323
Views
0
CrossRef citations to date
0
Altmetric
Review

An evolving perspective on novel modified release drug delivery systems for inhalational therapy

, ORCID Icon, , , &
Pages 335-348 | Received 15 Aug 2022, Accepted 30 Jan 2023, Published online: 16 Feb 2023

References

  • Rau JL. The inhalation of drugs: advantages and problems. Respir Care. 2005 Mar;50(3):367–382.
  • Chandel A, Goyal AK, Ghosh G, et al. Recent advances in aerosolised drug delivery. Biomed Pharmacother. 2019;112:108601.
  • Halamoda-Kenzaoui B, Holzwarth U, Roebben G, et al. Mapping of the available standards against the regulatory needs for nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Jan;11(1):e1531.
  • Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012 Jun;14(2):282–295.
  • Gbian, Douweh Leyla, and Abdelwahab Omri. Lipid-Based Drug Delivery Systems for Diseases Managements. Biomedicines. 10.9 (2022) 2137.
  • Longest PW, Bass K, Dutta R, et al. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. Expert Opin Drug Deliv. 2019 Jan;16(1):7–26.
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009 Jan 27;3(1):16–20.
  • Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine. 2010 Feb;6(1):9–24.
  • Ghumman M, Dhamecha D, Gonsalves A, et al. Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm. 2021;164:1–12.
  • Morais RP, Novais GB, Sangenito LS, et al. Naringenin-functionalized multi-walled carbon nanotubes: a potential approach for site-specific remote-controlled anticancer delivery for the treatment of lung cancer cells. Int J Mol Sci. 2020;21(12):4557.
  • Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R. and Rudzinski, W.E., 2001 Biodegradable polymeric nanoparticles as drug delivery devices. Journal of controlled release, 70(1-2), pp.1-20.
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003 Feb 24;55(3):329–347.
  • Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine. 2005 Sep;1(3):193–212.
  • Islam N, Dmour I, Taha MO. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon. 2019. 5. May(5):e01684.
  • Bai S, Gupta V, Ahsan F. Inhalable lactose-based dry powder formulations of low molecular weight heparin. J Aerosol Med Pulm Drug Deliv. 2010 Apr;23(2):97–104.
  • Shetty N, Cipolla D, Park H, et al. Physical stability of dry powder inhaler formulations. Expert Opin Drug Deliv. 2020 Jan;17(1):77–96.
  • Khairnar SV, Jain DD, Tambe SM, et al. Nebulizer systems: a new frontier for therapeutics and targeted delivery. Ther Deliv. 2022 Jan;13(1):31–49.
  • Adorni G, Seifert G, Buttini F, et al. Aerosolization performance of jet nebulizers and biopharmaceutical aspects. Pharmaceutics. 2019 Aug 11;11(8):406.
  • Zhong Q, Humia BV, Punjabi AR, et al. The interaction of dendrimer-doxorubicin conjugates with a model pulmonary epithelium and their cosolvent-free, pseudo-solution formulations in pressurized metered-dose inhalers. Eur J Pharm Sci. 2017 Nov;15(109):86–95.
  • Ahookhosh K, Saidi M, Mohammadpourfard M, et al. Flow structure and particle deposition analyses for optimization of a Pressurized Metered Dose Inhaler (pMDI) in a model of tracheobronchial airway. Eur J Pharm Sci. 2021 Sep;1(164):105911.
  • Vallorz E, Sheth P, Myrdal P. Pressurized metered dose inhaler technology: manufacturing. AAPS PharmSciTech. 2019 Apr 29;20(5):177.
  • Liu Q, Guan J, Qin L, et al. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today. 2020 Jan;25(1):150–159.
  • Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005 Sep;50(9):1209–1227.
  • Pritchard JN. The influence of lung deposition on clinical response. J Aerosol Med. 2001;14(Suppl 1):S19–26.
  • Darquenne C, Prisk GK. Aerosol deposition in the human respiratory tract breathing air and 80:20 heliox. J Aerosol Med. 2004;17(3):278–285.
  • Khajeh-Hosseini-Dalasm N, Longest PW. Deposition of particles in the alveolar airways: inhalation and breath-hold with pharmaceutical aerosols. J Aerosol Sci. 2015. 1. Jan(79):15–30.
