2,325
Views
0
CrossRef citations to date
0
Altmetric
Review

Drug loaded implantable devices to treat cardiovascular disease

, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 507-522 | Received 28 Nov 2022, Accepted 09 Mar 2023, Published online: 28 Mar 2023

References

  • Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors. J Am Coll Cardiol. 2019;74:2529–2532.
  • Vallières K, Laterreur V, Tondreau MY, et al. Human adipose-derived stromal cells for the production of completely autologous self-assembled tissue-engineered vascular substitutes. Acta Biomater. 2015;24:209–219.
  • WHO. Cardiovascular diseases (CVDs). 2017. Available from: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). [accessed Oct 30, 2019].
  • Fowkes FGR, Aboyans V, Fowkes FJI, et al. Peripheral artery disease: epidemiology and global perspectives. Nat Rev Cardiol. 2017;14:156–170.
  • Grenon SM, Vittinghoff E, Owens CD, et al. Peripheral artery disease and risk of cardiovascular events in patients with coronary artery disease: insights from the heart and soul study. Vascular Medicine. 2013;18:176–184.
  • Insull W. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am j med. 2009;122:S3–14.
  • Krishna S, Moxon J, Golledge J. A review of the pathophysiology and potential biomarkers for peripheral artery disease. Int J Mol Sci. 2015;16:11294–11322.
  • McGill HC, McMahan CA, Gidding SS. Preventing heart disease in the 21st century. Circulation. 2008;117:1216–1227.
  • Ng JCK, Toong DWY, Ow V, et al. Progress in drug-delivery systems in cardiovascular applications: stents, balloons and nanoencapsulation. Nanomedicine. 2022;17:325–347.
  • Pipinos II, Judge AR, Selsby JT, et al. The myopathy of peripheral arterial occlusive disease: part 1. functional and histomorphological changes and evidence for mitochondrial dysfunction. Vasc Endovascular Surg. 2008;41:481–489.
  • Simard T, Hibbert B, Ramirez FD, et al. The evolution of coronary stents: a brief review. Can J Cardiol. 2014;30:35–45.
  • Howard-Alpe GM, de Bono J, Hudsmith L, et al. Coronary artery stents and non-cardiac surgery. Br J Anaesth. 2007;98:560–574.
  • Grech ED. Percutaneous coronary intervention I: history and development history of myocardial revascularisation developments in percutaneous intervention. Br Med J. 2003;326:1080–1082.
  • Canfield J, Totary-Jain H. 40 years of percutaneous coronary intervention: history and future directions. J Pers Med. 2018;8:33.
  • Iqbal J, Gunn J, Serruys PW. Coronary stents: historical development, current status and future directions. Br Med Bull. 2013;106:193–211.
  • Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med. 1994;331:489–495.
  • George CJ, Baim DS, Brinker JA, et al. One-year follow-up of the Stent Restenosis (STRESS I) study 11 this study was supported in part by Johnson & Johnson interventional systems (cordis), incorporated, Warren, New Jersey. Am J Cardiol. 1998;81:860–865.
  • Hehrlein C. Drug-coated balloons-the importance of packing and dosing antiproliferative drugs. Catheterization Cardiovasc Interventions. 2015;86:287–288.
  • Park S, Kim J, Lee M-K, et al. Fabrication of strong, bioactive vascular grafts with PCL/collagen and PCL/silica bilayers for small-diameter vascular applications. Mater Des. 2019;181:108079.
  • Wang T, Dong N, Yan H, et al. Regeneration of a neoartery through a completely autologous acellular conduit in a minipig model: a pilot study. J Transl Med. 2019;17:24.
  • Jin D, Wu S, Kuang H, et al. Preliminary application of a cell-free mono-layered vascular scaffold in a rabbit model. Mater Des. 2021;198:109301.
  • Mallis P, Kostakis A, Stavropoulos-Giokas C, et al. Future perspectives in small-diameter vascular graft engineering. Bioengineering. 2020;7:160.
  • Zhang F, Xie Y, Celik H, et al. Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels. Biofabrication. 2019;11:035020.
