556
Views
17
CrossRef citations to date
0
Altmetric
Review

Overview of intranasally delivered peptides: key considerations for pharmaceutical development

, , , , &
Pages 991-1005 | Received 23 Mar 2018, Accepted 27 Aug 2018, Published online: 19 Sep 2018

References

  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20(1):122–128. .
  • Padhi A, Sengupta M, Sengupta S, et al. Antimicrobial peptides and proteins in mycobacterial therapy: current status and future prospects. Tuberculosis. 2014;94(4):363–373.
  • Giordano C, Marchiò M, Timofeeva E, et al. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol. 2014;5:63.
  • Research TM. Peptide therapeutics market - global industry analysis, size, share, growth, trends and forecast 2020: TMR. Transparency Market Res. 2017 September;12:2016.
  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Biorg Med Chem. 2017;26(10):2700–2707.
  • Shaji J, Patole V. Protein and peptide drug delivery: oral approaches. Indian J Pharm Sci. 2008;70:269–277.
  • Escobar‐Chávez JJ, Bonilla‐Martínez D, Angélica M, et al. Microneedles: a valuable physical enhancer to increase transdermal drug delivery. J Clin Pharmacol. 2011;51(7):964–977.
  • Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today. 2002;7(18):967–975.
  • Nyberg F. Neuropeptides in neuroprotection and neuroregeneration. Boca Raton: CRC Press; 2012.
  • Illum L, Jordan FM, Lewis AL. Improvements in the absorption of therapeutic agents across mucosal membranes or the skin. Google Patents; 2011.
  • Corbo DC, Huang YC, Chien YW. Nasal delivery of progestational steroids in ovariectomized rabbits. II. Effect of penetrant hydrophilicity. Int J Pharm. 1989;50(3):253–260.
  • Gibson RE, Olanoff LS. Physicochemical determinants of nasal drug absorption. J Control Release. 1987;6(1):361–366.
  • McMartin C, Hutchinson LE, Hyde R, et al. Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity. J Pharm Sci. 1987;76(7):535–540. .
  • Donovan MD, Flynn GL, Amidon GL. Absorption of polyethylene glycols 600 through 2000: the molecular weight dependence of gastrointestinal and nasal absorption. Pharm Res. 1990;7(8):863–868.
  • Donovan MD, Huang Y. Large molecule and particulate uptake in the nasal cavity: the effect of size on nasal absorption. Adv Drug Del Rev. 1998;29(1):147–155. .
  • Amodeo P, Motta A, Strazzullo G, et al. Conformational flexibility in calcitonin: the dynamic properties of human and salmon calcitonin in solution. J Biomol NMR. 1999;13(2):161–174.
  • Plosker GL, McTavish D. Intranasal salcatonin (Salmon Calcitonin). Drugs Aging. 1996;8(5):378–400.
  • Laimou DK, Katsara M, Matsoukas M-TI, et al. Structural elucidation of Leuprolide and its analogues in solution: insight into their bioactive conformation. Amino Acids. 2010;39(5):1147–1160.
  • Pfizer Canada Inc., Quebec. Synarel (TM) [Product monograph]. 2015. [cited 2016 July 18]. Available from: http://www.pfizer.ca/sites/g/files/g10017036/f/201505/Synarel_PM_E_179947_26_February_2015.pdf
  • Brogden RN, Buckley MM-T, Ward A. Buserelin. Drugs. 1990;39(3):399–437.
  • Walse B, Kihlberg J, Drakenberg T. Conformation of desmopressin, an analogue of the peptide hormone vasopressin, in aqueous solution as determined by NMR spectroscopy. Eur J Biochem. 1998;252(3):428–440.
  • Ferring Pharmaceuticals, New Zeland. Minirin nasal spray, [Product mongraph]. 2013. [cited 2016 Oct 21]. Available from: http://www.medsafe.govt.nz/profs/datasheet/m/Minirinnasalspray.pdf
  • Vongvilai P, Isaka M, Kittakoop P, et al. Isolation and structure elucidation of enniatins L, M1, M2, and N: novel hydroxy analogs. Helv Chim Acta. 2004;87(8):2066–2073.
  • Liu D, Seuthe AB, Ehrler OT, et al. Oxytocin-receptor binding: why divalent metals are essential. J Am Chem Soc. 2005;127(7):2024–2025.
  • Morioka T, Loik ND, Hipolito CJ, et al. Selection-based discovery of macrocyclic peptides for the next generation therapeutics. Curr Opin Chem Biol. 2015;26:34–41.
