192
Views
0
CrossRef citations to date
0
Altmetric
Review

Potential applications of drug delivery technologies against radiation enteritis

, , , , , & ORCID Icon show all
Pages 435-455 | Received 27 Oct 2022, Accepted 20 Feb 2023, Published online: 28 Feb 2023

References

  • Havránková R. Biological effects of ionizing radiation. Cas Lek Cesk. 2020;159:258–260.
  • Matthews EP. Radiation physics, biology, and protection. Radiol Technol. 2019;90:471–485.
  • Chen G, Han Y, Zhang H, et al. Radiotherapy-induced digestive injury: diagnosis, treatment and mechanisms. Front Oncol. 2021;11:757973.
  • Bakshi J, Chu BP. Attenuation of gamma radiation using clear view radiation shielding TM in nuclear power plants, hospitals and radiopharmacies. Health Phys. 2020;119:776–785.
  • Stepanova YI, Vdovenko VY, Misharina ZA, et al. Genetic effects in children exposed in prenatal period to ionizing radiation after the Chernobyl nuclear power plant accident. Exp Oncol. 2016;38:272–275.
  • Manav M, Goyal M, Kumar A, et al. Deep learning approach for analyzing the COVID-19 chest X-rays. J Med Phys. 2021;46:189–196.
  • Allen C, Her S, Jaffray DA. Radiotherapy for cancer: present and future. Adv Drug Deliv Rev. 2017;109:1–2.
  • Forker LJ, Choudhury A, Kiltie AE. Biomarkers of tumour radiosensitivity and predicting benefit from radiotherapy. Clin Oncol. 2015;27:561–569.
  • Wang J, Boerma M, Fu Q, et al. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J Gastroenterol. 2007;13:3047–3055.
  • Romesser PB, Neal BP, Crane CH. External beam radiation therapy for liver metastases. Surg Oncol Clin N Am. 2021;30:159–173.
  • Sánchez-Nieto B, Romero-Expósito M, Terrón JA, et al. External photon radiation treatment for prostate cancer: uncomplicated and cancer-free control probability assessment of 36 plans. Phys Med. 2019;66:88–96.
  • Cianni R, Pelle G. Evidence-based integration of selective internal radiation therapy into the management of breast cancer liver metastases. Future Oncol. 2014;10:93–95.
  • Iñarrairaegui M, Sangro B. Selective internal radiation therapy approval for early HCC: what comes next? Hepatology. 2021;74:2333–2335.
  • Gupta T, Chatterjee A. Modern radiation therapy for pituitary adenoma: review of techniques and outcomes. Neurol India. 2020;68:S113–S122.
  • Gao J, Peng S, Shan X, et al. Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis. Cell Death Dis. 2019;10:957.
  • Yang X, Ren H, Guo X, et al. Radiation-induced skin injury: pathogenesis, treatment, and management. Aging (Albany NY). 2020;12:23379–23393.
  • Turnquist C, Harris BT, Harris CC. Radiation-induced brain injury: current concepts and therapeutic strategies targeting neuroinflammation. Neurooncol Adv. 2020;2:vdaa057.
  • Novak JM, Collins JT, Donowitz M, et al. Effects of radiation on the human gastrointestinal tract. J Clin Gastroenterol. 1979;1:9–39.
  • Tanaka M, Kanemitsu Y, Shida D, et al. Prognostic impact of intra-abdominal/pelvic inflammation after radical surgery for locally recurrent rectal cancer. Dis Colon Rectum. 2017;60:827–836.
  • Dong L, Cui J, Tang F, et al. Ataxia telangiectasia-mutated gene polymorphisms and acute normal tissue injuries in cancer patients after radiation therapy: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys. 2015;91:1090–1098.
  • Kavanagh BD, Pan CC, Dawson LA, et al. Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76:101–107.
  • Kumagai T, Rahman F, Smith AM. The microbiome and radiation induced-bowel injury: evidence for potential mechanistic role in disease pathogenesis. Nutrients. 2018;10:1405.