  • Ravi S, Chaikof EL. Biomaterials for vascular tissue engineering. Regenerative Med. 2010;5:107–120.
  • Chen D, Zhang L, Zhang W, et al. Shapeable large-pore electrospun polycaprolactam cotton facilitates the rapid formation of a functional tissue engineered vascular graft. Mater Des. 2020;191:108631.
  • Kakisis JD, Liapis CD, Breuer C, et al. Artificial blood vessel: the holy grail of peripheral vascular surgery. J Vasc Surg. 2005;41:349–354.
  • Cafarelli A, Losi P, Salgarella AR, et al. Small-caliber vascular grafts based on a piezoelectric nanocomposite elastomer: mechanical properties and biocompatibility. J Mech Behav Biomed Mater. 2019;97:138–148.
  • Cui H, Miao S, Esworthy T, et al. 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev. 2018;132:252–269.
  • Obiweluozor FO, Emechebe GA, Kim D-W, et al. Considerations in the development of small-diameter vascular graft as an alternative for bypass and reconstructive surgeries: a review. Cardiovasc Eng Technol. 2020;11:495–521.
  • Punnakitikashem P, Truong D, Menon JU, et al. Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts. Acta Biomater. 2014;10:4618–4628.
  • Rychter M, Baranowska-Korczyc A, Milanowski B, et al. Cilostazol-loaded poly(ε-caprolactone) electrospun drug delivery system for cardiovascular applications. Pharm Res. 2018;35:32.
  • Domínguez-Robles J, Utomo E, Cornelius VA, et al. TPU-based antiplatelet cardiovascular prostheses prepared using fused deposition modelling. Mater Des. 2022;220:110837. doi: 10.1016/j.matdes.2022.110837.
  • Kim D, Chung JJ, Jung Y, et al. The effect of substance p/heparin conjugated plcl polymer coating of bioinert ePTFE vascular grafts on the recruitment of both ECs and SMCs for accelerated regeneration. Sci Rep. 2019;9:17083.
  • Domínguez-Robles J, Diaz-Gomez L, Utomo E, et al. Use of 3D printing for the development of biodegradable antiplatelet materials for cardiovascular applications. Pharmaceuticals. 2021;14:921.
  • Domínguez-Robles J, Shen T, Cornelius VA, et al. Development of drug loaded cardiovascular prosthesis for thrombosis prevention using 3D printing. Mater Sci Eng C. 2021;129:112375.
  • Mei X, Cheng K. Recent development in therapeutic cardiac patches. Front Cardiovasc Med. 2020;7. DOI:10.3389/fcvm.2020.610364.
  • Bowen PK, Shearier ER, Zhao S, et al. Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys. Adv Healthc Mater. 2016;5:1121–1140.
  • Buccheri D, Piraino D, Andolina G, et al. Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment. J Thorac Dis. 2016;8:E1150–1162.
  • Wang L, Wang H, Dong P, et al. Long-term outcomes of drug-eluting versus bare-metal stent for ST-elevation myocardial infarction. Arq Bras Cardiol. 2014. DOI:10.5935/abc.20140070
  • Tada T, Byrne RA, Simunovic I, et al. Risk of stent thrombosis among bare-metal stents, first-generation drug-eluting stents, and second-generation drug-eluting stents. JACC: Cardiovasc Interv. 2013;6:1267–1274.
  • Colombo A, Giannini F, Briguori C. Should we still have bare-metal stents available in our catheterization laboratory? J Am Coll Cardiol. 2017;70:607–619.
  • Inoue T, Croce K, Morooka T, et al. Vascular inflammation and repair. JACC: Cardiovasc Interv. 2011;4:1057–1066.
  • Cornelissen A, Vogt FJ. The effects of stenting on coronary endothelium from a molecular biological view: time for improvement? J Cell Mol Med. 2019;23:39–46.
  • Livingston M, Tan A. Coating techniques and release kinetics of drug-eluting stents. J Med Device. 2016;10. DOI:10.1115/1.4031718.
  • Hassan S, Ali MN, Ghafoor B. Evolutionary perspective of drug eluting stents: from thick polymer to polymer free approach. J Cardiothorac Surg. 2022;17:65.
