2,807
Views
82
CrossRef citations to date
0
Altmetric
Review

Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges

, , , &
Pages 905-913 | Received 14 May 2018, Accepted 24 Aug 2018, Published online: 12 Sep 2018

References

  • U.S. Department of Health and Human Services, National Institutes of Health. The National Center for Advancing Translational Sciences (NCATS). [cited 2018 Apr 22nd]. Available from: https://ncats.nih.gov/files/NCATS-factsheet
  • Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15:321–334.
  • Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405.
  • Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR–cas9 nucleases. Nat Rev Genet. 2016;17:300–305.
  • Sternberg SH, Doudna JA. Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell. 2015;58:568–574.
  • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–355.
  • Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.
  • Garneau JE, Dupuis ME, Moineau S, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468:67–71.
  • Qi LS, Larson MH, Lim WA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–1183.
  • Doench JG, Hartenian E, Root DE, et al. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol. 2014;32:1262–1267.
  • Mout R, Ray M, Rotello VM, et al. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug Chem. 2017;28:880–884.
  • Ran FA, Hsu PD, Zhang F, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–1389.
  • Zhang JP, Li XL, Xu J, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 2017;18:35–45.
  • Chu VT, Weber T, Kühn R, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. 2016;33:543–545.
  • Gratz SJ, Ukken FP, O’Connor-Giles KM, et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in drosophila. Genetics. 2014;196:961–971.
  • Niu Y, Shen B, Sha J, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156:836–843.
  • Chiou SH, Winters IP, Winslow MM, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes & Dev. 2015;29:1576–1585.
  • Belting M, Sandgren S, Wittrup A, et al. Nuclear delivery of macromolecules: barriers and carriers. Adv Drug Deliv Rev. 2005;57:505–527.
  • Hilton IB, D’Ippolito AM, Gersbach CA, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33:510–517.
  • Shalem O, Sanjana NE, Zhang F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–87.
  • Zhou X, Xin J, Lai L, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci. 2015;72:1175–1184.
  • Dever DP, Bak RO, Porteus MH, et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 2016;539:384–389.
  • Chen S, Lee B, He L, et al. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem. 2016;291:14457–14467.
  • Maeder ML, Linder SJ, Joung JK, et al. CRISPR RNA–guided activation of endogenous human genes. Nat Methods. 2013;10:977–979.
  • Stewart MP, Langer R, Jensen KF, et al. In vitro and ex vivo strategies for intracellular delivery. Nature. 2016;538:183–192.
  • Hung SSC, Chrysostomou V, Hewitt AW, et al. AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo. Invest Ophthalmol Vis Sci. 2016;57:3470–3476.
  • Knight SC, Xie L, Deng W, et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science. 2015;350:823–826.
  • Mandal PK, Ferreira LMR, Cowan CA, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. 2014;15:643–652.
  • Yang Y, Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34:334–338.
  • Cheng R, Peng J, Yan Y, et al. Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Let. 2014;21:3954–3958.
  • Schmidt F, Grimm D. CRISPR genome engineering and viral gene delivery: a case of mutual attraction. Biotechnol J. 2015;10:258–272.
  • Lee CS, Bishop ES, He TC, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes & Dis. 2017;4:43–63.
  • Kozarsky KF, Wilson JM. Gene therapy: adenovirus vectors. Curr Opin Genet Dev. 1993;3:499–503.
  • Jager L, Ehrhardt A. Persistence of high-capacity adenoviral vectors as replication-defective monomeric genomes in vitro and in murine liver. Hum Gene Ther. 2009;20:883–896.
  • Wang AY, Peng PD, Kay MA, et al. Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo. Hum Gene Ther. 2004;15:405−413.
  • Wang D, Haiwei M, Wen X, et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther. 2015;26:432–442.
  • Ehrke-Schulz E, Schiwon M, Ehrhardt A, et al. CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes. Sci Rep. 2017;7:17113.
  • Popescu NC, Zimonjic D, DiPaolo JA. Viral integration, fragile sites, and proto-oncogenes in human neoplasia. Hum Genet. 1990;84:383–386.
  • Sarkis C, Philippe S, Serguera C, et al. Non-integrating lentiviral vectors. Curr Gene Therap. 2008;8:430–437.
  • Kaminski R, Chen Y, Khalili K, et al. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep. 2016;6:22555–22557.
