, et al. Simultaneous orthogonal dual-click approach to tough, in-situ-forming hydrogels for cell encapsulation. J Am Chem Soc. 2015 Feb 04;137(4):1618–1622.
  • Atuma C, Strugala V, Allen A, et al. The adherent gastrointestinal mucus gel layer: THICKNESS and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G922.
  • Imam ME, Hornof M, Valenta C, et al. Evidence for the interpenetration of mucoadhesive polymers into the mucous gel layer. STP Pharma Sci. 2003;13(3):171–176.
  • Singla AK, Chawla M, Singh A. Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: a review. Drug Dev Ind Pharm. 2000 Jan 01;26(9):913–924.
  • Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharmaceutics Biopharmaceutics. 2008;68(1):34–45.
  • Lin H-R, Sung KC. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Controlled Release. 2000 Dec 03;69(3):379–388.
  • Friedl HE, Dünnhaupt S, Waldner C, et al. Preactivated thiomers for vaginal drug delivery vehicles. Biomaterials. 2013 Oct 01;34(32):7811–7818.
  • Abelson MB, Udell IJ, Weston JH. Normal human tear pH by direct measurement. Arch Ophthalmol. 1981;99(2):301.
  • Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7(10):569–579.
  • Robinson JR, Mlynek GM. Bioadhesive and phase-change polymers for ocular drug delivery. Adv Drug Deliv Rev. 1995;16(1):45–50.
  • Gupta S, Vyas SP. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci Pharm. 2010;78(4):959–976.
  • Chiu Y-L, Chen S-C, Su C-J, et al. pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials. 2009;30(28):4877–4888.
  • Mayol L, Biondi M, Quaglia F, et al. Injectable thermally responsive mucoadhesive gel for sustained protein delivery. Biomacromolecules. 2010;12(1):28–33.
  • Liow SS, Dou Q, Kai D, et al. Thermogels: in situ gelling biomaterial. ACS Biomater Sci Eng. 2016;2(3):295–316.
  • Park H, Kim MH, Yoon YI, et al. One-pot synthesis of injectable methylcellulose hydrogel containing calcium phosphate nanoparticles. Carbohydr Polym. 2017;157(SupplementC):775–783.
  • Sarkar N. Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci. 1979;24(4):1073–1087.
  • Matanović MR, Kristl J, Grabnar PA. Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm. 2014;472(1):262–275.
  • Mura P, Mennini N, Nativi C, et al. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharmaceutics Biopharmaceutics. 2018;122:54–61.
  • Gratieri T, Gelfuso GM, Rocha EM, et al. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharmaceutics Biopharmaceutics. 2010;75(2):186–193.
  • Taylor JM, Tomlins P, Sahota ST. Thermoresponsive Gels. Gels. 2017;3(1). DOI:10.3390/gels3010004
  • Wang Y, Jiang S, Wang H, et al. A mucoadhesive, thermoreversible in situ nasal gel of geniposide for neurodegenerative diseases. PLoS One. 2017;12(12):e0189478.
  • Garala K, Joshi P, Shah M, et al. Formulation and evaluation of periodontal in situ gel. Int J Pharm Investig. 2013;3(1):29.
  • Carlfors J, Edsman K, Petersson R, et al. Rheological evaluation of Gelrite® in situ gels for ophthalmic use. Eur J Pharml Sci. 1998;6(2):113–119.
  • Paulsson M, Hägerström H, Edsman K. Rheological studies of the gelation of deacetylated gellan gum (Gelrite®) in physiological conditions. Eur J Pharm Sci. 1999 Oct 01;9(1):99–105.
  • Ni Y, Yates KM. In-situ gel formation of pectin. United States: (Grand Prairie, TX), inventor; Carrington Laboratories, Inc. (Irving, TX), assignee; 2004.
  • Liu X, Qian L, Shu T, et al. Rheology characterization of sol–gel transition in aqueous alginate solutions induced by calcium cations through in situ release. Polymer. 2003;44(2):407–412.
  • Hintzen F, Laffleur F, Sakloetsakun D, et al. In situ gelling properties of anionic thiomers. Drug Dev Ind Pharm. 2012;38(12):1479–1485.
  • Bernkop-Schnürch A, Hornof M, Guggi D. Thiolated chitosans. Eur J Pharmaceutics Biopharmaceutics. 2004;57(1):9–17.
  • Sakloetsakun D, Hombach JMR, Bernkop-Schnürch A. In situ gelling properties of chitosan-thioglycolic acid conjugate in the presence of oxidizing agents. Biomaterials. 2009 Oct 01;30(31):6151–6157.
  • Menzel C, Jelkmann M, Laffleur F, et al. Nasal drug delivery: design of a novel mucoadhesive and in situ gelling polymer. Int J Pharm. 2017;517(1):196–202.