  • Borhani S, Hassanajili S, Ahmadi Tafti SH, et al. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater. 2018;7:175–205.
  • Kukreja N, Onuma Y, Daemen J, et al. The future of drug-eluting stents. Pharmacol Res. 2008;57:171–180.
  • Papafaklis MI, Chatzizisis YS, Naka KK, et al. Drug-eluting stent restenosis: effect of drug type, release kinetics, hemodynamics and coating strategy. Pharmacol Ther. 2012;134:43–53.
  • Waksman R. A new generation of drug-eluting stents: indications and outcomes of bioresorbable vascular scaffolds. Cleve Clin J Med. 2017;84:e20–24.
  • Whitbeck MG, Applegate RJ. Second generation drug-eluting stents: a review of the everolimus-eluting platform. Clin Med Insights Cardiol. 2013;7:CMC.S11516.
  • Katz G, Harchandani B, Shah B. Drug-eluting stents: the past, present, and future. Curr Atheroscler Rep. 2015;17:11.
  • Koskinas KC, Chatzizisis YS, Antoniadis AP, et al. Role of endothelial shear stress in stent restenosis and thrombosis. J Am Coll Cardiol. 2012;59:1337–1349.
  • Pandya B. Biodegradable polymer stents vs second generation drug eluting stents: a meta-analysis and systematic review of randomized controlled trials. World J Cardiol. 2016;8:240.
  • Kalra A, Rehman H, Khera S, et al. New-generation coronary stents: current data and future directions. Curr Atheroscler Rep. 2017;19:14.
  • Lee PH, Kwon O, Ahn J-M, et al. Safety and effectiveness of second-generation drug-eluting stents in patients with left main coronary artery disease. J Am Coll Cardiol. 2018;71:832–841.
  • Onuma Y, Miquel-Hebert K, Serruys PW. Five-year long-term clinical follow-up of the XIENCE V everolimus-eluting coronary stent system in the treatment of patients with de novo coronary artery disease: the SPIRIT II trial, EuroIntervention. EuroIntervention. 2013;8:1047–1051.
  • Gada H, Kirtane AJ, Newman W, et al. 5-year results of a randomized comparison of XIENCE V everolimus-eluting and TAXUS paclitaxel-eluting stents. JACC: Cardiovasc Interv. 2013;6:1263–1266.
  • Stone GW, Rizvi A, Sudhir K, et al. Randomized comparison of everolimus- and paclitaxel-eluting stents. J Am Coll Cardiol. 2011;58:19–25.
  • Iqbal J, Serruys PW, Silber S, et al. Comparison of zotarolimus- and everolimus-eluting coronary stents. Circ Cardiovasc Interv. 2015;8. doi: 10.1161/CIRCINTERVENTIONS.114.002230.
  • El-Hayek G, Bangalore S, Casso Dominguez A, et al. Meta-analysis of randomized clinical trials comparing biodegradable polymer drug-eluting stent to second-generation durable polymer drug-eluting stents. JACC: Cardiovasc Interv. 2017;10:462–473.
  • Hou D, Huibregtse B, Dawkins K, et al. Current State of Bioabsorbable Polymer-Coated Drug-Eluting Stents. Curr Cardiol Rev. 2017;13(2). DOI:https://doi.org/10.2174/1573403X12666161222155230
  • Stefanini GG, Byrne RA, Serruys PW, et al. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials. Eur Heart J. 2012;33:1214–1222.
  • Chisari A, Pistritto A, Piccolo R, et al. The ultimaster biodegradable-polymer sirolimus-eluting stent: an updated review of clinical evidence. Int J Mol Sci. 2016;17:1490.
  • Michell, Technologies. MiStent. 2020. Available from: http://www.micell.com/products/. [cited Feb 28, 2020].
  • MicroPort. MicroPort® receives CE mark for Firehawk LibertyTM, a new generation rapamycin target eluting coronary stent system. 2019. Available from: http://www.microport.com/news-detail-2082. [cited Feb 28, 2020].