  • Milewski M, Goodey A, Lee D, et al. Rapid absorption of dry-powder intranasal oxytocin. Pharm Res. 2016;33(8):1936-1944.
  • BioTopics. The 3-dimensional structure of glucagon, an alpha helix. [cited 2017 Feb 4]. Available from: http://www.biotopics.co.uk/jsmol/glucagon.html
  • Pontiroli A, Calderara A, Perfetti M, et al. Pharmacokinetics of intranasal, intramuscular and intravenous glucagon in healthy subjects and diabetic patients. Eur J Clin Pharmacol. 1993;45(6):555–558.
  • Marx UC, Adermann K, Bayer P, et al. Solution structures of human parathyroid hormone fragments hPTH (1–34) and hPTH (1–39) and bovine parathyroid hormone fragment bPTH (1–37). Biochem Biophys Res Commun. 2000;267(1):213–220.
  • Macdonald B, Merutka GS. Intranasal formulations. Google Patents; 2012.
  • Absorption similar for nasal, injected teriparatide: rheumatology news. [cited 2017 Mar 6]. Available from: http://www.mdedge.com/rheumatologynews/article/44136/osteoarthritis/absorption-similar-nasal-injected-teriparatide
  • Gozes I, Morimoto BH, Tiong J, et al. NAP: research and development of a peptide derived from activity‐dependent neuroprotective protein (ADNP). CNS Drug Rev. 2005;11(4):353–368.
  • Derewenda U, Derewenda Z, Dodson G, et al. Molecular structure of insulin: the insulin monomer and its assembly. Br Med Bull. 1989;45(1):4–18.
  • Leary AC, Dowling M, Cussen K, et al. Pharmacokinetics and pharmacodynamics of intranasal insulin spray (Nasulin™) administered to healthy male volunteers: influence of the nasal cycle. J Diabetes Sci Technol. 2008;2(6):1054–1060.
  • Fisher A, Brown K, Davis S, et al. The effect of molecular size on the nasal absorption of water‐soluble compounds in the albino rat. J Pharm Pharmacol. 1987;39(5):357–362.
  • Hussain A, Hirai S, Bawarshi R. Nasal absorption of propranolol from different dosage forms by rats and dogs. J Pharm Sci. 1980;69(12):1411–1413.
  • Hussain AA, Kimura R, Huang CH. Nasal absorption of testosterone in rats. J Pharm Sci. 1984;73(9):1300–1301.
  • Morimoto BH, De Lannoy I, Fox AW, et al. Davunetide pharmacokinetics and distribution to brain after intravenous or intranasal administration to rat. Chim Oggi. 2009;27(2):16–20.
  • Morimoto BH. Early clinical development: case study of davunetide on translation from the bench to the clinic. Celerion Appl Transl Med. 2015. [cited 2016 Oct 25]. Available from: https://celerion.com/wordpress/wp-content/uploads/2015/04/Celerion_KSCPT-2015_Case-Study-of-Davunetide-on-Translation-from-Bench-to-Clinic.pdf
  • Cremaschi D, Porta C, Ghirardelli R, et al. Endocytosis inhibitors abolish the active transport of polypeptides in the mucosa of the nasal upper concha of the rabbit. Biochim Biophys Acta Biomembr. 1996;1280(1):27–33.
  • Hersey S, Jackson R. Effect of bile salts on nasal permeability in vitro. J Pharm Sci. 1987;76(12):876–879.
  • Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Del Rev. 2012;64(7):614–628.
  • Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol. 2009;11(5):510–520.
  • Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007;8(3):185–194.
  • Broadwell RD, Balin BJ. Endocytic and exocytic pathways of the neuronal secretory process and trans synaptic transfer of wheat germ agglutinin‐horseradish peroxidase in vivo. J Comp Neurol. 1985;242(4):632–650.
  • Balin BJ, Broadwell RD, Salcman M, et al. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J Comp Neurol. 1986;251(2):260–280.
  • Hayashi M, Hirasawa T, Muroka T, et al. Comparison of water influx and sieving coefficient in rat jejunal, rectal and nasal absorptions of antipyrine. Chem Pharm Bull. 1985;33(5):2149–2152.
  • Madara JL, Dharmsathaphorn K. Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol. 1985;101(6):2124–2133.
  • Korolkov VV, Allen S, Roberts CJ, et al. Study of NAP adsorption and assembly on the surface of HOPG. Peptides. 2014;62:55–58.