  • Grainger CI, Greenwell LL, Martin GP, et al. The permeability of large molecular weight solutes following particle delivery to air-interfaced cells that model the respiratory mucosa. Eur J Pharm Biopharm. 2009 Feb;71(2):318–324.
  • Groneberg DA, Witt C, Wagner U, et al. Fundamentals of pulmonary drug delivery. Respir Med. 2003 Apr;97(4):382–387.
  • Antunes MB, Cohen NA. Mucociliary clearance–a critical upper airway host defense mechanism and methods of assessment. Curr Opin Allergy Clin Immunol. 2007 Feb;7(1):5–10.
  • Henning A, Schneider M, Nafee N, et al. Influence of particle size and material properties on mucociliary clearance from the airways. J Aerosol Med Pulm Drug Deliv. 2010 Aug;23(4):233–241.
  • Semmler-Behnke M, Takenaka S, Fertsch S, et al. Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect. 2007 May;115(5):728–733.
  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Nat Acad Sci. 2006;103(13):4930–4934.
  • Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm. 2015 Jan;89:163–174.
  • Ahsan F, Rivas IP, Khan MA, et al. Targeting to macrophages: role of physicochemical properties of particulate carriers–liposomes and microspheres–on the phagocytosis by macrophages. J Control Release. 2002 Feb 19;79(1–3):29–40.
  • Radivojev S, Luschin-Ebengreuth G, Pinto JT, et al. Impact of simulated lung fluid components on the solubility of inhaled drugs and predicted in vivo performance. Int J Pharm. 2021 Sep;5(606):120893.
  • Radivojev S, Zellnitz S, Paudel A, et al. Searching for physiologically relevant in vitro dissolution techniques for orally inhaled drugs. Int J Pharm. 2019 Feb;10(556):45–56.
  • Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007 Jan;6(1):67–74.
  • Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1(4):338–344.
  • Szczuka A, Wennerberg M, Packeu A, et al. Molecular mechanisms for the persistent bronchodilatory effect of the beta 2-adrenoceptor agonist salmeterol. Br J Pharmacol. 2009 Sep;158(1):183–194.
  • Fuso L, Mores N, Valente S, et al. Long-acting beta-agonists and their association with inhaled corticosteroids in COPD. Curr Med Chem. 2013;20(12):1477–1495.
  • Derendorf H, Nave R, Drollmann A, et al. Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma. Eur Respir J. 2006 Nov;28(5):1042–1050.
  • Marasini N, Haque S, Kaminskas LM. Polymer-drug conjugates as inhalable drug delivery systems: a review. Curr Opin Colloid Interface Sci. 2017;31:18–29.
  • Pang X, Yang X, Zhai G. Polymer-drug conjugates: recent progress on administration routes. Expert Opin Drug Deliv. 2014 Jul;11(7):1075–1086.
  • Schuster BS, Suk JS, Woodworth GF, et al. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials. 2013 Apr;34(13):3439–3446.
  • Bayard FJ, Thielemans W, Pritchard DI, et al. Polyethylene glycol-drug ester conjugates for prolonged retention of small inhaled drugs in the lung. J Control Release. 2013 Oct 28;171(2):234–240.
  • Kaminskas LM, McLeod VM, Porter CJ, et al. Association of chemotherapeutic drugs with dendrimer nanocarriers: an assessment of the merits of covalent conjugation compared to noncovalent encapsulation. Mol Pharm. 2012 Mar 5;9(3):355–373.
  • Ma Y, Mou Q, Wang D, et al. Dendritic Polymers for Theranostics. Theranostics. 2016;6(7):930–947.
  • Li H, Sun J, Zhu H, et al. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Mar;13(2):e1670.
  • Kaminskas LM, McLeod VM, Ryan GM, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release. 2014 Jun;10(183):18–26.
  • Hu R, Zheng H, Cao J, et al. Synthesis and In Vitro Characterization of Carboxymethyl Chitosan-CBA-Doxorubicin Conjugate Nanoparticles as pH-Sensitive Drug Delivery Systems. J Biomed Nanotechnol. 2017 Dec 1;13(9):1097–1105.