  • Seth A. Moving Towards biomimicry – the development of the novel BioMimeTM Sirolimus-eluting coronary stent system. Eur Cardionlog Rev. 2010;6:78–82.
  • Commission E. CE marking. 2020. Available from: https://ec.europa.eu/growth/single-market/ce-marking_en. [cited Mar 17, 2020].
  • Muramatsu T, Onuma Y, Zhang Y-J, et al. Progress in treatment by percutaneous coronary intervention: the stent of the future. Revista Española de Cardiología. 2013;66:483–496. Engilsh. doi: 10.1016/j.recesp.2012.12.009
  • Kereiakes DJ, Windecker S, Jobe RL, et al. Clinical outcomes following implantation of thin-strut, bioabsorbable polymer-coated, everolimus-eluting SYNERGY stents. Circ Cardiovasc Interv. 2019;12. DOI:10.1161/CIRCINTERVENTIONS.119.008152.
  • FDA, SYNERGYTM everolimus-eluting platinum chromium coronary stent system: patient information guide. n.d. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf15/P150003d.pdf. [cited Feb 20, 2020].
  • Meredith IT, Verheye S, Dubois CL, et al. Primary endpoint results of the EVOLVE trial. J Am Coll Cardiol. 2012;59:1362–1370.
  • Meredith IT, Verheye S, Dubois C, et al. Final five-year clinical outcomes in the EVOLVE trial: a randomised evaluation of a novel bioabsorbable polymer-coated, everolimus-eluting stent. EuroIntervention. 2018;13:2047–2050.
  • Forrestal BJ, Case BC, Yerasi C, et al. The orsiro ultrathin, bioresorbable-polymer sirolimus-eluting stent: a review of current evidence. Cardiovasc Revascularization Med. 2020;21:540–548. doi: 10.1016/j.carrev.2019.12.039.
  • Saito S, Toelg R, Witzenbichler B, et al. BIOFLOW-IV, a randomised, intercontinental, multicentre study to assess the safety and effectiveness of the Orsiro sirolimus-eluting stent in the treatment of subjects with de novo coronary artery lesions: primary outcome target vessel failure at 12 months. EuroIntervention. 2019;15:e1006–1013.
  • Lefèvre T, Haude M, Neumann F-J, et al. Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent. JACC: Cardiovasc Interv. 2018;11:995–1002.
  • Huang Y, Ng HCA, Ng XW, et al. Drug-eluting biostable and erodible stents. JControlled Release. 2014;193:188–201.
  • Thipparaboina R, Khan W, Domb AJ. Eluting combination drugs from stents. Int J Pharm. 2013;454:4–10.
  • Lee CW, Park D-W, Seung KB, et al. Comparison of dual drug-eluting cilotax stent and paclitaxel-eluting taxus liberte stent in native coronary artery lesions. Am J Cardiol. 2011;107:990–994.
  • Adriaenssens T, Mehilli J, Wessely R, et al. Does addition of estradiol improve the efficacy of a rapamycin-eluting stent? J Am Coll Cardiol. 2007;49:1265–1271.
  • OrbusNeich. Combo duel therapy stent. 2020. Available from: https://www.orbusneich.com/en/products/dual-therapy-stent/combo. [cited Mar 4, 2020].
  • Chandrasekhar J, Martin K, Mehran R. Role of coronary drug-eluting stents in current clinical practice. Clinic Pharmacist. 2016;8:11. DOI:10.1211/PJ.2016.20201885.
  • Jakobsen L, Christiansen EH, Freeman P, et al. Randomized clinical comparison of the dual-therapy CD34 antibody-covered sirolimus-eluting combo stent with the sirolimus-eluting orsiro stent in patients treated with percutaneous coronary intervention: the SORT OUT X trial. Circulation. 2021;143:2155–2165.
  • Wang R, Lu J, Yin J, et al. A TEMPOL and rapamycin loaded nanofiber-covered stent favors endothelialization and mitigates neointimal hyperplasia and local inflammation. Bioact Mater. 2023;19:666–677.
  • Zhang B, Qin Y, Yang L, et al. A polyphenol-network-mediated coating modulates inflammation and vascular healing on vascular stents. ACS Nano. 2022;16:6585–6597.