  • Jee J, Park JH, Im JH, et al. Functional recovery by colon organoid transplantation in a mouse model of radiation proctitis. Biomaterials. 2021;275:120925.
  • Zhang J, Li K, Zhang Q, et al. Polycysteine as a new type of radio-protector ameliorated tissue injury through inhibiting ferroptosis in mice. Cell Death Dis. 2021;12:195.
  • Gu J, Zhu S, Li X, et al. Effect of amifostine in head and neck cancer patients treated with radiotherapy: a systematic review and meta-analysis based on randomized controlled trials. PLoS One. 2014;9:e95968.
  • Hanson WR, Grdina DJ. Radiation-induced DNA single-strand breaks in the intestinal mucosal cells of mice treated with the radioprotectors WR-2721 or 16-16 dimethyl prostaglandin E2. Int J Radiat Biol Relat Stud Phys Chem Med. 1987;52:67–76.
  • Greenwood-Van Meerveld B, Johnson AC, Grundy D. Gastrointestinal physiology and function. Handb Exp Pharmacol. 2017;239:1–16.
  • Sugimoto S, Kobayashi E, Fujii M, et al. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature. 2021;592:99–104.
  • Wozniak S, Pytrus T, Kobierzycki C, et al. The large intestine from fetal period to adulthood and its impact on the course of colonoscopy. Ann Anat. 2019;224:17–22.
  • Emf DS, de Sauvage FJ. Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell. 2019;24:54–64.
  • Duncan M, Grant G. Oral and intestinal mucositis - causes and possible treatments. Aliment Pharmacol Ther. 2003;18:853–874.
  • Sadeghi H, Bagheri H, Shekarchi B, et al. Mitigation of radiation-induced gastrointestinal system injury by melatonin: a histopathological study. Curr Drug Res Rev. 2020;12:72–79.
  • Hale MF. Radiation enteritis: from diagnosis to management. Curr Opin Gastroenterol. 2020;36:208–214.
  • Jang H, Park S, Lee J, et al. Rebamipide alleviates radiation-induced colitis through improvement of goblet cell differentiation in mice. J Gastroenterol Hepatol. 2018;33:878–886.
  • Tabaja L, Sidani SM. Management of radiation proctitis. Dig Dis Sci. 2018;63:2180–2188.
  • Jeggo P, Lavin MF. Cellular radiosensitivity: how much better do we understand it? Int J Radiat Biol. 2009;85:1061–1081.
  • Santivasi WL, Xia F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 2014;21:251–259.
  • Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol. 2020;94:1511–1549.
  • Srinivas US, Tan BWQ, Vellayappan BA et al. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084.
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–1070.
  • Anwar M, Ahmad S, Akhtar R, et al. Antioxidant supplementation: a linchpin in radiation-induced enteritis. Technol Cancer Res Treat. 2017;16:676–691.
  • Holze C, Michaudel C, Mackowiak C, et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol. 2018;19:130–140.
  • Chen T, Zhang X, Zhu G, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine (Baltimore). 2020;99:e22241.
  • Ung TT, Nguyen TT, Lian S, et al. Nicotine stimulates IL-6 expression by activating the AP-1 and STAT-3 pathways in human endothelial EA.hy926 cells. J Cell Biochem. 2019;120:5531–5541.
  • Song HK, Noh EM, Kim JM, et al. Reversine inhibits MMP-3, IL-6 and IL-8 expression through suppression of ROS and JNK/AP-1 activation in interleukin-1β-stimulated human gingival fibroblasts. Arch Oral Biol. 2019;108:104530.
  • Wang J, Zheng H, Ou X, et al. Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine: possible link between endothelial dysfunction and chronic radiation fibrosis. Am J Pathol. 2002;160:2063–2072.
  • Jian Y, Zhang D, Liu M, et al. The impact of gut microbiota on radiation-induced enteritis. Front Cell Infect Microbiol. 2021;11:586392.
  • Kim JB, Lee JL, Park SH, et al. Acute ileal perforation caused by radiation enteritis after restoration. Ann Coloproctol. 2021;37:51–54.
