526
Views
0
CrossRef citations to date
0
Altmetric
Review

Exploring new frontiers in drug delivery with minimally invasive microneedles: fabrication techniques, biomedical applications, and regulatory aspects

, , , , , & ORCID Icon show all
Pages 739-755 | Received 23 Nov 2022, Accepted 06 Apr 2023, Published online: 12 Apr 2023

References

  • Larrañeta E, Lutton REM, Woolfson AD, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Reports. 2016;104:1–32. DOI:10.1016/J.MSER.2016.03.001.
  • Bariya SH, Gohel MC, Mehta TA, et al. Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol. 2011;64:11–29. DOI:10.1111/J.2042-7158.2011.01369.X.
  • Matteucci M, Casella M, Bedoni M, et al. A compact and disposable transdermal drug delivery system. Microelectron Eng. 2008;85:1066–1073.
  • Ling Teo MA, Shearwood C, Ng KC, et al. In vitro and in vivo characterization of MEMS microneedles. Biomed Microdevices. 2005;7:47–52.
  • Denet AR, Vanbever R, Préat V. Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev. 2004;56:659–674.
  • Mitragotri S, Kost J. Low-frequency sonophoresis: a review. Adv Drug Deliv Rev. 2004;56:589–601.
  • Qiu Y, Gao Y, Hu K, et al. Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. J Control Release. 2008;129:144–150.
  • Wei-Ze L, Mei-Rong H, Jian-Ping Z, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm. 2010;389:122–129.
  • Migdadi EM, Donnelly RF. Microneedles for transdermal drug delivery. Augment Cust Strateg CRM Digit Age. 2019;223–270. DOI:10.1007/978-3-030-15444-8
  • Ma Y, Boese SE, Luo Z, et al. Drug coated microneedles for minimally-invasive treatment of oral carcinomas: development and in vitro evaluation. Biomed Microdevices. 2015;17. DOI:10.1007/S10544-015-9944-Y
  • Lee HS, Ryu HR, Roh JY, et al. Bleomycin-coated microneedles for treatment of warts. Pharm Res. 2017;34:101–112.
  • Widera G, Johnson J, Kim L, et al. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine. 2006;24:1653–1664.
  • Permana AD, Paredes AJ, Zanutto FV, et al. Albendazole nanocrystal-based dissolving microneedles with improved pharmacokinetic performance for enhanced treatment of cystic echinococcosis. ACS Appl Mater Interfaces. 2021;13:38745–38760.
  • Bai C, Huo C, Zhang P. Dissolving microneedles for transdermal drug delivery system. J Phys Conf Ser. 2020;1626:012104.
  • Nordquist L, Roxhed N, Griss P, et al. Novel microneedle patches for active insulin delivery are efficient in maintaining glycaemic control: an initial comparison with subcutaneous administration. Pharm Res. 2007;24:1381–1388. DOI:10.1007/S11095-007-9256-X.
  • Zahn JD, Deshmukh AA, Pisano AP, et al. Continuous on-chip micropumping through a microneedle. Proc. IEEE Micro Electro Mech. Syst; 2001, p. 503–506. DOI:10.1109/memsys.2001.906589.
  • Ma B, Liu S, Gan Z, et al. A PZT insulin pump integrated with silicon needle array for transdermal delivery. Proc. 4th Int. Conf. Nanochannels, Microchannels Minichannels, ICNMM2006, vol. 2006 A, 2006. p. 155–160. DOI:10.1115/icnmm2006-96005.
  • He X, Sun J, Zhuang J, et al. Microneedle system for transdermal drug and vaccine delivery: devices, safety, and prospects. Dose-Response. 2019;17. DOI:10.1177/1559325819878585
  • Gupta J, Gill HS, Andrews SN, et al. Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release. 2011;154:148–155.
  • Jacoby E, Jarrahian C, Hull HF, et al. Opportunities and challenges in delivering influenza vaccine by microneedle patch. Vaccine. 2015;33:4699–4704.
  • Van Der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012;161:645–655. DOI:10.1016/j.jconrel.2012.01.042.
  • Ita K. Transdermal delivery of drugs with microneedles—Potential and challenges. Pharm. 2015;7:90–105. DOI:10.3390/PHARMACEUTICS7030090.
  • Huh I, Kim S, Yang H, et al. Effects of two droplet-based dissolving microneedle manufacturing methods on the activity of encapsulated epidermal growth factor and ascorbic acid. Eur J Pharm Sci. 2018;114:285–292.
  • Bal SM, Ding Z, Van Riet E, et al. Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J Control Release. 2010;148:266–282.
  • Ming Lee W, Feng Huang C, Lung Han Y Wearable liquid supplying device for human insulin injection, 2019.