  • Shorten P, McMahon C, Soboleva T. Insulin transport within skeletal muscle transverse tubule networks. Biophys J. 2007;93(9):3001–3007.
  • Kabanov V, Skobeleva V, Rogacheva V, et al. Sorption of proteins by slightly cross-linked polyelectrolyte hydrogels: kinetics and mechanism. J Phys Chem B. 2004;108(4):1485–1490.
  • Wilkins DK, Grimshaw SB, Receveur V, et al. Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry. 1999;38(50):16424–16431.
  • Inagaki M, Sakakura Y, Itoh H, et al. Macromolecular permeability of the tight junction of the human nasal mucosa. Rhinology. 1985;23(3):213.
  • Claude P. Morphological factors influencing transepithelial permeability: A model for the resistance of thezonula occludens. J Membr Biol. 1978;39(2–3):219–232.
  • Lang SR, Staudenmann W, James P, et al. proteolysis of human calcitonin in excised bovine nasal mucosa: elucidation of the metabolic pathway by liquid secondary lonization mass spectrometry (lsims) and matrix assisted laser desorption lonization mass spectrometry (maldi). Pharm Res. 1996;13(11):1679–1685.
  • Morimoto K, Miyazaki M, Kakemi M. Effects of proteolytic enzyme inhibitors on nasal absorption of salmon calcitonin in rats. Int J Pharm. 1995;113(1):1–8.
  • Lang S, Langguth P, Oschmann R, et al. Transport and metabolic pathway of thymocartin (TP4) in excised bovine nasal mucosa. J Pharm Pharmacol. 1996;48(11):1190–1196.
  • Chung FY, Donovan MD. Nasal pre-systemic metabolism of peptide drugs: substance P metabolism in the sheep nasal cavity. Int J Pharm. 1996;128(1):229–237.
  • Beaven G, Gratzer W, Davies H. Formation and structure of gels and fibrils from glucagon. Eur J Biochem. 1969;11(1):37–42.
  • Reno FE, Normand P, McInally K, et al. A novel nasal powder formulation of glucagon: toxicology studies in animal models. BMC Pharmacol Toxicol. 2015;16(1):29.
  • Withdrawal of fusafungine-containing medicines from the market: Servier. [cited 2016 Oct 25]. Available from: http://www.servier.com/content/withdrawal-fusafungine-containing-medicines-market
  • Lee WA, Ennis RD, Longenecker JP, et al. The bioavailability of intranasal salmon calcitonin in healthy volunteers with and without a permeation enhancer. Pharm Res. 1994;11(5):747–750.
  • Köhler M, Harris A. Pharmacokinetics and haematological effects of desmopressin. Eur J Clin Pharmacol. 1988;35(3):281–285.
  • Groot AN, Vree TB, Hekster YA, et al. Bioavailability and pharmacokinetics of sublingual oxytocin in male volunteers. J Pharm Pharmacol. 1995;47(7):571–575.
  • Sherr JL, Ruedy KJ, Foster NC, et al. Glucagon nasal powder: a promising alternative to intramuscular glucagon in youth with type 1 diabetes. Diabetes Care. 2016;39(4):555–562.
  • Macdonald B, Merutka GS Intranasal formulations. Google Patents; 2011.
  • Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015;17(1):134–143.
  • Bockus AT, McEwen CM, Lokey RS. Form and function in cyclic peptide natural products: a pharmacokinetic perspective. Curr Top Med Chem. 2013;13(7):821–836.
  • Roxin Á, Zheng G. Flexible or fixed: a comparative review of linear and cyclic cancer-targeting peptides. Future Med Chem. 2012;4(12):1601–1618.
  • Adessi C, Soto C. Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem. 2002;9(9):963–978.
  • Manning MC, Chou DK, Murphy BM, et al. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–575.
  • DrugBank. Fusafungine. 2016. [cited 2017 Mar 2]. Available from: https://www.drugbank.ca/drugs/DB08965
  • Proctor DF, Lundqvist G. Clearance of inhaled particles from the human nose. Arch Intern Med. 1973;131(1):132–139.
  • Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res. 2013;3(1):42–62.
  • Tanaka A, Furubayashi T, Matsushita A, et al. Nasal absorption of macromolecules from powder formulations and effects of sodium carboxymethyl cellulose on their absorption. PLoS One. 2016;11(9):e0159150.
  • Ishikawa F, Katsura M, Tamai I, et al. Improved nasal bioavailability of elcatonin by insoluble powder formulation. Int J Pharm. 2001;224(1):105–114.