  • Bazan JG, Luxton G, Kozak MM, et al. Impact of chemotherapy on normal tissue complication probability models of acute hematologic toxicity in patients receiving pelvic intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2013;87:983–991.
  • Brook I, Elliott TB. Quinolone therapy in the prevention of mortality after irradiation. Radiat Res. 1991;128:100–103.
  • Frazzoni L, La Marca M, Guido A, et al. Pelvic radiation disease: updates on treatment options. World J Clin Oncol. 2015;6:272–280.
  • Babakhanlou R, Larkin K. The value of metronidazole in the management of acute radiation proctitis. Scand J Gastroenterol. 2021;56:422–423.
  • Seo EH, Kim TO, Kim TG, et al. The efficacy of the combination therapy with oral and topical mesalazine for patients with the first episode of radiation proctitis. Dig Dis Sci. 2011;56:2672–2677.
  • Wu C, Guan L, Yao L, et al. Mesalazine suppository for the treatment of refractory ulcerative chronic radiation proctitis. Exp Ther Med. 2018;16:2319–2324.
  • Carroll IM, Andrus JM, Bruno-Bárcena JM, et al. Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. Am J Physiol Gastrointest Liver Physiol. 2007;293:729–738.
  • Kullisaar T, Zilmer M, Mikelsaar M, et al. Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol. 2002;72:215–224.
  • McElvanna K, Wilson A, Irwin T. Sucralfate paste enema: a new method of topical treatment for haemorrhagic radiation proctitis. Colorectal Dis. 2014;16:281–284.
  • Saei S, Sahebnasagh A, Ghasemi A, et al. Efficacy of sucralfate ointment in the prevention of acute proctitis in cancer patients: a randomized controlled clinical trial. Caspian J Intern Med. 2020;11:410–418.
  • Ł D, Kujawski R, Mik M, et al. Formalin therapy for hemorrhagic radiation proctitis. Pharmacol Rep. 2015;67:896–900.
  • Dalsania RM, Shah KP, Stotsky-Himelfarb E, et al. Management of long-term toxicity from pelvic radiation therapy. Am Soc Clin Oncol Educ Book. 2021;41:1–11.
  • Sharma B, Gupta M, Sharma R, et al. Four percent formalin application for the management of radiation proctitis in carcinoma cervix patients: an effective, safe, and economical practice. J Cancer Res Ther. 2019;15:92–95.
  • Cetin E, Ozturk AS, Orhun H, et al. Role of triamcinolone in radiation enteritis management. World J Gastroenterol. 2014;20:4341–4344.
  • Lalla RV, Bowen J, Barasch A, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014;120:1453–1461.
  • Singh AK, Ménard C, Guion P, et al. Intrarectal amifostine suspension may protect against acute proctitis during radiation therapy for prostate cancer: a pilot study. Int J Radiat Oncol Biol Phys. 2006;65:1008–1013.
  • Suzuki F, Loucas BD, Ito I, et al. Survival of mice with gastrointestinal acute radiation syndrome through control of bacterial translocation. J Immunol. 2018;201:77–86.
  • Cavcić J, Turcić J, Martinac P, et al. Metronidazole in the treatment of chronic radiation proctitis: clinical trial. Croat Med J. 2000;41:314–318.
  • Pui WC, Chieng TH, Siow SL, et al. A randomized controlled trial of novel treatment for hemorrhagic radiation proctitis. Asian Pac J Cancer Prev. 2020;21:2927–2934.
  • Kilic D, Ozenirler S, Egehan I, et al. Sulfasalazine decreases acute gastrointestinal complications due to pelvic radiotherapy. Ann Pharmacother. 2001;35:806–810.
  • Liu L, Chen C, Liu X, et al. Altered gut microbiota associated with hemorrhage in chronic radiation proctitis. Front Oncol. 2021;11:637265.
