2,044
Views
0
CrossRef citations to date
0
Altmetric
Review

Microneedle technology for potential SARS-CoV-2 vaccine delivery

ORCID Icon, , & ORCID Icon
Pages 799-814 | Received 23 Jun 2022, Accepted 28 Apr 2023, Published online: 08 May 2023

References

  • Disease NIoAa I Vaccine types | NIH: national institute of allergy and infectious diseases NIH website2022. [cited 2022 24 May]. Available from: https://www.niaid.nih.gov/research/vaccine-types
  • Control ECfDPa. COVID-19 situation update worldwide 2022 [19 May 2022]. Available from: https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases
  • England PH. Impact of COVID-19 vaccines on mortality in England December 2020 to March 2021, Public Health England. 2020. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/977249/PHE_COVID-19_vaccine_impact_on_mortality_March.pdf
  • Agency UHS Immunisation of healthcare and laboratory staff: the green book, chapter 12 2013. Available from: https://www.gov.uk/government/publications/immunisation-of-healthcare-and-laboratory-staff-the-green-book-chapter-12
  • Taddio A, Ipp M, Thivakaran S, et al. Survey of the prevalence of immunization non-compliance due to needle fears in children and adults. Vaccine. 2012 2012 Jul 6;30(32):4807–4812. DOI:10.1016/j.vaccine.2012.05.011.
  • Marshall S, Moore AC, Sahm LJ, et al. Parent attitudes about childhood vaccines: point prevalence survey of vaccine hesitancy in an Irish population [Article]. Pharmacy. 2021 2021 Nov 23;9(4):188. DOI:10.3390/pharmacy9040188.
  • Mengistu DA, Tolera ST, Demmu YM. Worldwide prevalence of occupational exposure to needle stick injury among healthcare workers: a systematic review and meta-analysis. Can J Infect Dis Med Microbiol. 2021 [2021 Jan 29];2021:e9019534. DOI:10.1155/2021/9019534
  • Vong S, Perz JF, Sok S, et al. Rapid assessment of injection practices in Cambodia, 2002. BMC Public Health. 2005 2005 Jun 2;5(1):56. DOI:10.1186/1471-2458-5-56.
  • Goldin S, Kong SYJ, Tokar A, et al. Learning from a massive open online COVID-19 vaccination training experience: survey study. JMIR Public Health Surveill. 2021 2021 Dec 3;7(12):e33455. DOI:10.2196/33455.
  • Ogra PL, Fishaut M, Gallagher MR. Viral vaccination via the mucosal routes. Rev Infect Dis. 1980 May;2(3):352–369.
  • Renukuntla J, Vadlapudi AD, Patel A, et al. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharmaceut. 2013 2013 Apr 15;447(1–2):75–93. DOI:10.1016/j.ijpharm.2013.02.030.
  • Price G, Patel DA. Drug Bioavailability. StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
  • Group OV. Types of Vaccine 2021. Available from: https://vk.ovg.ox.ac.uk/vk/types-of-vaccine
  • Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development.Nat Rev Immunol. 2002 2002 Apr;2(4):251–262. DOI:10.1038/nri778.
  • Taub DD, Ershler WB, Janowski M, et al. Immunity from smallpox vaccine persists for decades: a longitudinal study. Am j med. 2008 2008 Dec;121(12):1058–1064. DOI:10.1016/j.amjmed.2008.08.019.
  • Muecksch F, Wang Z, Cho A, et al. Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost [OriginalPaper]. Nature. 2022 2022 Apr 21;607(7917):128–134. DOI:10.1038/s41586-022-04778-y.