  • Kumar R, Singh M, Meena J, et al. Hyaluronic acid - dihydroartemisinin conjugate: synthesis, characterization and in vitro evaluation in lung cancer cells. Int J Biol Macromol. 2019 Jul;15(133):495–502.
  • Xie Y, Aillon KL, Cai S, et al. Pulmonary delivery of cisplatin-hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer. Int J Pharm. 2010 Jun 15;392(1–2):156–163.
  • Heinemann L, Baughman R, Boss A, et al. Pharmacokinetic and pharmacodynamic properties of a novel inhaled insulin. J Diabetes Sci Technol. 2017;11(1):148–156.
  • Patel AB, Jimenez-Shahed J. Profile of inhaled levodopa and its potential in the treatment of Parkinson’s disease: evidence to date. Neuropsychiatr Dis Treat. 2018;14:2955–2964.
  • Hastedt J, Bäckman P, Clark A, et al. Scope and relevance of a pulmonary biopharmaceutical classification system AAPS/FDA/USP Workshop March 16-17th, 2015 in Baltimore, MD. AAPS Open. 2016;2:1–20.
  • McShane PJ, Weers JG, Tarara TE, et al. Ciprofloxacin Dry Powder for Inhalation (ciprofloxacin DPI): technical design and features of an efficient drug-device combination. Pulm Pharmacol Ther. 2018;50:72–79.
  • La Zara D, Sun F, Zhang F, et al. Controlled pulmonary delivery of carrier-free budesonide dry powder by atomic layer deposition. ACS Nano. 2021 Apr 27;15(4):6684–6698.
  • Moinuddin SM, Shi Q, Tao J, et al. Enhanced physical stability and synchronized release of febuxostat and indomethacin in coamorphous solids. AAPS PharmSciTech. 2020 Jan 2;21(2):41.
  • Wu T, Yu L. Surface crystallization of indomethacin below Tg. Pharm Res. 2006 Oct;23(10):2350–2355.
  • Edwards DA, Hanes J, Caponetti G, et al. Large porous particles for pulmonary drug delivery. Science. 1997 Jun 20;276(5320):1868–1871.
  • Cook RO, Pannu RK, Kellaway IW. Novel sustained release microspheres for pulmonary drug delivery. J Control Release. 2005 May 5;104(1):79–90.
  • Bhat M, Hickey AJ. Effect of chloroquine on phagolysosomal fusion in cultured Guinea pig alveolar macrophages: implications in drug delivery. AAPS PharmSci. 2000;2(4):E34.
  • Upadhyay D, Scalia S, Vogel R, et al. Magnetised thermo responsive lipid vehicles for targeted and controlled lung drug delivery. Pharm Res. 2012 Sep;29(9):2456–2467.
  • Dalla-Bona AC, Stoisiek K, Oesterheld N, et al. Characterization of lung-delivered in-situ forming controlled release formulations. J Pharm Pharmacol. 2015 Oct;67(10):1349–1354.
  • Evrard B, Bertholet P, Gueders M, et al. Cyclodextrins as a potential carrier in drug nebulization. J Control Release. 2004 May 18;96(3):403–410.
  • Dufour G, Bigazzi W, Wong N, et al. Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide. Int J Pharm. 2015 Nov 30;495(2):869–878.
  • Gupta V, Davis M, Hope-Weeks LJ, et al. PLGA microparticles encapsulating prostaglandin E1-hydroxypropyl-beta-cyclodextrin (PGE1-HPbetaCD) complex for the treatment of pulmonary arterial hypertension (PAH). Pharm Res. 2011 Jul;28(7):1733–1749.
  • Rashid J, Alobaida A, Al-Hilal TA, et al. Repurposing rosiglitazone, a PPAR-γ agonist and oral antidiabetic, as an inhaled formulation, for the treatment of PAH. J Control Release. 2018 Jun;28(280):113–123.
  • Vanbever R, Ben‐Jebria A, Mintzes JD, et al. Sustained release of insulin from insoluble inhaled particles. Drug Dev Res. 1999;48(4):178–185.