  • Qiu G, Yu Y, Wang Y, et al. The significance of probiotics in preventing radiotherapy-induced diarrhea in patients with cervical cancer: a systematic review and meta-analysis. Int J Surg. 2019;65:61–69.
  • Lin PW, Myers LE, Ray L, et al. Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radic Biol Med. 2009;47:1205–1211.
  • Nascimento M, Caporossi C, Eduardo Aguilar-Nascimento J, et al. Efficacy of synbiotics to reduce symptoms and rectal inflammatory response in acute radiation proctitis: a randomized, double-blind, placebo-controlled pilot trial. Nutr Cancer. 2020;72:602–609.
  • Han W, Mercenier A, Ait-Belgnaoui A, et al. Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflamm Bowel Dis. 2006;12:1044–1052.
  • Chang SK, Hassan HM. Characterization of superoxide dismutase in Streptococcus thermophilus. Appl Environ Microbiol. 1997;63:3732–3735.
  • Delia P, Sansotta G, Donato V, et al. Use of probiotics for prevention of radiation-induced diarrhea. World J Gastroenterol. 2007;13:912–915.
  • Vindigni SM, Surawicz CM. Fecal microbiota transplantation. Gastroenterol Clin North Am. 2017;46:171–185.
  • Weingarden AR, Vaughn BP. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes. 2017;8:238–252.
  • Vendrik KEW, Ooijevaar RE, Prc DJ, et al. Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol. 2020;10:98.
  • Ding X, Li QLi P, et al. Fecal microbiota transplantation: a promising treatment for radiation enteritis? Radiother Oncol. 2020;143:12–18.
  • Liu T, Su D, Lei C, et al. Treatment of radiation enteritis with fecal transplantation. Am Surg. 2022;31348221091954.
  • Kochhar R, Sharma SC, Gupta BB, et al. Rectal sucralfate in radiation proctitis. Lancet. 1988;2:400.
  • Paquette IM, Vogel JD, Abbas MA, et al. The American society of colon and rectal surgeons clinical practice guidelines for the treatment of chronic radiation proctitis. Dis Colon Rectum. 2018;61:1135–1140.
  • Arthur S, Saha P, Sundaram S, et al. Regulation of sodium-glutamine cotransport in villus and crypt cells by glucocorticoids during chronic enteritis. Inflamm Bowel Dis. 2012;18:2149–2157.
  • Rhoads JM, Macleod RJ, Hamilton JR. Effect of glucocorticoid on piglet jejunal mucosa during acute viral enteritis. Pediatr Res. 1988;23:279–282.
  • Yu X, Li M, Zhu L, et al. Amifostine-loaded armored dissolving microneedles for long-term prevention of ionizing radiation-induced injury. Acta Biomater. 2020;112:87–100.
  • Chen T, Zhuang B, Huang Y, et al. Inhaled amifostine for the prevention of radiation-induced lung injury. Radiat Med Protec. 2022;3:72–80.
  • Barmpalexis P, Grypioti A. Development of a new esomeprazole delayed release gastro-resistant pellet formulation with improved storage stability. Drug Dev Ind Pharm. 2018;44:942–952.
  • Altman R, Bosch B, Brune K, et al. Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs. 2015;75:859–877.
  • Missaghi S, Young C, Fegely K, et al. Delayed release film coating applications on oral solid dosage forms of proton pump inhibitors: case studies. Drug Dev Ind Pharm. 2010;36:180–189.
  • Liu J, Li W, Wang YX, et al. Biomaterials coating for on-demand bacteria delivery: Selective release, adhesion, and detachment. Nano Today. 2021;41:11.
  • Alavi M, Webster TJ. Recent progress and challenges for polymeric microsphere compared to nanosphere drug release systems: Is there a real difference? Bioorg Med Chem. 2021;33:116028.
  • Muxika A, Etxabide A, Uranga J, et al. Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol. 2017;105:1358–1368.
  • Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. J Control Release. 2020;326:150–163.
  • Sudha PN, Rose MH. Beneficial effects of hyaluronic acid. Adv Food Nutr Res. 2014;72:137–176.