  • Cao P, Xu ZP, Li L. Tailoring functional nanoparticles for oral vaccine delivery: recent advances and future perspectives. Composites. 2022 [2022 May 1];236:109826. DOI:10.1016/j.compositesb.2022.109826
  • Reichmuth AM, Oberli MA, Jaklenec A, et al. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7(5):319–334. DOI:10.4155/tde-2016-0006
  • Kim J, De Jesus O. Medication Routes of Administration. StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
  • van Logtestijn MDA, Domínguez-Hüttinger E, Stamatas GN, et al. Resistance to water diffusion in the stratum corneum is depth-dependent. PLoS ONE. 2015;10(2):e0117292. 2015-2-11. doi: 10.1371/journal.pone.0117292.
  • Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs.Exp Dermatol. 2000 2000 Jun;9(3):165–169. DOI:10.1034/j.1600-0625.2000.009003165.x.
  • Clayton K, Vallejo AF, Davies J, et al. Langerhans cells—programmed by the epidermis. Front Immunol. 2017;8. doi:10.3389/fimmu.2017.01676.
  • West HC, Bennett CL. Redefining the role of Langerhans cells as immune regulators within the skin. Front Immunol. 2018;8:1941. 2018-1-05. DOI:10.3389/fimmu.2017.01941.
  • Salmon JK, Armstrong CA, Ansel JC. The skin as an immune organ. West J Emergency Med. 1994 1994 Feb;160(2):146–152.
  • Liard C, Munier S, Joulin-Giet A, et al. Intradermal immunization triggers epidermal Langerhans cell mobilization required for cd8 t-cell immune responses. J Invest Dermatol. 2012 2012 Mar 1;132(3, Part 1):615–625. DOI:10.1038/jid.2011.346.
  • Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery.Adv Drug Delivery Rev. 2012 2012 Nov;64(14):1547–1568. DOI:10.1016/j.addr.2012.04.005.
  • Williams A. Transdermal and topical drug delivery from theory to clinical practice. Pharmaceutical Press. 2003;4:49–50.
  • Sadeqi A, Kiaee G, Zeng W, et al. Hard polymeric porous microneedles on stretchable substrate for transdermal drug delivery [OriginalPaper]. Sci Rep. 2022 2022 Feb 3;12(1):1–10. DOI:10.1038/s41598-022-05912-6.
  • Omatsu T, Chujo K, Miyamoto K, et al. Metal microneedle fabrication using twisted light with spin. Opt Express. 2010 2010 Aug 16;18(17):17967–17973. DOI:10.1364/OE.18.017967.
  • Ami Y, Tachikawa H, Takano N, et al. Formation of polymer microneedle arrays using soft lithography. J Micro/Nanolithography, MEMS, and MOEMS. 2011 2011 Jan 1;10(1):011503. DOI:10.1117/1.3553393.
  • Jung-Hwan P, Mark GA, Mark RP. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery.JControlled Release. 2005 2005 May 5;104(1):51–66. DOI:10.1016/j.jconrel.2005.02.002.
  • McAlister DV, Wang PM, Davis SP, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. PNAS. 2003;100(24):13755–13760. DOI:10.1073/pnas.2331316100
  • Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays.Microelectron Eng. 2011 2011 Aug 1;88(8):1681–1684. DOI:10.1016/j.mee.2010.12.067.
  • Ji J, Tay FE, Miao J, et al. Microfabricated silicon microneedle array for transdermal drug delivery. Journal of Physics: Conference Series, Singapore. 2006;34.
  • Wilke N, Mulcahy S, Ye SR, et al. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectronics J. 2005;36(7):650–656. DOI:10.1016/j.mejo.2005.04.044
  • W-Z L, Huo M-R, Zhou J-P, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharmaceut. 2010 2010 Apr 15;389(1–2):122–129. DOI:10.1016/j.ijpharm.2010.01.024.
  • Hsu C-C, Chen Y-T, Tsai C-H, et al. Fabrication of Microneedles. In: Hsu C, Che Y Tsai C, et al. eds Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand; Jan 2007.
  • Davis SP, Martanto W, Allen MG, et al. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng. 2005 2005 May;52(5):909–915. DOI:10.1109/TBME.2005.845240.