  • Cui Q, Liu C, Zha XF. Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid Nanofluid. 2007;3:377–390.
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64:1547–1568.
  • Banga AK. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies. Transdermal Intradermal Deliv Ther Agents Appl Phys Technol. 2011:1–282. DOI:10.3109/03639045.2011.633524.
  • Shakya AK, Lee CH, Gill HS. Cutaneous vaccination with coated microneedles prevents development of airway allergy. J Control Release. 2017;265:75–82.
  • Demuth PC, Su X, Samuel RE, et al. Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv Mater. 2010;22:4851–4856.
  • Ling MH, Chen MC. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater. 2013;9:8952–8961.
  • McGrath MG, Vrdoljak A, O’Mahony C, et al. Determination of parameters for successful spray coating of silicon microneedle arrays. Int J Pharm. 2011;415:140–149.
  • Donnelly RF, Singh TRR, Alkilani AZ, et al. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. Int J Pharm. 2013;451:76–91.
  • Nair KJ. Micro-injection moulded microneedles for drug delivery [ PhD thesis]. University of Bradford; 2014.
  • Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–1258.
  • McAllister DV, Wang PM, Davis SP, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci U S A. 2003;100:13755–13760.
  • Dang N, Liu TY, Prow TW. Nano- and microtechnology in skin delivery of vaccines. Micro- Nanotechnol Vaccine Dev. 2017:327–341. Elsevier. DOI:10.1016/B978-0-323-39981-4.00017-8.
  • Kwon KM, Lim SM, Choi S, et al. Microneedles: quick and easy delivery methods of vaccines. Clin Exp Vaccine Res. 2017;6:156–159.
  • González-Vázquez P, Larrañeta E, McCrudden MTC, et al. Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis. J Control Release. 2017;265:30–40.
  • Eltayib E, Brady AJ, Caffarel-Salvador E, et al. Hydrogel-forming microneedle arrays: potential for use in minimally-invasive lithium monitoring. Eur J Pharm Biopharm. 2016;102:123–131.
  • Caffarel-Salvador E, Brady AJ, Eltayib E, et al. Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS One. 2015;10:e0145644.
  • Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv. 2010;17:187–207.
  • Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater. 2011. DOI:10.1155/2011/836587
  • Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64:128–137.
  • Gittard SD, Narayan RJ, Jin C, et al. Pulsed laser deposition of antimicrobial silver coating on Ormocer® microneedles. Biofabrication. 2009;1. DOI:10.1088/1758-5082/1/4/041001.
  • Gupta J, Felner EI, Prausnitz MR. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther. 2009;11:329–337.
  • Larrañeta E, Lutton REM, Woolfson AD, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Reports. 2016;104:1–32. DOI:10.1016/j.mser.2016.03.001.
  • Martin CJ, Allender CJ, Brain KR, et al. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J Control Release. 2012;158:93–101.
  • Miyano T, Tobinaga Y, Kanno T, et al. Sugar micro needles as transdermic drug delivery system. Biomed Microdevices. 2005;7:185–188.
  • Toxicology of the Skin - Nancy A. Monteiro-Riviere - Google Books n.d. [cited Sep 1 2022]. https://books.google.co.in/books?hl=en&lr=&id=rgXLBQAAQBAJ&oi=fnd&pg=PA333&dq=41.%09Monteiro-Riviere,+N.A.+Toxicology+of+the+Skin%3B+CRC+Press:+New+York,+NY,+USA,+2010&ots=yC4M2Kppg4&sig=RHS0Zo6pOl88YL8Qa7tk5IhNemw&redir_esc=y#v=onepage&q&f=false
  • Hong X, Wei L, Wu F, et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Devel Ther. 2013;7:945–952.
  • Gorgieva S, Kokol V. Collagen- vs. Gelatine-based biomaterials and their biocompatibility: review and perspectives. Biomater Appl Nanomedicine. 2011. DOI:10.5772/24118
  • Nagarkar R, Singh M, Nguyen HX, et al. A review of recent advances in microneedle technology for transdermal drug delivery. J Drug Deliv Sci Technol. 2020;59. DOI:10.1016/j.jddst.2020.101923
  • Tucak A, Sirbubalo M, Hindija L, et al. Microneedles: characteristics, materials, production methods and commercial development. Micromachines. 2020;11. DOI:10.3390/mi11110961.
  • Evens T, Malek O, Castagne S, et al. A novel method for producing solid polymer microneedles using laser ablated moulds in an injection moulding process. Manuf Lett. 2020;24:29–32.
  • Indermun S, Luttge R, Choonara YE, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–138.
  • McCrudden MTC, Alkilani AZ, McCrudden CM, et al. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J Control Release. 2014;180:71–80.