  • Pereira H, Sousa DA, Cunha A, et al. Hyaluronic acid. Adv Exp Med Biol. 2018;1059:137–153.
  • Vasvani S, Kulkarni P, Rawtani D. Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol. 2020;151:1012–1029.
  • Marinho A, Nunes C, Reis S. Hyaluronic acid: a key ingredient in the therapy of inflammation. Biomolecules. 2021;11:1518.
  • Tang JZ, Nie MJ, Zhao JZ, et al. Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: a meta-analysis. J Orthop Surg Res. 2020;15:403.
  • Pallio G, Bitto A, Ieni A, et al. Combined treatment with polynucleotides and hyaluronic acid improves tissue repair in experimental colitis. Biomedicines. 2020;8:438.
  • Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002;28:621–630.
  • Agüero L, Zaldivar-Silva D, Peña L, et al. Alginate microparticles as oral colon drug delivery device: a review. Carbohydr Polym. 2017;168:32–43.
  • Liu L, Wen H, Rao Z, et al. Preparation and characterization of chitosan - collagen peptide/oxidized konjac glucomannan hydrogel. Int J Biol Macromol. 2018;108:376–382.
  • Yang D, Yuan Y, Wang L, et al. A review on konjac glucomannan gels: microstructure and application. Int J Mol Sci. 2017;18:2250.
  • Li DQ, Li J, Dong HL, et al. Pectin in biomedical and drug delivery applications: A review. Int J Biol Macromol. 2021;185:49–65.
  • Wong TW, Colombo G, Sonvico F. Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech. 2011;12:201–214.
  • Sun Q, Wicker L. Hydrogel encapsulation of lactobacillus casei by block charge modified pectin and improved gastric and storage stability. Foods. 2021;10:1337.
  • Jiang Y, Wang Y, Li Q, et al. Natural polymer-based stimuli-responsive hydrogels. Curr Med Chem. 2020;27:2631–2657.
  • Dragan ES, Dinu MV. Polysaccharides constructed hydrogels as vehicles for proteins and peptides a review. Carbohydr Polym. 2019;225:115210.
  • Montaser AS, Rehan M, El-Naggar ME. pH-Thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acrylamide composite for treating re-infected wounds. Int J Biol Macromol. 2019;124:1016–1024.
  • Calixto G, Yoshii AC, Rocha E, et al. Polyacrylic acid polymers hydrogels intended to topical drug delivery: preparation and characterization. Pharm Dev Technol. 2015;20:490–496.
  • Nagata T, Harada Y, Arai M, et al. Polyethylene glycol-based synthetic hydrogel sealant for filtration bleb leaks: An in vivo and histologic study. Transl Vis Sci Technol. 2020;9:24.
  • Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–1064.
  • Martin-Gallausiaux C, Marinelli L, Blottière HM, et al. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc. 2021;80:37–49.
  • Lusiana RA, Sangkota VDA, Sasongko NA, et al. Permeability improvement of polyethersulfone-polyethylene glycol (PEG-PES) flat sheet type membranes by tripolyphosphate-crosslinked chitosan (TPP-CS) coating. Int J Biol Macromol. 2020;152:633–644.
  • Xu J, Tam M, Samaei S, et al. Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater. 2017;48:247–257.
  • Cao X, Duan L, Hou H, et al. IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE(2)-mediated M2 macrophage polarization. Theranostics. 2020;10:7697–7709.
  • Xu W, Su W, Xue Z, et al. Research on preparation of 5-ASA colon-specific hydrogel delivery system without crosslinking agent by mechanochemical method. Pharm Res. 2021;38:693–706.
  • Zhang S, Kang L, Hu S, et al. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int J Biol Macromol. 2021;167:1598–1612.
  • Jensen MM, Jia W, Isaacson KJ, et al. Silk-elastin like protein polymers enhance the efficacy of a therapeutic glycosaminoglycan for prophylactic treatment of radiation-induced proctitis. J Control Release. 2017;263:46–56.