  • Fomani AA, Mansour R. Fabrication and characterization of the flexible neural microprobes with improved structural design. Sens Actuators A. 2011;168(2):233–241.
  • Choi S-O, Kim YC, Park J-H, et al. An electrically active microneedle array for electroporation. Biomed Microdevices. 2010 2010 Apr;12(2):263–273. DOI:10.1007/s10544-009-9381-x.
  • Gower MC. Industrial applications of laser micromachining.Opt Express. 2000 2000 jul 7;7(2):56–67. DOI:10.1364/OE.7.000056.
  • Matriano JA, Cormier M, Johnson J, et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res. 2002 2002 Jan;19(1):63–70. DOI:10.1023/A:1013607400040.
  • Yuzhakov V. The AdminPenTM microneedle device for painless & convenient drug delivery. Drug Delivery Technol. 2010 May;10(4):32–36.
  • Han M, Hyun D-H, Park H-H, et al. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer. J Micromech Microeng. 2007 May;17(6):1184–1191.
  • Moon SJ, Jin CY, Lee SS A novel method of microneedle array fabrication using inclined deep x-ray exposure. Journal of Physics: Conference Series, Singapore. 2006 2006-04;34:p. 180–186.
  • Ovsianikov A, Chichkov B, Mente P, et al. Two Photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol. 2007 2007 Jan 29;4(1):22–29. DOI:10.1111/j.1744-7402.2007.02115.x.
  • Gittard SD, Narayan RJ, Jin C, et al. Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles. Biofabrication. 2009 Dec;1(4):041001.
  • Doraiswamy A, Jin C, Narayan RJ, et al. Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices. Acta Biomaterialia. 2006 May;2(3):267–275.
  • Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharm Res. 2007 Jul;24(7):1369–1380.
  • Ameri M, Fan SC, Maa Y-F. Parathyroid hormone PTH(1-34) formulation that enables uniform coating on a novel transdermal microprojection delivery system. Pharm Res. 2010 Feb;27(2):303–313.
  • Saurer EM, Flessner RM, Sullivan SP, et al. Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules. 2010;11(11):3136–3143. 2010-11-8. doi: 10.1021/bm1009443.
  • Chen X, Prow TW, Crichton ML, et al. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release. 2009 2009 Nov3;139(3):212–220. DOI:10.1016/j.jconrel.2009.06.029.
  • Kim Y-C, Quan F-S, Compans RW, et al. Formulation of microneedles coated with influenza virus-like particle vaccine. AAPS PharmSciTech. 2010 2010-7-30;11(3):p. 1193–1201.
  • Andrianov AK, DeCollibus DP, Gillis HA, et al. Poly[di(carboxylatophenoxy)phosphazene] is a Potent adjuvant for intradermal immunization. Proceedings of the National Academy of Sciences. 2009;106(45):18936–18941.
  • Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery.J Control Release. 2007 2007 Feb 12;117(2):227–237. DOI:10.1016/j.jconrel.2006.10.017.
  • Yang J, Liu X, Fu Y, et al. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B. 2019 2019 May 1;9(3):469–483. DOI:10.1016/j.apsb.2019.03.007.
  • Kim Y-C, Quan F-S, Compans RW, et al. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release. 2010;142(2):187–195. 2010-3-3. doi: 10.1016/j.jconrel.2009.10.013.
  • Gill HS, Prausnitz MR. Pocketed microneedles for drug delivery to the skin. J Phys Chem Solids. 2008 May;69(5–6):1537–1541.
  • Jiang J, Gill HS, Ghate D, et al. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Visual Sci. 2007 Sep;48(9):4038–4043.
  • Zhang Y, Brown K, Siebenaler K, et al. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm Res. 2012 Jan;29(1):170–177.