  • Chaurasiya B, Huang L, Du Y, et al. Size-based anti-tumoral effect of paclitaxel loaded albumin microparticle dry powders for inhalation to treat metastatic lung cancer in a mouse model. Int J Pharm. 2018 May 5;542(1–2):90–99.
  • Liang Z, Ni R, Zhou J, et al. Recent advances in controlled pulmonary drug delivery. Drug Discov Today. 2015 Mar;20(3):380–389.
  • Ziaei E, Emami J, Rezazadeh M, et al. Pulmonary delivery of docetaxel and celecoxib by PLGA porous microparticles for their synergistic effects against lung cancer. Anticancer Agents Med Chem. 2022;22(5):951–967.
  • Moghaddam PH, Ramezani V, Esfandi E, et al. Development of a nano–micro carrier system for sustained pulmonary delivery of clarithromycin. Powder Technol. 2013;239:478–483.
  • Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014 Aug;75:81–91.
  • Lee J, Lee C, Kim TH, et al. Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system. J Control Release. 2012 Aug 10;161(3):728–734.
  • Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb). 2005 Jul;85(4):227–234.
  • Nahar K, Absar S, Patel B, et al. Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature. Int J Pharm. 2014 Apr 10;464(1–2):185–195.
  • Hitzman CJ, Elmquist WF, Wattenberg LW, et al. Development of a respirable, sustained release microcarrier for 5-fluorouracil I: in vitro assessment of liposomes, microspheres, and lipid coated nanoparticles. J Pharm Sci. 2006 May;95(5):1114–1126.
  • Finlay W, Wong J. Regional lung deposition of nebulized liposome-encapsulated ciprofloxacin. Int J Pharm. 1998;167(1–2):121–127.
  • Chimote G, Banerjee R. In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis. J Biomed Mater Res B Appl Biomater. 2010 Jul;94(1):1–10.
  • Murata M, Nakano K, Tahara K, et al. Pulmonary delivery of elcatonin using surface-modified liposomes to improve systemic absorption: polyvinyl alcohol with a hydrophobic anchor and chitosan oligosaccharide as effective surface modifiers. Eur J Pharm Biopharm. 2012 Feb;80(2):340–346.
  • Neurohr C, Kneidinger N, Ghiani A, et al. A randomized controlled trial of liposomal cyclosporine A for inhalation in the prevention of bronchiolitis obliterans syndrome following lung transplantation. Am J Transplant. 2022 Jan;22(1):222–229.
  • Iacono A, Wijesinha M, Rajagopal K, et al. A randomised single-centre trial of inhaled liposomal cyclosporine for bronchiolitis obliterans syndrome post-lung transplantation. ERJ Open Res 2019; 5 00167–2019. https://doi.org/10.1183/23120541.00167-2019.
  • Hajos F, Stark B, Hensler S, et al. Inhalable liposomal formulation for vasoactive intestinal peptide. Int J Pharm. 2008 Jun 5;357(1–2):286–294.
  • Liu FY, Shao Z, Kildsig DO, et al. Pulmonary delivery of free and liposomal insulin. Pharm Res. 1993 Feb;10(2):228–232.
  • Huang WH, Yang ZJ, Wu H, et al. Development of liposomal salbutamol sulfate dry powder inhaler formulation. Biol Pharm Bull. 2010;33(3):512–517.
  • Chen X, Huang W, Wong BC, et al. Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int J Nanomedicine. 2012;7:1139–1148.
  • Garbuzenko OB, Saad M, Betigeri S, et al. Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm Res. 2009 Feb;26(2):382–394.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013 Jan;65(1):36–48.
  • Qhattal HS, Hye T, Alali A, et al. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes. ACS Nano. 2014;8(6):5423–5440.
  • Rashid J, Nahar K, Raut S, et al. Fasudil and DETA NONOate, loaded in a peptide-modified liposomal carrier, slow PAH progression upon pulmonary delivery. Mol Pharm. 2018 May 7;15(5):1755–1765.
  • Mezzena M, Scalia S, Young PM, et al. Solid lipid budesonide microparticles for controlled release inhalation therapy. Aaps j. 2009 Dec;11(4):771–778.