  • Hu T, Lin S, Du R, et al. Design, preparation and performance of a novel drug-eluting stent with multiple layer coatings. Biomater Sci. 2017;5:1845–1857.
  • Cheng Y, Zhang X, Liu R, et al. Bioinspired vascular stents with microfluidic electrospun multilayer coatings for preventing in‐stent restenosis. Adv Healthc Mater. 2022;11:2200965.
  • Gareri C, de Rosa S, Indolfi C. MicroRNAs for restenosis and thrombosis after vascular injury. Circ Res. 2016;118:1170–1184.
  • Santulli G, Wronska A, Uryu K, et al. A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. J Clin Investig. 2014;124:4102–4114.
  • Jiang W, Zhao W, Zhou T, et al. A review on manufacturing and post-processing technology of vascular stents. Micromachines (Basel). 2022;13:140.
  • Galyfos G, Geropapas G, Stefanidis I, et al. Bioabsorbable stenting in peripheral artery disease. Cardiovasc Revascularization Med. 2015;16:480–483.
  • Nilsson H. Vasomotion: mechanisms and physiological importance. Mol Interv. 2003;3:79–89.
  • Colombo A, Azzalini L. Bioresorbable Scaffolds. JACC: Cardiovasc Interv. 2017;10:2360–2362.
  • Regazzoli D, Leone PP, Colombo A, et al. New generation bioresorbable scaffold technologies: an update on novel devices and clinical results. J Thorac Dis. 2017;9:S979–985.
  • Omar WA, Kumbhani DJ. The current literature on bioabsorbable stents: a review. Curr Atheroscler Rep. 2019;21:54.
  • Sotomi Y, Onuma Y, Collet C, et al. Bioresorbable Scaffold. Circ Res. 2017;120:1341–1352.
  • Abizaid A, Carrié D, Frey N, et al. 6-month clinical and angiographic outcomes of a novel radiopaque sirolimus-eluting bioresorbable vascular scaffold. JACC: Cardiovasc Interv. 2017;10:1832–1838.
  • ARTDIVA study: first in man safety evaluation of the ART18Z bioresorbable stent. n.d. Available from: https://clinicaltrials.gov/ct2/show/study/NCT01761578. [cited Nov 22, 2019].
  • Mattesini A, Bartolini S, Dini CS, et al. The DESolve novolimus bioresorbable Scaffold: from bench to bedside. J Thorac Dis. 2017;9:S950–958.
  • Abizaid A, Costa RA, Schofer J, et al. Serial multimodality imaging and 2-year clinical outcomes of the novel DESolve novolimus-eluting bioresorbable coronary scaffold system for the treatment of single de novo coronary lesions. JACC: Cardiovasc Interv. 2016;9:565–574.
  • Rapetto C, Leoncini M. Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives. J Thorac Dis. 2017;9:S903–913.
  • Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet. 2016;387:31–39.
  • Panaich S, Schreiber T, Grines C. Bioresorbable Scaffolds. Interventional Cardiol Rev. 2014;9:175. doi: 10.15420/icr.2014.9.3.175.
  • Sánchez PF, Brey EM, Briceño JC. Endothelialization mechanisms in vascular grafts. J Tissue Eng Regen Med. 2018;12:2164–2178.
  • Dahl SLM, Kypson AP, Lawson JH, et al. Readily available tissue-engineered vascular grafts. Sci Transl Med. 2011;3. DOI:10.1126/scitranslmed.3001426.
  • Singh C, Wong C, Wang X. Medical textiles as vascular implants and their success to mimic natural arteries. J Funct Biomater. 2015;6:500–525.
  • Sayers RD, Raptis S, Berce M, et al. Long-term results of femorotibial bypass with vein or polytetrafluoroethylene. Br J Surg. 2003;85:934–938.
  • Spadaccio C, Nappi F, de Marco F, et al. Preliminary in vivo evaluation of a hybrid armored vascular graft combining electrospinning and additive manufacturing techniques. Drug Target Insights. 2016;10(s1):DTI.S35202.
