276
Views
6
CrossRef citations to date
0
Altmetric
Review

Design and in vitro release study of siRNA loaded Layer by Layer nanoparticles with sustained gene silencing effect

ORCID Icon, , , , &
Pages 937-949 | Received 16 Mar 2018, Accepted 28 Aug 2018, Published online: 10 Sep 2018

References

  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811.
  • Leung RKM, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther. 2005;107(2):222–239.
  • Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet. 2015;169:543–552.
  • Zhang Y, Satterlee A, Huang L. In vivo gene delivery by nonviral vectors: overcoming hurdles? Mol Ther. 2012;20(7):1298–1304.
  • Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. PubMed PMID: PMC4756474 Nat Rev Genet. 2015;169:543–552.
  • Chakraborty C, Sharma AR, Sharma G, et al. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017;8:132–143.
  • Kanasty R, Dorkin JR, Vegas A, et al. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967–977.
  • Tan YF, Mundargi RC, Chen MHA, et al. Layer‐by‐layer nanoparticles as an efficient siRNA delivery vehicle for SPARC silencing. Small. 2014;10(9):1790–1798.
  • Jiang B, Barnett JB, Li B. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems. Nanotechnol Sci Appl. 2009;2:21–27.
  • Deng ZJ, Morton SW, Ben-Akiva E, et al. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano. 2013;7(11):9571–9584.
  • Ariga K, Lvov YM, Kawakami K, et al. Layer-by-layer self-assembled shells for drug delivery. Adv Drug Deliv Rev. 2011;63(9):762–771.
  • Takabatake Y, Isaka Y, Mizui M, et al. Chemically modified siRNA prolonged RNA interference in renal disease. Biochem Biophys Res Commun. 2007;363(2):432–437.
  • Lee SK, Tung CH. A fabricated sirna nanoparticle for ultralong gene silencing in vivo. Adv Funct Mater. 2013;23(28):3488–3493.
  • Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31(7):1465–1485.
  • Seet L-F, Finger S, Chu S, et al. Novel insight into the inflammatory and cellular responses following experimental glaucoma surgery: a roadmap for inhibiting fibrosis. Curr Mol Med. 2013;13(6):911–928.
  • Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–5250.
  • Cheng P-C. The contrast formation in optical microscopy. Pawley J. (eds) Handbook of biological confocal microscopy. Springer; 2006. p. 162–206.
  • Helms V. Principles of computational cell biology – from protein complexes to cellular networks. WILEY-VCH Verlag GmbH & Co. John Wiley & Sons; 2008.
  • Zheng J. Spectroscopy-based quantitative fluorescence resonance energy transfer analysis. Ion Channels. Methods Protocols. 2006;337:65–77.
  • Akinc A, Goldberg M, Qin J, et al. Development of lipidoid–siRNA formulations for systemic delivery to the liver. Mol Ther. 2009;17(5):872–879.
  • Uskoković V, Uskoković DP. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res. 2011;96(1):152–191.
  • Mateus AYP, Barrias CC, Ribeiro C, et al. Comparative study of nanohydroxyapatite microspheres for medical applications. J Biomed Mater Res. 2008;86(2):483–493.
  • Ferraz M, Mateus A, Sousa J, et al. Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J Biomed Mater Res. 2007;81(4):994–1004.
  • Xu K, Cantu DA, Fu Y, et al. Thiol-ene michael-type formation of gelatin/poly (ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds. Acta Biomater. 2013;9(11):8802–8814.
  • Opanasopit P, Tragulpakseerojn J, Apirakaramwong A, et al. The development of poly-L-arginine-coated liposomes for gene delivery. Int J Nanomedicine. 2011;6:2245–2252.
  • Nemoto E, Ueda H, Akimoto M, et al. Ability of poly-L-arginine to enhance drug absorption into aqueous humor and vitreous body after instillation in rabbits. Biol Pharm Bull. 2007;30(9):1768–1772.
  • Lozano M, Lollo G, Alonso-Nocelo M, et al. Polyarginine nanocapsules: a new platform for intracellular drug delivery. J Nanoparticle Res. 2013;15(3):1515.
  • Gonçalves E, Kitas E, Seelig J. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Biochemistry. 2005;44(7):2692–2702.