  • Cormier M, Johnson B, Ameri M, et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release. 2004 2004 Jul 7;97(3):503–511. DOI:10.1016/S0168-3659(04)00171-3.
  • Andrianov AK, Marin A, DeCollibus DP. Microneedles with intrinsic immunoadjuvant properties: microfabrication, protein stability, and modulated release. Pharm Res. 2011 Jan;28(1):58–65.
  • Weldon WC, Martin MP, Zarnitsyn V, et al. Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity. Clin Vaccin Immunol. 2011 Apr;18(4):647–654.
  • Gill HS, Sõderholm J, Prausnitz MR, et al. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Genet Ther. 2010 Jun;17(6):811–814.
  • Chen X, Kask AS, Crichton ML, et al. Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. JControlled Release. 2010 2010 Dec 20;148(3):327–333. DOI:10.1016/j.jconrel.2010.09.001.
  • Ito Y, Yamazaki T, Sugioka N, et al. Self-dissolving micropile array tips for percutaneous administration of insulin. J Mater Sci. 2010 Feb;21(2):835–841.
  • Wendorf JR, Ghartey-Tagoe EB, Williams SC, et al. Transdermal delivery of macromolecules using solid-state biodegradable microstructures. Pharm Res. 2011 2011 Jan 1;28(1):22–30. DOI:10.1007/s11095-010-0174-y.
  • You X, Chang J-H, Ju B-K, et al. Rapidly dissolving fibroin microneedles for transdermal drug delivery. Mater Sci Eng C. 2011 2011 Dec 1;31(8):1632–1636. DOI:10.1016/j.msec.2011.06.010.
  • Fukushima K, Ise A, Morita H, et al. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm Res. 2011 Jan;28(1):7–21.
  • Chu LY, Choi S-O, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharmaceut sci. 2010 Oct;99(10):4228–4238.
  • Chang H, Chew SWT, Zheng M, et al. Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng. 2021 Sep;5(9):1008–1018.
  • Chen BZ, Zhao ZQ, Shahbazi MA, et al. Microneedle-based technology for cell therapy: current status and future directions. Nanoscale Horiz. 2022;7:715–728.
  • Demir YK, Akan Z, Kerimoglu O. Characterization of polymeric microneedle arrays for transdermal drug delivery. PLoS ONE. 2013;8(10):e77289.
  • Hardy J, Larrañeta G, Donnelly E, et al. Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery [research-article]. Mol Pharmaceut. 2016 Feb8, 2016;13(3):907–914. DOI:10.1021/acs.molpharmaceut.5b00807.
  • Chu LY, Prausnitz MR. Separable arrowhead microneedles.JControlled Release. 2012 10 Feb 2011;149(3):242–249. DOI:10.1016/j.jconrel.2010.10.033.
  • Boopathy AV, Mandal A, Kulp DW, et al. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination [research-article]. 2019. 2019-8-13.
  • Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019 2019 Jan 1;109:1249–1258.
  • Wonglertnirant N, Todo H, Opanasopit P, et al. Macromolecular delivery into skin using a hollow microneedle. Biol Pharm Bull. 2010;33(12):1988–1993. DOI:10.1248/bpb.33.1988
  • Burton SA, C-Y N, Simmers R, et al. Rapid intradermal delivery of liquid formulations using a hollow microstructured array. Pharm Res. 2011 Jan;28(1):31–40.
  • Harvey AJ, Kaestner SA, Sutter DE, et al. Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs. Pharm Res. 2011 Jan;28(1):107–116.
  • Bolton CJW, Howells O, Blayney GJ, et al. Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab Chip. 2020;20(15):2788–2795. DOI:10.1039/D0LC00567C
  • Pérennès F, Marmiroli B, Matteucci M, et al. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J Micromech Microeng. 2006 2006 Jan 25;16(3):473. DOI:10.1088/0960-1317/16/3/001.