  • Dzenis Y. Spinning continuous fibers for nanotechnology. Science. 2004;304:1917–1919. DOI:10.1126/science.1099074. 1979.
  • Norouzi SK, Shamloo A. Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods. Mater Sci Eng C. 2019;94:1067–1076.
  • Hu Y-T, Pan X-D, Zheng J, et al. In vitro and in vivo evaluation of a small-caliber coaxial electrospun vascular graft loaded with heparin and VEGF. Int J Surg. 2017;44:244–249.
  • Shitole AA, Giram PS, Raut PW, et al. Clopidogrel eluting electrospun polyurethane/polyethylene glycol thromboresistant, hemocompatible nanofibrous scaffolds. J Biomater Appl. 2019;33:1327–1347.
  • Serpelloni S, Peden EK, Taraballi F, et al. Biodegradable drug-eluting nanofiber-loaded vascular graft. J Vasc Surg. 2021;74:e49–50. doi: 10.1016/j.jvs.2021.06.081.
  • Melchiorri AJ, Hibino N, Best CA, et al. 3D-Printed biodegradable polymeric vascular grafts. Adv Healthc Mater. 2016;5:319–325.
  • Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials. 2016;106:58–68. doi: 10.1016/j.biomaterials.2016.07.038.
  • Stoddard RJ, Steger AL, Blakney AK, et al. In pursuit of functional electrospun materials for clinical applications in humans. Ther Deliv. 2016;7:387–409.
  • Beitler BG, Abraham PF, Glennon AR, et al. Interpretation of regulatory factors for 3D printing at hospitals and medical centers, or at the point of care. 3D Print Med. 2022;8:7.
  • Smita N, Prathmesh B, Onkar S. Vascular grafts market; global opportunity analysis and industrial forecast. Allied Market Research. 2022p. 1–7. Available from: https://www.alliedmarketresearch.com/vascular-graft-market. [citedd Nov 27, 2022].
  • Singh G, Storey KB. MicroRNA cues from nature: a roadmap to decipher and combat challenges in human health and disease? Cells. 2021;10:3374.
  • Jawad H, Ali NN, Lyon AR, et al. Myocardial tissue engineering: a review. J Tissue Eng Regen Med. 2007;1:327–342.
  • McMahan S, Taylor A, Copeland KM, et al. Current advances in biodegradable synthetic polymer based cardiac patches. J Biomed Mater Res A. 2020;108:972–983.
  • Qiao L, Hu S, Liu S, et al. MicroRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Investig. 2019;129:2237–2250.
  • Sharma D, Jaggi AS, Bali A. Clinical evidence and mechanisms of growth factors in idiopathic and diabetes-induced carpal tunnel syndrome. Eur J Pharmacol. 2018;837:156–163.
  • Lakshmanan R, Kumaraswamy P, Krishnan UM, et al. Engineering a growth factor embedded nanofiber matrix niche to promote vascularization for functional cardiac regeneration. Biomaterials. 2016;97:176–195.
  • Feiner R, Engel L, Fleischer S, et al. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat Mater. 2016;15:679–685.
  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–383.
  • Liu B, Lee BW, Nakanishi K, et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat Biomed Eng. 2018;2:293–303. doi: 10.1038/s41551-018-0229-7.
  • Hamada T, Dubois JLN, Bellamy V, et al. In vitro controlled release of extracellular vesicles for cardiac repair from poly(glycerol sebacate) acrylate-based polymers. Acta Biomater. 2020;115:92–103.
  • Yang H, Qin X, Wang H, et al. An in vivo miRNA delivery system for restoring infarcted myocardium. ACS Nano. 2019;13:9880–9894.
  • Maegdefessel L, Azuma J, Toh R, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 2012;4. DOI:10.1126/scitranslmed.3003441.
  • Li Y, Dal-Pra S, Mirotsou M, et al. Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRnas. Sci Rep. 2016;6:38815.
  • Gabisonia K, Prosdocimo G, Aquaro GD, et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature. 2019;569:418–422.
  • Montgomery M, Ahadian S, Davenport Huyer L, et al. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat Mater. 2017;16:1038–1046.