  • Iqbal J, Shahnaz G, Dünnhaupt S, et al. Preactivated thiomers as mucoadhesive polymers for drug delivery. Biomaterials. 2012 Feb 01;33(5):1528–1535.
  • Mi F-L, Shyu -S-S, Peng C-K. Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. J Polymer Sci A: Polymer Chem. 2005 May 15;43(10):1985–2000.
  • Moura MJ, Figueiredo MM, Gil MH. Rheology of Chitosan and Genipin Solutions. Mater Sci Forum. 2008;587–588:27–31.
  • Narita T, Yunoki S, Ohyabu Y, et al. In situ gelation properties of a collagen–genipin sol with a potential for the treatment of gastrointestinal ulcers. Medical Devices (Auckland, NZ). 2016;12/15(9):429–439. PubMed PMID: PMC5170602.
  • Hodgson SM, Bakaic E, Stewart SA, et al. Properties of poly(ethylene glycol) hydrogels cross-linked via strain-promoted alkyne–azide cycloaddition (SPAAC). Biomacromolecules. 2016 Mar 14;17(3):1093–1100.
  • Lu M, Liu Y, Huang Y-C, et al. Fabrication of photo-crosslinkable glycol chitosan hydrogel as a tissue adhesive. Carbohydr Polym. 2018;181:668–674.
  • Fancy DA, Kodadek T. Chemistry for the analysis of protein–protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc Natl Acad Sci. 1999;96(11):6020.
  • Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules. 2008;9(7):1837–1842.
  • Carvalho FC, Bruschi ML, Evangelista RC, et al. Mucoadhesive drug delivery systems. Braz J Pharm Sci. 2010;46(1):1–17.
  • Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005 Nov 03;57(11):1595–1639.
  • Singh RM, Kumar A, Pathak K. Thermally triggered mucoadhesive in situ gel of loratadine: β-cyclodextrin complex for nasal delivery. AAPS PharmSciTech. 2013;14(1):412–424.
  • Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748–764.
  • Grabovac V, Guggi D, Bernkop-Schnürch A. Comparison of the mucoadhesive properties of various polymers. Adv Drug Deliv Rev. 2005;57(11):1713–1723.
  • Shiledar RR, Tagalpallewar AA, Kokare CR. Formulation and in vitro evaluation of xanthan gum-based bilayered mucoadhesive buccal patches of zolmitriptan. Carbohydr Polym. 2014 Jan 30;101(Supplement C):1234–1242.
  • Mahajan HS, Tyagi VK, Patil RR, et al. Thiolated xyloglucan: synthesis, characterization and evaluation as mucoadhesive in situ gelling agent. Carbohydr Polym. 2013;91(2):618–625.
  • Hornof MD, Kast CE, Bernkop-Schnürch A. In vitro evaluation of the viscoelastic properties of chitosan–thioglycolic acid conjugates. Eur J Pharm Biopharm. 2003;55(2):185–190.
  • Horvát G, Gyarmati B, Berkó S, et al. Thiolated poly (aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system. Eur J Pharm Sci. 2015;67:1–11.
  • Yadav S, Ahuja M, Kumar A, et al. Gellan–thioglycolic acid conjugate: synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr Polym. 2014;99:601–607.
  • Kim K, Kim K, Ryu JH, et al. Chitosan-catechol: a polymer with long-lasting mucoadhesive properties. Biomaterials. 2015 June 01;52(Supplement C):161–170.
  • Xu J, Strandman S, Zhu JXX, et al. Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials. 2015 Jan 01;37(Supplement C):395–404.
  • Tirnaksiz F, Robinson J. Rheological, mucoadhesive and release properties of pluronic F-127 gel and pluronic F-127/polycarbophil mixed gel systems. Die Pharmazie-An Int J Pharm Sci. 2005;60(7):518–523.
  • M.A. Fathalla Z, Vangala A, Longman M, et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: design, characterisation, toxicity and transcorneal permeation studies. Eur J Pharmaceutics Biopharmaceutics. 2017;114:119–134.
  • Choi H-G, Jung J-H, Ryu J-M, et al. Development of in situ-gelling and mucoadhesive acetaminophen liquid suppository. Int J Pharm. 1998;165(1):33–44.
  • ElHady SA, Mortada ND, Awad GA, et al. Development of in situ gelling and mucoadhesive mebeverine hydrochloride solution for rectal administration. Saudi Pharm J. 2003;11(4):159–171.
  • Pereira RRDA, Godoy R, Silva J, et al. Preparation and characterization of mucoadhesive thermoresponsive systems containing propolis for the treatment of vulvovaginal candidiasis. J Pharm Sci. 2013;102(4):1222–1234.
