941
Views
49
CrossRef citations to date
0
Altmetric
Review

Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives

, , &
Pages 881-892 | Received 13 Jun 2018, Accepted 24 Aug 2018, Published online: 07 Sep 2018

References

  • Parodi A, Molinaro R, Sushnitha M, et al. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials. 2017 Dec;147:155–168. PubMed PMID: 28946131.
  • Lindenbach BD, Rice CM. The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol. 2013 Oct;11(10):688–700. PubMed PMID: 24018384; PubMed Central PMCID: PMCPMC3897199.
  • Messaoudi I, Amarasinghe GK, Basler CF. Filovirus pathogenesis and immune evasion: insights from ebola virus and marburg virus. Nat Rev Microbiol. 2015 Nov;13(11):663–676. PubMed PMID: 26439085; PubMed Central PMCID: PMCPMC5201123.
  • Rossman JS, Leser GP, Lamb RA. Filamentous influenza virus enters cells via macropinocytosis. J Virol. 2012 Oct;86(20):10950–10960. PubMed PMID: 22875971; PubMed Central PMCID: PMCPMC3457176.
  • Sycuro LK, Pincus Z, Gutierrez KD, et al. Peptidoglycan crosslinking relaxation promotes helicobacter pylori’s helical shape and stomach colonization. Cell. 2010 May 28;141(5):822–833. PubMed PMID: 20510929; PubMed Central PMCID: PMCPMC2920535.
  • Huang X, Teng X, Chen D, et al. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials. 2010 Jan;31(3):438–448. PubMed PMID: 19800115. .
  • Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009 Jan;26(1):244–249. PubMed PMID: 18548338; PubMed Central PMCID: PMCPMC2810499.
  • Caldorera-Moore M, Guimard N, Shi L, et al. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv. 2010 Apr;7(4):479–495. PubMed PMID: 20331355; PubMed Central PMCID: PMCPMC2845970.
  • Shi X, von dem Bussche A, Hurt RH, et al. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol. 2011 Sep 18;6(11):714–719. PubMed PMID: 21926979; PubMed Central PMCID: PMCPMC3215144.
  • Li Y, Yue T, Yang K, et al. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials. 2012 Jun;33(19):4965–4973. PubMed PMID: 22483010.
  • Li X, Tsibouklis J, Weng T, et al. Nano carriers for drug transport across the blood-brain barrier. J Drug Target. 2017 Jan;25(1):17–28. PubMed PMID: 27126681.
  • Liu X, Wu F, Tian Y, et al. Size dependent cellular uptake of rod-like bionanoparticles with different aspect ratios. Sci Rep. 2016 Apr 15;6:24567. PubMed PMID: 27080246; PubMed Central PMCID: PMCPMC4832221.
  • Jurney P, Agarwal R, Singh V, et al. Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow. J Control Release. 2017 Jan 10;245:170–176. PubMed PMID: 27916535.
  • Hinde E, Thammasiraphop K, Duong HT, et al. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat Nanotechnol. 2017 Jan;12(1):81–89. PubMed PMID: 27618255. .
  • Seidi F, Jenjob R, Crespy D. Designing smart polymer conjugates for controlled release of payloads. Chem Rev. 2018 Mar 13;118:3965–4036.
  • Mittal R, Patel AP, Jhaveri VM, et al. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders. Expert Opin Drug Deliv. 2018 Mar;15(3):301–318. PubMed PMID: 29272976.
  • Hua XW, Bao YW, Wu FG. Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl Mater Interfaces. 2018 Apr 4;10(13):10664–10677. PubMed PMID: 29508612.
  • Cabrera D, Coene A, Leliaert J, et al. Dynamical magnetic response of iron oxide nanoparticles inside live cells. ACS Nano. 2018 Mar 27;12(3):2741–2752. PubMed PMID: 29508990.