  • Ishikawa F, Murano M, Hiraishi M, et al. Insoluble powder formulation as an effective nasal drug delivery system. Pharm Res. 2002;19(8):1097–1104.
  • Harris A, Nilsson I, Alkner U. Intranasal administration of peptides: nasal deposition, biological response, and absorption of desmopressin. J Pharm Sci. 1986;75(11):1085–1088.
  • Pringels E, Callens C, Vervaet C, et al. Influence of deposition and spray pattern of nasal powders on insulin bioavailability. Int J Pharm. 2006;310(1):1–7.
  • Shimpi S, Chauhan B, Shimpi P. Cyclodextrins: application in different routes of drug administration. Acta Pharm. 2005;55(2):139–156.
  • Merkus F, Verhoef J, Marttin E, et al. Cyclodextrins in nasal drug delivery. Adv Drug Del Rev. 1999;36(1):41–57.
  • Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–1025.
  • Hovgaard L, Brøndsted H. Drug delivery studies in Caco-2 monolayers. IV. Absorption enhancer effects of cyclodextrins. Pharm Res. 1995;12(9):1328–1332.
  • Irie T, Wakamatsu K, Arima H, et al. Enhancing effects of cyclodextrins on nasal absorption of insulin in rats. Int J Pharm. 1992;84(2):129–139.
  • Corbo DC, Liu JC, Chienx YW. Characterization of the barrier properties of mucosal membranes. J Pharm Sci. 1990;79(3):202–206.
  • Marttin E, Verhoef JC, Cullander C, et al. Confocal laser scanning microscopic visualization of the transport of dextrans after nasal administration to rats: effects of absorption enhancers. Pharm Res. 1997;14(5):631–637.
  • Merkus FW, Verhoef JC, Romeijn SG, et al. Absorption enhancing effect of cyclodextrins on intranasally administered insulin in rats. Pharm Res. 1991;8(5):588–592.
  • Leonard AK, Sestak JO, Costantino HR, et al. Intranasal carbetocin formulations and methods for the treatment of autism. Google Patents; 2008.
  • Rouse SL, Marcoux J, Robinson CV, et al. Dodecyl maltoside protects membrane proteins in vacuo. Biophys J. 2013;105(3):648–656.
  • Ellinger P, Kluth M, Stindt J, et al. Detergent screening and purification of the human liver ABC transporters BSEP (ABCB11) and MDR3 (ABCB4) expressed in the yeast Pichia pastoris. PLoS One. 2013;8(4):e60620.
  • Maggio ET. Intravail™: highly effective intranasal delivery of peptide and protein drugs. Expert Opin Drug Deliv. 2006;3(4):529–539.
  • Uchiyama T, Sugiyama T, Quan YS, et al. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers: their intestinal mucosal toxicity and absorption‐enhancing mechanism of n‐Lauryl‐β‐D‐maltopyranoside. J Pharm Pharmacol. 1999;51(11):1241–1250.
  • Chen S, Eiting K, Li A, et al. Peptide drug permeation enhancement by select classes of lipids. 45th American Society for Cell Biology Meeting; 2005 Dec 10–14; San Francisco: Nastech Pharmaceutical Company Inc., University of Washington.
  • Micelles: virtual Chembook. [cited 2017 April 5]. Available from: http://chemistry.elmhurst.edu/vchembook/558micelle.html
  • Liu DZ, Lecluyse EL, Thakker DR. Dodecylphosphocholine‐mediated enhancement of paracellular permeability and cytotoxicity in Caco‐2 cell monolayers. J Pharm Sci. 1999;88(11):1161–1168.
  • Bösch C, Brown LR, Wüthrich K. Physicochemical characterization of glucagon-containing lipid micelles. Biochim Biophys Acta Biomembr. 1980;603(2):298–312.
  • Kaarsholm NC Stabilized aqueous peptide solutions. Google Patents; 2002.
  • Sinswat P, Tengamnuay P. Enhancing effect of chitosan on nasal absorption of salmon calcitonin in rats: comparison with hydroxypropyl-and dimethyl-β-cyclodextrins. Int J Pharm. 2003;257(1):15–22.
  • Ahsan F, Arnold J, Meezan E, et al. Enhanced bioavailability of calcitonin formulated with alkylglycosides following nasal and ocular administration in rats. Pharm Res. 2001;18(12):1742–1746.
  • Maggio ET, Meezan E, Ghambeer DKS, et al. Highly bioavailable nasal calcitonin - potential for expanded use in analgesia. Drug Deliv Technol. 2010;10(1):20.
  • Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res. 1994;11(8):1186–1189.
  • Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215.
  • Watts P, Smith A. PecSys: in situ gelling system for optimised nasal drug delivery. Expert Opin Drug Deliv. 2009;6(5):543–552.
  • Axelos MAV, Thibault JF. The chemistry of low-methoxyl pectin gelation. In: Reginald H. Walter, editor, The chemistry and technology of pectin. Cambridge: Academic Press; 1991. p. 109-118
  • Science 2.0. Nose-to-Brain Research Of Oxytocin In Autism Spectrum Disorders. [ cited 2016 Oct 21]. Available from: https://www.science20.com/news_articles/nosetobrain_research_oxytocin_autism_spectrum_disorders-96209.
  • Tsuneji N, Yuji N, Naoki N, et al. Powder dosage form of insulin for nasal administration. J Control Release. 1984;1(1):15–22.
  • Oechslein CR, Fricker G, Kissel T. Nasal delivery of octreotide: absorption enhancement by particulate carrier systems. Int J Pharm. 1996;139(1):25–32.
  • Lansley AB, Sanderson MJ, Dirksen ER. Control of the beat cycle of respiratory tract cilia by Ca2+ and cAMP. Am J PhysiolLung Cell Mol Physiol. 1992;263(2):L232–L42.
  • Suzuki Y, Makino Y. Mucosal drug delivery using cellulose derivatives as a functional polymer. J Control Release. 1999;62(1):101–107.
  • De Fraissinette A, Kolopp M, Schiller I, et al. In vitro tolerability of human nasal mucosa: histopathological and scanning electron-microscopic evaluation of nasal forms containing Sandostatin®. Cell Biol Toxicol. 1995;11(5):295–301.
  • Shahiwala A, Misra A. Nasal delivery of levonorgestrel for contraception: an experimental study in rats. Fertil Steril. 2004;81:893–898.
  • Borchard G, Lueβen HL, de Boer AG, et al. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Release. 1996;39(2):131–138.
  • Sakr FM. Nasal administration of glucagon combined with dimethyl-β-cyclodextrin: comparison of pharmacokinetics and pharmacodynamics of spray and powder formulations. Int J Pharm. 1996;132(1):189–194.
  • Mrsny RJ, Daugherty A. Proteins and peptides: pharmacokinetic, pharmacodynamic, and metabolic outcomes. Boca Raton: CRC Press; 2009.
  • Oh D-M, Sinko PJ, Amidon GL. Predicting oral drug absorption in human. In: David Z. D Argenio, editor, A macroscopic mass balance approach for passive and carrier-mediated compounds. Advanced methods of pharmacokinetic and pharmacodynamic systems analysis. New York City: Springer; 1991. p. 3–11.
  • Proctor DF, Andersen IHP. The nose, upper airway physiology and the atmospheric environment. Amsterdam, New York City: Elsevier Biomedical Press; 1982.
  • GenScript. Salmon calcitonin. [cited 2017 Mar 2]. Available from: http://www.genscript.com/peptide/RP11099-Calcitonin_salmon.html
  • Vickery B, Benjamin E, Fu CC, et al. Intranasal administration of polypeptides in powdered form. Google Patents; 2005.
  • Sanofi-aventis Canada. Superfact Buserelin acetate: Sanofi-Aventis Canada, Inc.. 2015. [cited 2017 Mar 2]. Available from: http://products.sanofi.ca/en/suprefact.pdf
  • United States pharmacopeia. USP36 NF31, 2013: U. S. Pharmacopoeia National Formulary. Desmopressin acetate. Rockville: United States pharmacopeia. 2012. p. 2185.
  • Jacques S. Process for preparation of fusafungine. Google Patents; 1968.
  • Information NCfB. PubChem Compound Database; CID=439302. [cited 2017 Mar 2]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/oxytocin#section=Top
  • Lilly USA. Glucagon for injection. 1999. [ cited 2017 Mar 2]. Available from: http://pi.lilly.com/us/rglucagon-pi.pdf
  • Innovagen. NAP. [cited 2017 Mar 2].  Available from: http://shop.innovagen.com/peptide.php?NAP&code=SP-5337
  • Fischel-Ghodsian F, Brown L, Mathiowitz E, et al. Enzymatically controlled drug delivery. Proc Natl Acad Sci. 1988;85(7):2403–2406.
  • Pujara CP, Shao Z, Duncan MR, et al. Effects of formulation variables on nasal epithelial cell integrity: biochemical evaluations. Int J Pharm. 1995;114(2):197–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.