  • Jaiswal J, Anantvar S, Narkhede M, et al. Formulation and evaluation of thermoreversible in-situ nasal gel of metoprolol succinate. IntJ Pharm Pharma Sci. 2011;3:96–102.
  • Hirva S, Dhiren S, Jenisha V. Formulation of bioadhesive chitosan/pluronic thermosensitive in-situ gel for modified release of gatifloxacin. Indo Am J Pharm Res. 2016;6(10):6759–6765.
  • Liu Y, Liu J, Zhang X, et al. In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery. AAPS PharmSciTech. 2010 Jun 01;11(2):610–620.
  • Belgamwar VS, Chauk DS, Mahajan HS, et al. Formulation and evaluation of in situ gelling system of dimenhydrinate for nasal administration. Pharm Dev Technol. 2009 June 01;14(3):240–248.
  • Yuan Y, Cui Y, Zhang L, et al. Thermosensitive and mucoadhesive in situ gel based on poloxamer as new carrier for rectal administration of nimesulide. Int J Pharm. 2012;430(1):114–119.
  • Ravi PR, Aditya N, Patil S, et al. Nasal in-situ gels for delivery of rasagiline mesylate: improvement in bioavailability and brain localization. Drug Deliv. 2015 Oct 03;22(7):903–910.
  • Altuntaş E, Yener G. Formulation and evaluation of thermoreversible in situ nasal gels containing mometasone furoate for allergic rhinitis. AAPS PharmSciTech. 2017 Oct 01;18(7):2673–2682.
  • Zaki NM, Awad GA, Mortada ND, et al. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharml Sci. 2007;32(4):296–307.
  • Qi H, Chen W, Huang C, et al. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int J Pharm. 2007;337(1):178–187.
  • Fini A, Bergamante V, Ceschel GC. Mucoadhesive gels designed for the controlled release of chlorhexidine in the oral cavity. Pharmaceutics. 2011;3(4):665–679.
  • Sandri G, Cristina Bonferoni M, Ferrari F, et al. An in situ gelling buccal spray containing platelet lysate for the treatment of oral mucositis. Curr Drug Discov Technol. 2011;8(3):277–285.
  • Das N, Madan P, Lin S. Development and in vitro evaluation of insulin-loaded buccal pluronic F-127 gels. Pharm Dev Technol. 2010;15(2):192–208.
  • Kassem AA, Issa DAE, Kotry GS, et al. Thiolated alginate-based multiple layer mucoadhesive films of metformin forintra-pocket local delivery: in vitro characterization and clinical assessment. Drug Dev Ind Pharm. 2017 Jan 02;43(1):120–131.
  • Liu Y, Wang X, Liu Y, et al. Thermosensitive in situ gel based on solid dispersion for rectal delivery of ibuprofen. AAPS PharmSciTech. 2018 Jan 01;19(1):338–347.
  • Barichello JM, Morishita M, Takayama K, et al. Enhanced rectal absorption of insulin-loaded Pluronic® F-127 gels containing unsaturated fatty acids. Int J Pharm. 1999;183(2):125–132.
  • Lin H-R, Tseng C-C, Lin Y-J, et al. A novel in-situ-gelling liquid suppository for site-targeting delivery of anti-colorectal cancer drugs. J Biomater Sci. 2012;23(6):807–822.
  • Cho HJ, Balakrishnan P, Park EK, et al. Poloxamer/cyclodextrin/chitosan‐based thermoreversible gel for intranasal delivery of fexofenadine hydrochloride. J Pharm Sci. 2011;100(2):681–691.
  • Morsi N, Ghorab D, Refai H, et al. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int J Pharm. 2016;506(1):57–67.
  • Liu Z, Li J, Nie S, et al. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm. 2006;315(1):12–17.
  • Chang JY, Oh Y-K, Choi H-G, et al. Rheological evaluation of thermosensitive and mucoadhesive vaginal gels in physiological conditions. Int J Pharm. 2002;241(1):155–163.
  • Chang JY, Oh Y-K, Kong HS, et al. Prolonged antifungal effects of clotrimazole-containing mucoadhesive thermosensitive gels on vaginitis. J Controlled Release. 2002;82(1):39–50.
  • Oh Y-K, Park J-S, Yoon H, et al. Enhanced mucosal and systemic immune responses to a vaginal vaccine coadministered with RANTES-expressing plasmid DNA using in situ-gelling mucoadhesive delivery system. Vaccine. 2003;21(17):1980–1988.
  • Park J-S, Oh Y-K, Kang M-J, et al. Enhanced mucosal and systemic immune responses following intravaginal immunization with human papillomavirus 16 L1 virus-like particle vaccine in thermosensitive mucoadhesive delivery systems. J Med Virol. 2003;70(4):633–641.
  • Illum L. Nasal drug delivery—recent developments and future prospects. J Controlled Release. 2012;161(2):254–263.