  • Ragelle H, Danhier F, Preat V, et al. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Deliv. 2017 Jul;14(7):851–864. PubMed PMID: 27730820.
  • Meng F, Han N, Yeo Y. Organic nanoparticle systems for spatiotemporal control of multimodal chemotherapy. Expert Opin Drug Deliv. 2017 Mar;14(3):427–446. PubMed PMID: 27476442; PubMed Central PMCID: PMCPMC5385259.
  • Li BL, Setyawati MI, Chen L, et al. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl Mater Interfaces. 2017 May 10;9(18):15286–15296. PubMed PMID: 28452468.
  • Mokhtarzadeh A, Alibakhshi A, Hashemi M, et al. Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids. J Control Release. 2017 Jan 10;245:116–126. PubMed PMID: 27884808.
  • Wani A, Savithra GHL, Abyad A, et al. Surface PEGylation of Mesoporous Silica Nanorods (MSNR): effect on loading, release, and delivery of mitoxantrone in hypoxic cancer cells. Sci Rep. 2017 May 23;7(1):2274. PubMed PMID: 28536462; PubMed Central PMCID: PMCPMC5442097.
  • Yamamoto E, Kuroda K. Colloidal mesoporous silica nanoparticles. Bull Chem Soc Jpn. 2016;89(5):501–539.
  • Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015 Feb;11(2):313–327. PubMed PMID: 25461284.
  • Chen X, Cheng X, Soeriyadi AH, et al. Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli. Biomater Sci. 2014;2(1):121–130.
  • Chen X, Soeriyadi AH, Lu X, et al. Dual bioresponsive mesoporous silica nanocarrier as an “AND” logic gate for targeted drug delivery cancer cells. Adv Funct Mater. 2014;24(44):6999–7006.
  • Chen X, Liu Z, Parker SG, et al. Light-induced hydrogel based on tumor-targeting mesoporous silica nanoparticles as a theranostic platform for sustained cancer treatment. ACS Appl Mater Interfaces. 2016 Jun 29;8(25):15857–15863. PubMed PMID: 27265514.
  • Liu Z, Chen X, Zhang X, et al. Carbon-quantum-dots-loaded mesoporous silica nanocarriers with pH-switchable zwitterionic surface and enzyme-responsive pore-cap for targeted imaging and drug delivery to tumor. Adv Healthc Mater. 2016 Jun;5(12):1401–1407. PubMed PMID: 26987989.
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016 Oct;33(10):2373–2387. PubMed PMID: 27299311.
  • Vallet-Regi M, Colilla M, Izquierdo-Barba I, et al. Mesoporous silica nanoparticles for drug delivery: current insights. Molecules. 2017 Dec 25;23(1). PubMed PMID: 29295564.
  • Hao N, Li L, Tang F. Shape matters when engineering mesoporous silica-based nanomedicines. Biomater Sci. 2016 Apr;4(4):575–591. PubMed PMID: 26818852.
  • Hao N, Li L, Tang F. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. Int Mater Rev. 2016;62(2):57–77.
  • Yi Z, Dumee LF, Garvey CJ, et al. A new insight into growth mechanism and kinetics of mesoporous silica nanoparticles by in situ small angle X-ray scattering. Langmuir. 2015 Aug 4;31(30):8478–8487. PubMed PMID: 26158700.
  • Blin JL, Imperor-Clerc M. Mechanism of self-assembly in the synthesis of silica mesoporous materials: in situ studies by X-ray and neutron scattering. Chem Soc Rev. 2013 May 7;42(9):4071–4082. PubMed PMID: 23258529.
  • Alothman Z. A review: fundamental aspects of silicate mesoporous materials. Materials. 2012;5(12):2874–2902.
  • Danks AE, Hall SR, Schnepp Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horizons. 2016;3(2):91–112.
  • Slowing II, Trewyn BG, Giri S, et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater. 2007;17(8):1225–1236.