  • Serhan M, Sprowls M, Jackemeyer D, et al. Total iron measurement in human serum with a smartphone. AIChE Annu. Meet. Conf. Proc., vol. 2019- Novem, 2019. DOI:10.1039/x0xx00000x.
  • Camović M, Borcak K, Sirbubalo M, et al. Coated 3d printed PLA microneedles as transdermal drug delivery systems. Vol. 73. Springer; 2020. p. 735–742. DOI:10.1007/978-3-030-17971-7_109.
  • Wu L, Takama N, Park J, et al. Shadow mask assisted droplet-born air-blowing method for fabrication of dissoluble microneedle. 2017 IEEE 12th Int. Conf. Nano/Micro Eng. Mol. Syst. NEMS 2017, 2017, p. 456–459. DOI:10.1109/NEMS.2017.8017064.
  • Kim JD, Kim M, Yang H, et al. Droplet-born air blowing: novel dissolving microneedle fabrication. J Control Release. 2013;170:430–436.
  • Economidou SN, Lamprou DA, Douroumis D. 3D printing applications for transdermal drug delivery. Int J Pharm. 2018;544:415–424.
  • Awad A, Trenfield SJ, Gaisford S, et al. 3D printed medicines: a new branch of digital healthcare. Int J Pharm. 2018;548:586–596.
  • Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42:1019–1031.
  • Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499:376–394.
  • Ovsianikov A, Chichkov B, Mente P, et al. Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol. 2007;4:22–29.
  • Patricia C, Pere P, Economidou SN, et al. 3D printed microneedles for insulin skin delivery Int J Pharm. 2018;544:2: 425–432.
  • Krieger KJ, Bertollo N, Dangol M, et al. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsystems Nanoeng. 2019;5. DOI:10.1038/s41378-019-0088-8.
  • Gittard SD, Miller PR, Jin C, et al. Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles. JOM. 2011;63:59–68.
  • El-Sayed N, Vaut L, Schneider M. Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. Eur J Pharm Biopharm. 2020;154:166–174.
  • Gittard SD, Ovsianikov A, Chichkov BN, et al. Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opin Drug Deliv. 2010;7:513–533.
  • Park JH, Prausnitz MR. Analysis of the mechanical failure of polymer microneedles by axial force. J Korean Phys Soc. 2010;56:1223–1227.
  • Gittard SD, Chen B, Xu H, et al. The effects of geometry on skin penetration and failure of polymer microneedles. J Adhes Sci Technol. 2013;27:227–243.
  • Emily R, Lutton M, Moore J, et al. Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisationVol. 5. Springer; 2015. p. 313–331. DOI:10.1007/s13346-015-0237-z
  • Park J-H, Yoon Y-K, Choi S-O, et al. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery. IEEE Trans Biomed Eng. 2007;54. DOI:10.1109/TBME.2006.889173
  • Khaled Aldawood F, Andar A, Desai S, et al. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers. 2021;13:2815.
  • Aung NN, Ngawhirunpat T, Rojanarata T, et al. Fabrication, characterization and comparison of α-arbutin loaded dissolving and hydrogel forming microneedles. Int J Pharm. 2020;586. DOI:10.1016/j.ijpharm.2020.119508
  • Donnelly RF, Majithiya R, Singh TRR, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28:41–57.
  • Henry S, McAllister DV, Allen MG, et al. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87:922–925.
  • Stahl J, Wohlert M, Kietzmann M. Microneedle pretreatment enhances the percutaneous permeation of hydrophilic compounds with high melting points. BMC Pharmacol Toxicol. 2012;13:1–7.
  • Mikolajewska P, Donnelly RF, Garland MJ, et al. Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)- and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema. Pharm Res. 2010;27:2213–2220.
  • Martanto W, Davis SP, Holiday NR, et al. Transdermal delivery of insulin using microneedles in vivo. Pharm Res. 2004;21:947–952.
  • Badran MM, Kuntsche J, Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller®) in vitro: dependency on needle size and applied formulation. Eur J Pharm Sci. 2009;36:511–523.
  • Courtenay AJ, McCrudden MTC, McAvoy KJ, et al. Microneedle-mediated transdermal delivery of Bevacizumab. Mol Pharm. 2018;15:3545–3556.
  • Kim M, Yang H, Kim H, et al. Novel cosmetic patches for wrinkle improvement: retinyl retinoate- and ascorbic acid-loaded dissolving microneedles. Int J Cosmet Sci. 2014;36:207–212.
  • Lau S, Fei J, Liu H, et al. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery. J Control Release. 2017;265:113–119.
  • Jiang J, Gill HS, Ghate D, et al. Coated microneedles for drug delivery to the eye. Investig Ophthalmol Vis Sci. 2007;48:4038–4043.