  • Breckpot K, Escors D, Collins M, et al. HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7. J Virol. 2010;84:5627–5636.
  • Aubrey BJ, Kelly GL, Kueh AJ, et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 2015;10:1422–1432.
  • Kim HK, Song M, Lee J, et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Meth. 2017;14:153–159.
  • Yin H, Xue W, Chen S, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014;32:551–562.
  • Blasco RB, Karaca E, Chiarle R, et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 2014;9:1219–1227.
  • Kotin RM, Siniscalco M, Berns KI, et al. Site-specific integration by adeno-associated virus. PNAS. 1990;87:2211–2215.
  • Nelson CE, Gersbach CA. Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng. 2016;7:637− 662.
  • Ran FA, Cong L, Makarova KS, et al. In vivo genome editing using staphylococcus aureus Cas9. Nature. 2015;520:186−191.
  • Li L, He ZY, Wei YQ, et al. Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum. Gene Ther. 2015;26:452–462.
  • Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nature Meth. 2013;10:957–963.
  • Rehman Z, Hoekstra D, Zuhorn IS. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ACS Nano. 2013;7:3767–3777.
  • Platt R, Anderson DG, Zhang F, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–455.
  • Xue W, Chen S, Tammela T, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514:380–384.
  • Li L, Song L, Wei Y, et al. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano. 2016;11:95–111.
  • Liu L, Jingyun Y, Yuquan W, et al. The current status of non-viral vectors for gene therapy in china. Hum Gene Ther. 2018;29:110–120.
  • Luo YL, Xu CF, Wang J, et al. Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano. 2018;12:994–1005.
  • Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, et al. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun. 2015;6:1–9.
  • Nelles DA, Fang MY, Yeo GW, et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell. 2016;165:488–496.
  • Zetsche B, Volz SE, Zhang F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. 2015;33:139–142.
  • Yin H, Song CS, Anderson DG, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34:328–333.
  • Yin H, Langer R, Anderson DG, et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol. 2017;35:1179–1187.
  • Finn JD, Smith AR, Morrissey DV. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Reports. 2018;22:2227–2235.
  • Miller JB, Zhang S, Siegwart DJ, et al. Non‐viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co‐delivery of Cas9 mRNA and sgRNA. Ange Chem Int Ed. 2017;56:1059–1063.
  • Zuris JA, Thompson DB, Liu DR, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33:73–80.
  • Sun W, Ji W, Hall JM, et al. Efficient delivery of CRISPR-Cas9 for genome editing via self- assembled DNA nanoclews. Angew Chem Int Ed Engl. 2015;41:12029–12033.
  • Mout R, Ray M, Yesilbag Tonga G, et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano. 2017;11:2452–2458.
  • Lee K, Conboy M, Murthy N, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1:889–901.
  • Poggioli G, Laureti S, Campieri M, et al. Local injection of Infliximab for the treatment of perianal Crohn’s disease. Dis Colon Rectum. 2005;48:768–774.
  • Lee B, Lee K, Panda S, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviors. Nat Biomed Eng. 2018;2:497–507.
  • Varkouhi AK, Scholte M, Haisma HJ, et al. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151:220–228.
  • Erazo-Olivieras A, Muthukrishnan N, Baker R, et al. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals. 2012;5:1177–1209.
  • Paix A, Folkmann A, Seydoux G, et al. High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics. 2015;201:47–54.
  • Kelley ML, Strezoska Z, van Brabant Smith A, et al. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. J Biotechnol. 2016;233:74–83.
  • Hendel A, Bak RO, Porteus MH, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. 2015;9:985–989.
  • Scaletti F, Hardie J, Lee YW, et al. Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem Soc Rev. 2018;10:3421–3432.
  • Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59:748–758.
  • Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–2308.
  • Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther. 2010;17:295–302.
  • Shen B, Zhang W, Skarnes WC, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014;11:399–402.
  • Cradick TJ, Fine EJ, Bao G, et al. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013;41:9584–9592.
  • Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnol. 2014;32:577–585.
  • Ghosh P, Han G, Rotello VM, et al. Gold nanoparticles in delivery applications. Adv Drug Del Rev. 2008;60:1307–1315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.