  • Smith GN, Brown P, Rogers SE, et al. Evidence for a critical micelle concentration of surfactants in hydrocarbon solvents. Langmuir. 2013 Mar 12;29(10):3252–3258. PubMed PMID: 23410112.
  • Slowing II, Vivero-Escoto JL, Trewyn BG, et al. Mesoporous silica nanoparticles: structural design and applications. J Mater Chem. 2010;20:37.
  • Yu T, KG, McGill LD, et al. Influence of geometry, porosity, And surface characteristics Of silica nanoparticles On acute toxicity: their vasculature effect and tolerance threshold. ACS Nano. 2012;3(2):2289–2301.
  • Mamaeva V, Sahlgren C, Linden M. Mesoporous silica nanoparticles in medicine–recent advances. Adv Drug Deliv Rev. 2013 May;65(5):689–702. PubMed PMID: 22921598.
  • Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013 May 07;42(9):3862–3875. PubMed PMID: 23403864.
  • Zhang J, Yuan ZF, Wang Y, et al. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J Am Chem Soc. 2013 Apr 03;135(13):5068–5073. PubMed PMID: 23464924.
  • Bouchoucha M, C.-Audreault R, Fortin M-A, et al. Mesoporous silica nanoparticles: selective surface functionalization for optimal relaxometric and drug loading performances. Adv Funct Mater. 2014;24(37):5911–5923.
  • Ulrich S, Hirsch C, Diener L, et al. Preparation of ellipsoid-shaped supraparticles with modular compositions and investigation of shape-dependent cell-uptake. RSC Adv. 2016;6(92):89028–89039.
  • Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel). 2017 Jul 22;7(7). PubMed PMID: 28737672; PubMed Central PMCID: PMCPMC5535255. DOI: 10.3390/nano7070189.
  • Rahmani S, Durand J-O, Charnay C, et al. Synthesis of mesoporous silica nanoparticles and nanorods: application to doxorubicin delivery. Solid State Sciences. 2017;68:25–31.
  • He Y, Xu H, Ma S, et al. Fabrication of mesoporous spherical silica nanoparticles and effects of synthesis conditions on particle mesostructure. Mater Lett. 2014;131:361–365.
  • Yildirim A, Bayindir M. A porosity difference based selective dissolution strategy to prepare shape-tailored hollow mesoporous silica nanoparticles. J Mater Chem A. 2015;3(7):3839–3846.
  • Yang G, Gong H, Qian X, et al. Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. Nano Res. 2014;8(3):751–764.
  • Li Y, Guo W, Su X, et al. Small size mesoporous organosilica nanorods with different aspect ratios: synthesis and cellular uptake. J Colloid Interface Sci. 2018 Feb 15;512:134–140. PubMed PMID: 29055795.
  • Lintang HO, Jalani MA, Yuliati L, et al. Fabrication of mesoporous silica/alumina hybrid membrane film nanocomposites using template sol-gel synthesis of amphiphilic triphenylene. IOP Conf Series: Mater Sci Eng. 2017;202:012003.
  • Clark Wooten MK, Koganti VR, Zhou S, et al. Synthesis and nanofiltration membrane performance of oriented mesoporous silica thin films on macroporous supports. ACS Appl Mater Interfaces. 2016 Aug 24;8(33):21806–21815. PubMed PMID: 27479791.
  • Ding Y, Fan Y, Zhang Y, et al. Fabrication and optical sensing properties of mesoporous silica nanorod arrays. RSC Adv. 2015;5(110):90659–90666.
  • Ren X, Lun Z. Mesoporous silica nanowires synthesized by electrodeposition in AAO. Mater Lett. 2012;68:228–229.
  • Gong Z, Ji G, Zheng M, et al. Structural characterization of mesoporous silica nanofibers synthesized within porous alumina membranes. Nanoscale Res Lett. 2009 Jul 14;4(11):1257–1262. PubMed PMID: 20628468; PubMed Central PMCID: PMCPMC2894318.