  • Xiao Y, Lu C, Liu Y, et al. Encapsulation of lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis. ACS Appl Mater Interfaces. 2020;12:36967–36977.
  • Mrudulakumari Vasudevan U, Lee OK, Lee EY. Alginate derived functional oligosaccharides: recent developments, barriers, and future outlooks. Carbohydr Polym. 2021;267:118158.
  • Huang B, Liu M, Long Z, et al. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Mater Sci Eng C Mater Biol Appl. 2017;70:303–310.
  • Das D, Pham HTT, Lee S, et al. Fabrication of alginate-based stimuli-responsive, non-cytotoxic, terpolymric semi-IPN hydrogel as a carrier for controlled release of bovine albumin serum and 5-amino salicylic acid. Mater Sci Eng C Mater Biol Appl. 2019;98:42–53.
  • Ma Y, Tong X, Huang Y, et al. Oral administration of hydrogel-embedding silk sericin alleviates ulcerative colitis through wound healing, anti-Inflammation, and anti-oxidation. ACS Biomater Sci Eng. 2019;5:6231–6242.
  • Ding YF, Sun T, Li S et al. Oral colon-targeted konjac glucomannan hydrogel constructed through noncovalent cross-linking by cucurbit[8]uril for ulcerative colitis therapy. ACS Appl Bio Mater. 2020;3:10–19.
  • You YC, Dong LY, Dong K, et al. In vitro and in vivo application of pH-sensitive colon-targeting polysaccharide hydrogel used for ulcerative colitis therapy. Carbohydr Polym. 2015;130:243–253.
  • Pandey M, Choudhury H, DOSS SK, et al. Budesonide-loaded pectin/polyacrylamide hydrogel for sustained delivery: fabrication, characterization and in vitro release kinetics. Molecules. 2021;26:2704.
  • Dafe A, Etemadi H, Dilmaghani A, et al. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int J Biol Macromol. 2017;97:536–543.
  • Abbasi M, Sohail M, Minhas MU, et al. Novel biodegradable pH-sensitive hydrogels: an efficient controlled release system to manage ulcerative colitis. Int J Biol Macromol. 2019;136:83–96.
  • Vaishya R, Khurana V, Patel S, et al. Long-term delivery of protein therapeutics. Expert Opin Drug Deliv. 2015;12:415–440.
  • Su Y, Zhang B, Sun R, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021;28:1397–1418.
  • Butreddy A, Gaddam RP, Kommineni N et al. PLGA/PLA-based long-acting injectable depot microspheres in clinical use: production and characterization overview for protein/peptide delivery. Int J Mol Sci. 2021;22:8884.
  • Vasiukhina A, Gad SF, Wellington EN, et al. PLA-PCL microsphere formulation to deter abuse of prescription opioids by smoking. Int J Pharm. 2022;626:122151.
  • Mikhail AS, Negussie AH, Mauda-Havakuk M, et al. Drug-eluting embolic microspheres: State-of-the-art and emerging clinical applications. Expert Opin Drug Deliv. 2021;18:383–398.
  • Abulateefeh SR, Alkilany AM. Synthesis and characterization of PLGA shell microcapsules containing aqueous cores prepared by internal phase separation. AAPS PharmSciTech. 2016;17:891–897.
  • Cai Y, Chen Y, Hong X, et al. Porous microsphere and its applications. Int J Nanomedicine. 2013;8:1111–1120.
  • Panizzon GP, Bueno FG, Ueda-Nakamura T, et al. Preparation of spray-dried soy isoflavone-loaded gelatin microspheres for enhancement of dissolution: formulation, characterization and in vitro evaluation. Pharmaceutics. 2014;6:599–615.
  • Mohanraj K, Sethuraman S, Krishnan UM. Development of poly(butylene succinate) microspheres for delivery of levodopa in the treatment of Parkinson’s disease. J Biomed Mater Res B Appl Biomater. 2013;101:840–847.
  • Desai MP, Labhasetwar V, Walter E, et al. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 1997;14:1568–1573.
  • Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int J Pharm. 2018;537:223–244.