  • Luttge R, Berenschot JW, Boer MJ, et al. Integrated Lithographic molding for microneedle-based devices. Microelectromech Syst, J of. 2007 2007 Sep 1;16:872–884.
  • Ma B, Liu S, Gan Z, et al. A PZT insulin pump integrated with a silicon micro needle array for transdermal drug delivery. Microfluid Nanofluidics. 2006 2006 Sep 1;2(5):417–423. DOI:10.1007/s10404-006-0083-x.
  • Gardeniers H, Luttge R, Berenschot JW, et al. Silicon micromachined hollow microneedles for transdermal liquid. Microelectromech Syst, J of. 2004 2004 Jan 1;12(6):855–862. DOI:10.1109/JMEMS.2003.820293.
  • Mukerjee EV, Collins SD, Isseroff RR, et al. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens Actuators A. 2004 2004 Sep 1;114(2):267–275. DOI:10.1016/j.sna.2003.11.008.
  • Li T, Barnett A, Rogers K L, et al. A blood sampling microsystem for pharmacokinetic applications: design, fabrication, and initial results. Lab Chip. 2009;9(24):3495–3503. DOI:10.1039/b910508e
  • Vesper HW, Wang PM, Archibold E, et al. Assessment of trueness of a glucose monitor using interstitial fluid and whole blood as specimen matrix. Diabetes Technol Ther. 2006 Feb;8(1):76–80.
  • Olatunji O, Das DB, Garland MJ, et al. Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J Pharmaceut sci. 2013 Apr;102(4):1209–1221.
  • Park J-H, Prausnitz M. Analysis of mechanical failure of polymer microneedles by axial force J Korean Phys Soc. 2010;56(4):1223–1227.
  • Chang K-T, SHen Y-K, Fan F-Y, et al. Optimal design and fabrication of a microneedle arrays patch. J Manuf Processes. 2020;54:274–285.
  • Shu W, Heimark H, Bertollo N, et al. Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method. Acta Biomaterialia. 2021;135:403–413.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr/16/2020;181(2):271–280.e8. DOI:10.1016/j.cell.2020.02.052.
  • Boopathi S, Adolfo BP, Kolandaivel P Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment [review-article]. 2020 2020 Apr 30 10.80/07391/1022-0201-75878-8.
  • Narayanan A, Narwal M, Majowicz SA, et al. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay [OriginalPaper]. Commun Biol. 2022 2022 Feb 25;5(1):1–17. DOI:10.1038/s42003-022-03090-9.
  • Knoll R, Schultze JL, Schulte-Schrepping J. Monocytes and Macrophages in COVID-19. Front Immunol. 2021 [Jul/21/2021];12:12. DOI:10.3389/fimmu.2021.720109
  • Aslan A, Aslan C, Zolbanin NM, et al. Acute respiratory distress syndrome in COVID-19: possible mechanisms and therapeutic management [ReviewPaper]. Pneumonia. 2021 2021 Dec 6;13(1):1–15. DOI:10.1186/s41479-021-00092-9.
  • Freeman D, Lambe S, Yu L-M, et al. Injection fears and COVID-19 vaccine hesitancy. Psychol Med. 2021;53(4): 1185–1195.
  • Organization WH. World Health Org. WHO/V&B/03.18.Rev.1. World Health Organization: World Health Organization. 2005.
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020 2020 Dec 31;383(27):2603–2615. DOI:10.1056/NEJMoa2034577.
  • Pfizer and BioNTech to submit emergency use authorization request today to the U.S. FDA for COVID-19 vaccine [internet]. Pfizer.com; 2020; 20 Nov [cited 13 Apr 2023]. Available from: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-submit-emergency-use-authorization
  • More flexible storage conditions for BioNTech/Pfizer’s COVID-19 vaccine [Internet]. 2021; 17 May [cited 13 Apr 2023]. Available from: https://www.ema.europa.eu/en/news/more-flexible-storage-conditions-biontechpfizers-covid-19-vaccine
  • Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 — preliminary report. N Engl J Med. 2020 Nov/12/2020;383(20):1920–1931. DOI:10.1056/NEJMoa2022483.