  • Prem Ananth K, Jose SP, Nathanael AJ, et al. A novel modified sol-gel template synthesis of high aspect ratio silica nanotubes in the presence of phosphoric acid. J Nano Res. 2015;35:27–38.
  • Park SB, Joo YH, Kim H, et al. Biodegradation-tunable mesoporous silica nanorods for controlled drug delivery. Mater Sci Eng C Mater Biol Appl. 2015 May;50:64–73. PubMed PMID: 25746247.
  • Baodian Yao DF, Morris MA, Lawrence SE. Structural control of mesoporous silica nanowire arrays in porous alumina membrane. Chem Mater. 2004;16:4851–4855.
  • Lu Q, FG, Komarneni S, et al. Ordered SBA-15 nanorod arrays inside a porous alumina membrane. J Am Chem Soc. 2004;126:8650–8651.
  • Yang X, He D, He X, et al. Synthesis of hollow mesoporous silica nanorods with controllable aspect ratios for intracellular triggered drug release in cancer cells. ACS Appl Mater Interfaces. 2016 Aug 17;8(32):20558–20569. PubMed PMID: 27411575.
  • Geng H, Chen W, Xu ZP, et al. Shape-controlled hollow mesoporous silica nanoparticles with multifunctional capping for in vitro cancer treatment. Chemistry. 2017 Aug 10;23(45):10878–10885. PubMed PMID: 28580592.
  • Zheng N, Li J, Xu C, et al. Mesoporous silica nanorods for improved oral drug absorption. Artif Cells Nanomed Biotechnol. 2017 Aug 08:1–9. PubMed PMID: 28783976. DOI: 10.1080/21691401.2017.1362414
  • Zhao Y, Wang Y, Ran F, et al. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci Rep. 2017 Jun 23;7(1):4131. PubMed PMID: 28646143; PubMed Central PMCID: PMCPMC5482848.
  • Yu T, AM, Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011;5(7):5717–5728.
  • Hao N, Yang H, Li L, et al. The shape effect of mesoporous silica nanoparticles on intracellular reactive oxygen species in A375 cells. New J Chem. 2014;38(9):4258.
  • You Y, He L, Ma B, et al. High-drug-loading mesoporous silica nanorods with reduced toxicity for precise cancer therapy against nasopharyngeal carcinoma. Adv Funct Mater. 2017;27:1703313.
  • Florek J, Caillard R, Kleitz F. Evaluation of mesoporous silica nanoparticles for oral drug delivery - current status and perspective of MSNs drug carriers. Nanoscale. 2017 Oct 19;9(40):15252–15277. PubMed PMID: 28984885. .
  • Doadrio AL, Sanchez-Montero JM, Doadrio JC, et al. Mesoporous silica nanoparticles as a new carrier methodology in the controlled release of the active components in a polypill. Eur J Pharm Sci. 2017 Jan 15;97:1–8. PubMed PMID: 27818251.
  • Lu N, Fan W, Yi X, et al. Biodegradable hollow mesoporous organosilica nanotheranostics for mild hyperthermia-induced bubble-enhanced oxygen-sensitized radiotherapy. ACS Nano. 2018 Feb 5. PubMed PMID: 29384652. DOI:10.1021/acsnano.7b08103.
  • Hu JJ, Xiao D, Zhang XZ. Advances in peptide functionalization on mesoporous silica nanoparticles for controlled drug release. Small. 2016 Jul;12(25):3344–3359. PubMed PMID: 27152737.
  • Yang Y, Jambhrunkar M, Abbaraju PL, et al. Understanding the effect of surface chemistry of mesoporous silica nanorods on their vaccine adjuvant potency. Adv Healthc Mater. 2017 Sep;6(17):1700466. PubMed PMID: 28557331.
  • Wu Y, Tang W, Wang P, et al. Cytotoxicity and cellular uptake of amorphous silica nanoparticles in human cancer cells. Part Part Syst Characterization. 2015;32(7):779–787.