  • Lee SH, Bajracharya R, Min JY, et al. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics. 2020;12:68.
  • Mao X, Li X, Zhang W, et al. Development of microspheres based on thiol-modified sodium alginate for intestinal-targeted drug delivery. ACS Appl Bio Mater. 2019;2:5810–5818.
  • Liu H, Cai Z, Wang F, et al. Colon-targeted adhesive hydrogel microsphere for regulation of gut immunity and flora. Adv Sci. 2021;8:e2101619.
  • Ali AS, Altayari AA, Khan LM, et al. Colon-targeted therapy of tacrolimus (FK506) in the treatment of experimentally induced colitis. Pharmacology. 2020;105:541–549.
  • Deol PK, Khare P, Singh DP, et al. Managing colonic inflammation associated gut derangements by systematically optimised and targeted ginger extract-Lactobacillus acidophilus loaded pharmacobiotic alginate beads. Int J Biol Macromol. 2017;105:81–91.
  • Gan J, Sun L, Chen G, et al. Mesenchymal stem cell exosomes encapsulated oral microcapsules for acute colitis treatment. Adv Healthc Mater. 2022;11:e2201105.
  • Yasmin F, Najeeb H, Shaikh S, et al. Novel drug delivery systems for inflammatory bowel disease. World J Gastroenterol. 2022;28:1922–1933.
  • Youshia J, Lamprecht A. Size-dependent nanoparticulate drug delivery in inflammatory bowel diseases. Expert Opin Drug Deliv. 2016;13:281–294.
  • Lamprecht A, Schäfer U, Lehr CM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res. 2001;18:788–793.
  • Dianzani C, Foglietta F, Ferrara B, et al. Solid lipid nanoparticles delivering anti-inflammatory drugs to treat inflammatory bowel disease: Effects in an in vivo model. World J Gastroenterol. 2017;23:4200–4210.
  • Zhou X, Liu Y, Wang X, et al. Effect of particle size on the cellular uptake and anti-inflammatory activity of oral nanotherapeutics. Colloids Surf B Biointerfaces. 2020;187:110880.
  • Beloqui A, Coco R, Memvanga PB, et al. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int J Pharm. 2014;473:203–212.
  • Darwesh AY, El-Dahhan MS, Meshali MM. New oral coaxial nanofibers for gadodiamide-prospective intestinal magnetic resonance imaging and theranostic. Int J Nanomedicine. 2020;15:8933–8943.
  • Tan R, Yang X, Lu H, et al. Nanofiber-based biodegradable millirobot with controllable anchoring and adaptive stepwise release functions. Matter. 2022;6:1277–1295.
  • Cai X, Wang X, He M, et al. Colon-targeted delivery of tacrolimus using pH-responsive polymeric nanoparticles for murine colitis therapy. Int J Pharm. 2021;606:120836.
  • Turanlı Y, Acartürk F. Preparation and characterization of colon-targeted pH/time-dependent nanoparticles using anionic and cationic polymethacrylate polymers. Eur J Pharm Sci. 2022;171:106122.
  • Li S, Jin M, Wu Y, et al. An efficient enzyme-triggered controlled release system for colon-targeted oral delivery to combat dextran sodium sulfate (DSS)-induced colitis in mice. Drug Deliv. 2021;28:1120–1131.
  • Shi L, Lv HJ, Chen CT, et al. Regulation of gut microbiome with redox responsible bacterial cellulose hydrogel for precision chemo-radiotherapy of intestinal cancer. Chem eng j. 2022;446:12.
  • Tan C, Fan H, Ding J et al. ROS-responsive nanoparticles for oral delivery of luteolin and targeted therapy of ulcerative colitis by regulating pathological microenvironment. Mater Today Bio. 2022;14:100246.
  • Liu P, Gao C, Chen H, et al. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: opportunities and emerging strategies. Acta Pharm Sin B. 2021;11:2798–2818.
  • Xiao B, Laroui H, Ayyadurai S, et al. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials. 2013;34:7471–7482.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.