  • Scalia S, Haghi M, Losi V, et al. Quercetin solid lipid microparticles: a flavonoid for inhalation lung delivery. Eur J Pharm Sci. 2013 May 13;49(2):278–285.
  • Daman Z, Gilani K, Rouholamini Najafabadi A, et al. Formulation of inhalable lipid-based salbutamol sulfate microparticles by spray drying technique. Daru. 2014 Jun 11;22(1):50.
  • Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018 Dec;133:285–308.
  • Akbari J, Saeedi M, Ahmadi F, et al. Solid lipid nanoparticles and nanostructured lipid carriers: a review of the methods of manufacture and routes of administration. Pharm Dev Technol. 2022 Jun;27(5):525–544.
  • Pandey, Abhishek. “Solid lipid nanoparticles: a multidimensional drug Delivery System”. Nanoscience in Medicine; 2020. p. 249–295.
  • Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018 Jul;103:598–613.
  • Naseri N, Valizadeh H, Solid Lipid Z-MP. Nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015 Sep;5(3):305–313.
  • Sakellari GI, Zafeiri I, Batchelor H, et al. Formulation design, production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active. Food Hydrocoll Health. 2021;1:100024.
  • Patil TS, Deshpande AS. Nanostructured lipid carrier-mediated lung targeted drug delivery system to enhance the safety and bioavailability of clofazimine. Drug Dev Ind Pharm. 2021 Mar;47(3):385–393.
  • Xu C, Wang Y, Guo Z, et al. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. J Control Release. 2019 Feb;295(295):153–163.
  • Liu Q, Guan J, Song R, et al. Physicochemical properties of nanoparticles affecting their fate and the physiological function of pulmonary surfactants. Acta Biomater. 2022 Mar;1(140):76–87.
  • Khan I, Hussein S, Houacine C, et al. Fabrication, characterization and optimization of nanostructured lipid carrier formulations using Beclomethasone dipropionate for pulmonary drug delivery via medical nebulizers. Int J Pharm. 2021 Apr;1(598):120376.
  • Garbuzenko OB, Kbah N, Kuzmov A, et al. Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. J Control Release. 2019 Feb;28(296):225–231.
  • Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–391.
  • MacIntyre AC, Cutler DJ. The potential role of lysosomes in tissue distribution of weak bases. Biopharm Drug Dispos. 1988 Nov-Dec;9(6):513–526.
  • Tseng CL, Su WY, Yen KC, et al. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials. 2009 Jul;30(20):3476–3485.
  • Kim I, Byeon HJ, Kim TH, et al. Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials. 2013 Sep;34(27):6444–6453.
  • Taratula O, Garbuzenko OB, Chen AM, et al. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target. 2011 Dec;19(10):900–914.
  • Garbuzenko OB, Kuzmov A, Taratula O, et al. Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy. Theranostics. 2019;9(26):8362–8376.
  • Maillet A, Guilleminault L, Lemarié E, et al. The airways, a novel route for delivering monoclonal antibodies to treat lung tumors. Pharm Res. 2011 Sep;28(9):2147–2156.
  • Hervé V, Rabbe N, Guilleminault L, et al. VEGF neutralizing aerosol therapy in primary pulmonary adenocarcinoma with K-ras activating-mutations. MAbs. 2014;6(6):1638–1648.
  • Koussoroplis SJ, Paulissen G, Tyteca D, et al. PEGylation of antibody fragments greatly increases their local residence time following delivery to the respiratory tract. J Control Release. 2014 Aug;10(187):91–100.
  • Detalle L, Stohr T, Palomo C, et al. Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection. Antimicrob Agents Chemother. 2016 Jan;60(1):6–13.
  • Van Heeke G, Allosery K, De Brabandere V, et al. Nanobodies®††Nanobody is a registered trademark of Ablynx NV as inhaled biotherapeutics for lung diseases. Pharmacol Therapeut. 2017;169:47–56.
  • Alpar HO, Somavarapu S, Atuah KN, et al. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv Drug Deliv Rev. 2005 Jan 10;57(3):411–430.
  • Aguilera Garrido A, Molina-Bolívar J, Gálvez-Ruiz M, et al. Mucoadhesive properties of liquid lipid nanocapsules enhanced by hyaluronic acid. J Mol Liq. 2019;296:111965.