  • Möller K, Bein T. Talented mesoporous silica nanoparticles. Chem Mater. 2017;29(1):371–388.
  • Kwon D, Cha BG, Cho Y, et al. Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Lett. 2017 May 10;17(5):2747–2756. PubMed PMID: 28422506.
  • Croissant J, Cattoen X, Man MW, et al. Biodegradable ethylene-bis(propyl)disulfide-based periodic mesoporous organosilica nanorods and nanospheres for efficient in-vitro drug delivery. Adv Mater. 2014 Sep 17;26(35):6174–6180. PubMed PMID: 25042639.
  • Hu Q, Li H, Wang L, et al. DNA nanotechnology-enabled drug delivery systems. Chem Rev. 2018 Feb 21. PubMed PMID: 29465222. DOI:10.1021/acs.chemrev.7b00663.
  • Zhang P, Cheng F, Zhou R, et al. DNA-hybrid-gated multifunctional mesoporous silica nanocarriers for dual-targeted and microRNA-responsive controlled drug delivery. Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2371–2375. PubMed PMID: 24470397.
  • Zhou Y, Quan G, Wu Q, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharmaceutica Sinica B. 2018;8(2):165–177.
  • Chen L, She X, Wang T, et al. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA. J Nanoparticle Res. 2018;20(2). DOI:10.1007/s11051-017-4115-0
  • Kinnear C, Moore TL, Rodriguez-Lorenzo L, et al. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev. 2017 Sep 13;117(17):11476–11521. PubMed PMID: 28862437.
  • Wang Z, Wu Z, Liu J, et al. Particle morphology: an important factor affecting drug delivery by nanocarriers into solid tumors. Expert Opin Drug Deliv. 2018 Apr;15(4):379–395. PubMed PMID: 29264946.
  • Shao D, Lu MM, Zhao YW, et al. The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution. Acta Biomater. 2017 Feb;49:531–540. PubMed PMID: 27836804.
  • Pelras T, Duong HTT, Kim BJ, et al. A ‘grafting from’ approach to polymer nanorods for pH-triggered intracellular drug delivery. Polymer. 2017;112:244–251.
  • Meng H, SY, Li Z, et al. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano. 2011;5(6):4434–4447.
  • von Roemeling C, Jiang W, Chan CK, et al. Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol. 2017 Feb;35(2):159–171. PubMed PMID: 27492049.
  • Yu M, Wang J, Yang Y, et al. Rotation-facilitated rapid transport of nanorods in mucosal tissues. Nano Lett. 2016 Nov 09;16(11):7176–7182. PubMed PMID: 27700115.
  • Huang X, LL, Liu T, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5(7):5390–5399.
  • Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007 Apr;2(4):249–255. PubMed PMID: 18654271; PubMed Central PMCID: PMCPMC2740330.
  • von Maltzahn G, Park JH, Agrawal A, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009 May 1;69(9):3892–3900. PubMed PMID: 19366797; PubMed Central PMCID: PMCPMC2712876.
  • Bourquin J, Milosevic A, Hauser D, et al. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv Mater. 2018 Feb 1;30:1704307. PubMed PMID: 29389049.
  • Yang G, Sun X, Liu J, et al. Light-responsive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy. Adv Funct Mater. 2016;26(26):4722–4732.
  • Li D, Tang Z, Gao Y, et al. A bio-inspired rod-shaped nanoplatform for strongly infecting tumor cells and enhancing the delivery efficiency of anticancer drugs. Adv Funct Mater. 2016;26(1):66–79.
  • Zhou Z, Ma X, Jin E, et al. Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials. 2013 Jul;34(22):5722–5735. PubMed PMID: 23639529.
  • Akiyama Y, Mori T, Katayama Y, et al. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J Control Release. 2009 Oct 1;139(1):81–84. PubMed PMID: 19538994.