  • Park JS, Oh YK, Yoon H, et al. In situ gelling and mucoadhesive polymer vehicles for controlled intranasal delivery of plasmid DNA. J Biomed Mater Res. 2002;59(1):144–151.
  • Mahajan HS, Gattani S. In situ gels of metoclopramide hydrochloride for intranasal delivery: in vitro evaluation and in vivo pharmacokinetic study in rabbits. Drug Deliv. 2010;17(1):19–27.
  • Saindane NS, Pagar KP, Vavia PR. Nanosuspension based in situ gelling nasal spray of carvedilol: development, in vitro and in vivo characterization. AAPS PharmSciTech. 2013;14(1):189–199.
  • Gabal YM, Kamel AO, Sammour OA, et al. Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route. Int J Pharm. 2014 Oct 01;473(1):442–457.
  • Agrawal A, Gupta P, Khanna A, et al. Development and characterization of in situ gel system for nasal insulin delivery. Die Pharmazie-An Int J Pharm Sci. 2010;65(3):188–193.
  • Shelke S, Shahi S, Jalalpure S, et al. Formulation and evaluation of thermoreversible mucoadhesive in-situ gel for intranasal delivery of naratriptan hydrochloride. J Drug Deliv Sci Technol. 2015;29:238–244.
  • Perez AP, Mundiña-Weilenmann C, Romero EL, et al. Increased brain radioactivity by intranasal P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels. Int J Nanomedicine. 2012;7:1373–1385.
  • Abouhussein DMN, Khattab A, Bayoumi NA, et al. Brain targeted rivastigmine mucoadhesive thermosensitive In situ gel: optimization, in vitro evaluation, radiolabeling, in vivo pharmacokinetics and biodistribution. J Drug Deliv Sci Technol. 2018 Feb 01;43(Supplement C):129–140.
  • Preeti K. Ocusert as A Novel Drug Delivery System. Int J Pharm Biol Archive. 2013;4:4.
  • Saettone MF, Salminen L. Ocular inserts for topical delivery. Adv Drug Deliv Rev. 1995 Aug 01;16(1):95–106.
  • Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release. Int J Pharm. 2011 June 15;411(1):69–77.
  • Lou J, Hu W, Tian R, et al. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int J Nanomedicine. 2014;9:2517.
  • Gupta H, Aqil M, Khar R, et al. Nanoparticles laden in situ gel for sustained ocular drug delivery. J Pharm And Bioallied Sci. 2013 Apr 1;5(2):162–165.
  • Bhowmik M, Kumari P, Sarkar G, et al. Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407. Int J Biol Macromol. 2013;62:117–123.
  • Nagaich U, Jain N, Kumar D, et al. Controlled ocular drug delivery of ofloxacin using temperature modulated in situ gelling system. J Scientific Soc. 2013;40(2):90.
  • Rupenthal ID, Alany RG, Green CR. Ion-activated in situ gelling systems for antisense oligodeoxynucleotide delivery to the ocular surface. Mol Pharm. 2011;8(6):2282–2290.
  • Pawar P, Kashyap H, Malhotra S, et al. Hp–CD-Voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment. Biomed Res Int. 2013;2013:1–9.
  • Akiyama Y, Nagahara N, Nara E, et al. Evaluation of oral mucoadhesive microspheres in man on the basis of the pharmacokinetics of furosemide and riboflavin, compounds with limited gastrointestinal absorption sites. J Pharm Pharmacol. 1998;50(2):159–166.
  • Miyazaki S, Kubo W, Attwood D. Oral sustained delivery of theophylline using in-situ gelation of sodium alginate. J Controlled Release. 2000 Jul 03;67(2):275–280.
  • Bothiraja C, Kumbhar V, Pawar A, et al. Development of floating in situ gelling system as an efficient anti-ulcer formulation: in vitro and in vivo studies. RSC Adv. 2015;5(37):28848–28856.
  • Rajinikanth PS, Mishra B. Floating in situ gelling system for stomach site-specific delivery of clarithromycin to eradicate H. pylori. J Controlled Release. 2008 Jan 04;125(1):33–41.
  • Lee Y, Chung HJ, Yeo S, et al. Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter. 2010;6(5):977–983.
  • Ryu JH, Lee Y, Kong WH, et al. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules. 2011 Jul 11;12(7):2653–2659.
  • Rossi S, Vigani B, Bonferoni MC, et al. Rheological analysis and mucoadhesion: a 30 year-old and still active combination. J Pharm Biomed Anal. 2018;156:232–238.
  • Hombach J, Palmberger Thomas F, Bernkop-Schnürch A. Development and in vitro evaluation of a mucoadhesive vaginal delivery system for nystatin. J Pharm Sci. 2008 Feb 01;98(2):555–564.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.