  • Pearton M, Saller V, Coulman SA, et al. Microneedle delivery of plasmid DNA to living human skin: formulation coating, skin insertion and gene expression. J Control Release. 2012;160:561–569.
  • Chong RHE, Gonzalez-Gonzalez E, Lara MF, et al. Gene silencing following siRNA delivery to skin via coated steel microneedles: in vitro and in vivo proof-of-concept. J Control Release. 2013;166:211–219.
  • Lee KJ, Song HB, Cho W, et al. Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery. Acta Biomater. 2018;80:48–57.
  • Shi H, Zhou J, Wang Y, et al. A rapid corneal healing microneedle for efficient ocular drug delivery. Small. 2022;18:2104657.
  • Pei P, Yang F, Liu J, et al. Composite-dissolving microneedle patches for chemotherapy and photothermal therapy in superficial tumor treatment. Biomater Sci. 2018;6:1414–1423.
  • T Nguyen K, B Ita K, J Parikh S, et al. Transdermal delivery of captopril and metoprolol tartrate with microneedles. Drug Delivery Letters. 2014;4:236–243.
  • Kommareddy S, Baudner BC, Bonificio A, et al. Influenza subunit vaccine coated microneedle patches elicit comparable immune responses to intramuscular injection in guinea pigs. Vaccine. 2013;31:3435–3441.
  • Matsuo K, Okamoto H, Kawai Y, et al. Vaccine efficacy of transcutaneous immunization with amyloid β using a dissolving microneedle array in a mouse model of Alzheimer’s disease. J Neuroimmunol. 2014;266:1–11.
  • Sullivan SP, Koutsonanos DG, Del Pilar Martin M, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010;16:915–920.
  • Raphael AP, Prow TW, Crichton ML, et al. Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small. 2010;6:1785–1793.
  • Chen X, Corbett HJ, Yukiko SR, et al. Site-selectively coated, densely-packed microprojection array patches for targeted delivery of vaccines to skin. Adv Funct Mater. 2011;21:464–473.
  • Demuth PC, Moon JJ, Suh H, et al. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano. 2012;6:8041–8051.
  • Gill HS, Söderholm J, Prausnitz MR, et al. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther. 2010;17:811–814.
  • Morefield GL, Tammariello RF, Purcell BK, et al. An alternative approach to combination vaccines: intradermal administration of isolated components for control of anthrax, botulism, plague and staphylococcal toxic shock. J Immune Based Ther Vaccines. 2008;6:1–11.
  • Aggarwal P, Johnston CR. Geometrical effects in mechanical characterizing of microneedle for biomedical applications. Sens Actuators B Chem. 2004;102:226–234.
  • Wang PM, Cornwell M, Prausnitz MR. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol Ther. 2005;7:131–141.
  • Donnelly RF, Mooney K, Caffarel-Salvador E, et al. Microneedle-mediated minimally invasive patient monitoring. Ther Drug Monit. 2014;36:10–17.
  • Oka K, Aoyagi S, Arai Y, et al. Fabrication of a micro needle for a trace blood test. Sens Actuators A Phys. 2002;97–98:478–485.
  • Li C, Zhao X, Wang Y, et al. Prolongation of time interval between doses could eliminate accelerated blood clearance phenomenon induced by pegylated liposomal topotecan. Int J Pharm. 2013;443:17–25.
  • Smita N, Sanidhya S, Bhaskar V, et al. Microneedle technology for transdermal drug delivery: applications and combination with other enhancing techniques. J Drug Deliv Ther. 2016;6:65–83.
  • Dsouza L, Ghate VM, Lewis SA. Derma rollers in therapy: the transition from cosmetics to transdermal drug delivery. Biomed Microdevices. 2020;22. DOI:10.1007/S10544-020-00530-3
  • Camirand A, Doucet J. Needle dermabrasion. Aesthetic Plast Surg. 1997;21:48–51.
  • Pahwa M, Pahwa P, Zaheer A. “Tram track effect” after treatment of acne scars using a microneedling device. Dermatologic Surg. 2012;38:1107–1108.
  • Young Park K, Kyu Kim H, Eun Kim S, et al. Treatment of striae distensae using needling therapy: a pilot study. Wiley Online Libr. 2012;38:1823–1828.
  • Dhurat R, Mathapati S. Response to microneedling treatment in men with androgenetic alopecia who failed to respond to conventional therapy. Indian J Dermatol. 2015;60:260.
  • Halder J, Gupta S, Kumari R, et al. Microneedle array: applications, recent advances, and clinical pertinence in transdermal drug delivery. J Pharm Innov. 2021;16:558–565.
  • Gorantla S, Dabholkar N, Sharma S, et al. Chitosan-based microneedles as a potential platform for drug delivery through the skin: trends and regulatory aspects. Int J Biol Macromol. 2021;184:438–453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.