  • Li Y, Han M, Liu T, et al. Inhaled hyaluronic acid microparticles extended pulmonary retention and suppressed systemic exposure of a short-acting bronchodilator. Carbohydr Polym. 2017 Sep;15(172):197–204.
  • Rasul RM, Tamilarasi Muniandy M, Zakaria Z, et al. A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydr Polym. 2020 Dec;15(250):116800.
  • Paul P, Sengupta S, Mukherjee B, et al. Chitosan-coated nanoparticles enhanced lung pharmacokinetic profile of voriconazole upon pulmonary delivery in mice. Nanomedicine (Lond). 2018 Mar 1;13(5):501–520.
  • Popov A, Schopf L, Bourassa J, et al. Enhanced pulmonary delivery of fluticasone propionate in rodents by mucus-penetrating nanoparticles. Int J Pharm. 2016 Apr 11;502(1–2):188–197.
  • Chatterjee S, Hui PC, Kan CW, et al. Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy. Sci Rep. 2019 Aug 12;9(1):11658.
  • Dong W, Ye J, Zhou J, et al. Comparative study of mucoadhesive and mucus-penetrative nanoparticles based on phospholipid complex to overcome the mucus barrier for inhaled delivery of baicalein. Acta Pharm Sin B. 2020;10(8):1576–1585.
  • Kim I, Byeon HJ, Kim TH, et al. Doxorubicin-loaded highly porous large PLGA microparticles as a sustained- release inhalation system for the treatment of metastatic lung cancer. Biomaterials. 2012 Aug;33(22):5574–5583.
  • El-Sherbiny IM, McGill S, Smyth HD. Swellable microparticles as carriers for sustained pulmonary drug delivery. J Pharm Sci. 2010 May;99(5):2343–2356.
  • Kaneko K, Togami K, Yamamoto E, et al. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces. Drug Deliv Transl Res. 2016 Oct;6(5):565–571.
  • Li Y, Tang C, Zhang E, et al. Colistin-entrapped liposomes driven by the electrostatic interaction: mechanism of drug loading and in vivo characterization. Int J Pharm. 2016 Dec 30;515(1–2):20–29.
  • Caimmi D, Martocq N, Trioleyre D, et al. Positive effect of liposomal amikacin for inhalation on mycobacterium abcessus in cystic fibrosis patients. Open Forum Infect Dis. 2018 Mar;5(3):ofy034.
  • Li, Zhili, Walter Perkins, and David Cipolla. “Robustness of aerosol delivery of amikacin liposome inhalation suspension using the eFlow® technology”. European Journal of Pharmaceutics and Biopharmaceutics. 166 (2021): 10–18.
  • Olivier KN, Griffith DE, Eagle G, et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med. 2017;195(6):814–823.
  • Amikacin Liposome SM. Inhalation suspension: a review in mycobacterium avium complex lung disease. Drugs. 2019 Apr;79(5):555–562.
  • Rubino CM, Onufrak NJ, van Ingen J, et al. Population pharmacokinetic evaluation of amikacin liposome inhalation suspension in patients with treatment-refractory nontuberculous mycobacterial lung disease. Eur J Drug Metab Pharmacokinet. 2021 Mar;46(2):277–287.
  • Miller DP, Tan T, Tarara TE, et al. Physical characterization of tobramycin inhalation powder: irational design of a stable engineered-particle formulation for delivery to the lungs. Mol Pharm. 2015 Aug 3;12(8):2582–2593.
  • Roberts RA, Shen T, Allen IC, et al. Analysis of the murine immune response to pulmonary delivery of precisely fabricated nano- and microscale particles. PLoS One. 2013;8(4):e62115.
  • Nicolete R. dos Santos DF, Faccioli LH The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int Immunopharmacol. 2011 Oct;11(10):1557–1563.
  • Abedon ST. Phage therapy of pulmonary infections. Bacteriophage. 2015;Jan-Mar;5(1:e1020260.
  • Yeh T-H, Hsu L-W, Tseng MT, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials. 2011;32(26):6164–6173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.