  • Li L, Liu T, Fu C, et al. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine. 2015 Nov;11(8):1915–1924. PubMed PMID: 26238077.
  • Hu KW, Hsu KC, Yeh CS. pH-dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging. Biomaterials. 2010 Sep;31(26):6843–6848. PubMed PMID: 20542331. .
  • Wang Y, Gu H. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv Mater. 2015 Jan 21;27(3):576–585. PubMed PMID: 25238634. .
  • Chen YS, Frey W, Kim S, et al. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011 Feb 09;11(2):348–354. PubMed PMID: 21244082; PubMed Central PMCID: PMCPMC3040682.
  • Peng H, Dong R, Wang S, et al. A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: fabrication, characterization and properties for controlled release of salidroside. Int J Pharm. 2013 Mar 25;446(1–2):153–159. PubMed PMID: 23395877.
  • Obare SO, NRJ, Murphy CJ. Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett. 2001;1(11):601–603.
  • Dujardin E, Blaseby M, Mann S. Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. J Mater Chem. 2003;13(4):696–699.
  • Pang X, Tang F. Morphological control of mesoporous materials using inexpensive silica sources. Micropor Mesopor Mat. 2005;85(1–2):1–6.
  • Altintoprak K, Seidenstucker A, Welle A, et al. Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition. Beilstein J Nanotechnol. 2015;6:1399–1412. PubMed PMID: 26199844; PubMed Central PMCID: PMCPMC4505087.
  • Wilhelm S, AJT, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev. 2016;1(1):1–12.
  • Pan L, Liu J, He Q, et al. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv Mater. 2014 Oct 22;26(39):6742–6748. PubMed PMID: 25159109.
  • Li ZY, Liu Y, Hu JJ, et al. Stepwise-acid-active multifunctional mesoporous silica nanoparticles for tumor-specific nucleus-targeted drug delivery. ACS Appl Mater Interfaces. 2014 Aug 27;6(16):14568–14575. PubMed PMID: 25103086.
  • Sun T, Zhang YS, Pang B, et al. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12320–12364. PubMed PMID: 25294565.
  • Zhang Q, Wang X, Li P-Z, et al. Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Adv Funct Mater. 2014;24(17):2450–2461.
  • Min Y, Caster JM, Eblan MJ, et al. Clinical translation of nanomedicine. Chem Rev. 2015 Oct 14;115(19):11147–11190. PubMed PMID: 26088284; PubMed Central PMCID: PMCPMC4607605.
  • Shi Y, Miller ML, Di Pasqua AJ. Biocompatibility of mesoporous silica nanoparticles? Comments Inorg Chem. 2015;36(2):61–80.
  • Kloust H, Zierold R, Merkl J-P, et al. Synthesis of iron oxide nanorods using a template mediated approach. Chem Mater. 2015;27(14):4914–4917.
  • Si J-C, Xing Y, Peng M-L, et al. Solvothermal synthesis of tunable iron oxide nanorods and their transfer from organic phase to water phase. CrystEngComm. 2014;16(4):512–516.
  • Croissant JG, Fatieiev Y, Almalik A, et al. Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthc Mater. 2018 Feb;7(4). PubMed PMID: 29193848. DOI:10.1002/adhm.201700831.
  • Paris JL, Colilla M, Izquierdo-Barba I, et al. Tuning mesoporous silica dissolution in physiological environments: a review. J Mater Sci. 2017;52(15):8761–8771.
  • Omar H, Croissant JG, Alamoudi K, et al. Biodegradable magnetic silica@iron oxide nanovectors with ultra-large mesopores for high protein loading, magnetothermal release, and delivery. J Control Release. 2017 Aug 10;259:187–194. PubMed PMID: 27913308.
  • Maggini L, Cabrera I, Ruiz-Carretero A, et al. Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale. 2016 Apr 07;8(13):7240–7247. PubMed PMID: 26974603.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.