  • Liu BR, Huang Y-W, Winiarz JG, et al. Intracellular delivery of quantum dots mediated by a histidine-and arginine-rich HR9 cell-penetrating peptide through the direct membrane translocation mechanism. Biomaterials. 2011;32(13):3520–3537.
  • Appelbaum JS, LaRochelle JR, Smith BA, et al. Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm. Chem Biol. 2012;19(7):819–830.
  • Hohenester E, Sasaki T, Giudici C, et al. Structural basis of sequence-specific collagen recognition by SPARC. Proc Natl Acad Sci. 2008;105(47):18273–18277.
  • Zhou X, Tan FK, Reveille JD, et al. Association of novel polymorphisms with the expression of SPARC in normal fibroblasts and with susceptibility to scleroderma. Arthritis Rheum. 2002;46(11):2990–2999.
  • Francki A, Bradshaw AD, Bassuk JA, et al. SPARC regulates the expression of collagen type I and transforming growth factor-β1 in mesangial cells. J Biol Chem. 1999;274(45):32145–32152.
  • Pichler RH, Hugo C, Shankland SJ, et al. SPARC is expressed in renal interstitial fibrosis and in renal vascular injury. Kidney Int. 1996;50(6):1978–1989.
  • Kuhn C, Mason RJ. Immunolocalization of SPARC, tenascin, and thrombospondin in pulmonary fibrosis. Am J Pathol. 1995;147(6):1759.
  • Dhore CR, Cleutjens JP, Lutgens E, et al. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2001;21(12):1998–2003.
  • Bradshaw AD, Reed MJ, Sage EH. SPARC-null mice exhibit accelerated cutaneous wound closure. J Histochem Cytochemistry. 2002;50(1):1–10.
  • Reed M, Puolakkainen P, Lane T, et al. Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization. J Histochem Cytochemistry. 1993;41(10):1467–1477.
  • Lane TF, Sage EH. The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J. 1994;8(2):163–173.
  • Zhou X, Tan FK, Guo X, et al. Attenuation of collagen production with small interfering RNA of SPARC in cultured fibroblasts from the skin of patients with scleroderma. Arthritis Rheum. 2006;54(8):2626–2631.
  • Camino AM, Atorrasagasti C, Maccio D, et al. Adenovirus-mediated inhibition of SPARC attenuates liver fibrosis in rats. J Gene Med. 2008;10(9):993–1004.
  • Seet L-F, Su R, Barathi V, et al. SPARC deficiency results in improved surgical survival in a novel mouse model of glaucoma filtration surgery. PLoS One. 2010;5(2):e9415.
  • Phuc L, Taniguchi A. Epidermal growth factor enhances cellular uptake of polystyrene nanoparticles by clathrin-mediated endocytosis. PubMed PMID: Int J Mol Sci. 2017;186:1301.
  • Muñoz Javier A, Kreft O, Piera Alberola A, et al. Combined atomic force microscopy and optical microscopy measurements as a method to investigate particle uptake by cells. Small. 2006;2(3):394–400.
  • Vasir JK, Labhasetwar V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials. 2008;29(31):4244–4252.
  • Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48(3):416–427.
  • Luo R, Neu B, Venkatraman SS. Surface functionalization of nanoparticles to control cell interactions and drug release. Small. 2012;8(16):2585–2594.
  • Nimesh S, Manchanda R, Kumar R, et al. Preparation, characterization and in vitro drug release studies of novel polymeric nanoparticles. Int J Pharm. 2006;323(1):146–152.
  • Khalil IA, Kogure K, Akita H, et al. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58(1):32–45.
  • Benfer M, Kissel T. Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles. Eur J Pharm Biopharm. 2012;80(2):247–256.
  • Huang HW, Chen F-Y, Lee M-T. Molecular mechanism of peptide-induced pores in membranes. Phys Rev Lett. 2004;92(19):198304.
  • Herce HD, Garcia AE, Litt J, et al. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophys J. 2009;97(7):1917–1925.
  • Morton SW, Herlihy KP, Shopsowitz KE, et al. scalable manufacture of built‐to‐order nanomedicine: spray‐assisted layer‐by‐layer functionalization of PRINT nanoparticles. Adv Mater. 2013;25(34):4707–4713.
  • Richardson JJ, Ejima H, Lörcher SL, et al. Preparation of nano‐and microcapsules by electrophoretic polymer assembly. Angew Chem Int Ed. 2013;52(25):6455–6458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.