  • Prevention TCfDCa. Moderna COVID-19 vaccine: storage and handling summary. cdc.gov2022.
  • Mascellino MT, Di Timoteo F, De Angelis M, et al. Overview of the main anti-SARS-CoV-2 vaccines: mechanism of action, efficacy and safety. Infect Drug Resist. 2021 2021-8-31 ;14:3459–3476.doi: 10.2147/IDR.S315727
  • Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19.Cell. 2021 Feb/18/2021;184(4):861–880. DOI:10.1016/j.cell.2021.01.007.
  • Sharun K, Singh R, Dhama K. Oxford-AstraZeneca COVID-19 vaccine (AZD1222) is ideal for resource-constrained low- and middle-income countries. Ann Med Surg (Lond). 2021 May;65. DOI:10.1016/j.amsu.2021.102264.
  • AZD1222 vaccine met primary efficacy endpoint in preventing COVID-19 [Internet]. astrazeneca.com; 2020; 23 Nov [cited 13 Apr 2023]. Available from: https://www.astrazeneca.com/media-centre/press-releases/2020/azd1222hlr.html#
  • FA I, Ghany S, Gilkes T, et al. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad Med J. 2022 May;98(1159):389–394.
  • Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose ad26.COV2.S vaccine against covid-19. N Engl J Med. 2021 2021 Jun 10;384(23):2187–2201. DOI:10.1056/NEJMoa2101544.
  • Koirala A, Joo YJ, Khatami A, et al. Vaccines for COVID-19: the current state of play. Paediatr Respir Rev. 2020 Sep;35:43–49.
  • Prevention TCfDCa. Janssen COVID-19 vaccine (Johnson & Johnson). 2021.
  • Hashmi S, Ling P, Hashmi G, et al. Genetic transformation of nematodes using arrays of micromechanical piercing structures. Biotechniques. 1995 1995 Dec 1;19(5):766–770.
  • Krammer F, Smith GJD, Fouchier RAM, et al. Influenza. Nat Rev Dis Primers. 2018 2018 Jun 28;4(1):1–21. DOI:10.1038/s41572-018-0002-y.
  • Organisation WH Types of seasonal influenza vaccine. n.d.
  • CDC. Burden of Influenza 2022 [updated 2022-01-07].
  • Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, et al. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine. 2009 2009Jan14;27(3):454–459. DOI:10.1016/j.vaccine.2008.10.077.
  • Foundation HB Hepatitis B Foundation [Internet]2019 2019-01-09T03: 00: 04+00: 00. [2022-05-26 09:18:34].
  • Protection CfDCa. Global viral hepatitis: millions of people are affected | CDC 2021 [updated 2021-07-19T04:39:22Z]. Available from: https://www.cdc.gov/hepatitis/global/index.htm
  • Perez Cuevas MB, Kodani M, Choi Y, et al. Hepatitis B vaccination using a dissolvable microneedle patch is immunogenic in mice and rhesus macaques. Bioeng Transl Med. 2018 Sep;3(3):186–196.
  • Kim JS, J-A C, Kim JC, et al. Microneedles with dual release pattern for improved immunological efficacy of Hepatitis B vaccine. Int J Pharmaceut. 2020 2020 Dec 15;591:119928.
  • CDC. What is Polio? 2023 [updated 2022 Mar 29; cite 2022 Nov 24]. https://www.cdc.gov/polio/what-is-polio/index.htm#:~:text=Polio%2C%20or%20poliomyelitis%2C%20is%20a,move%20parts%20of%20the%20body).
  • Initiative PGE. Oral Poliovirus Vaccine n.d. Available from: https://polioeradication.org/polio-today/polio-prevention/the-vaccines/opv/
  • Fortner R. Has the billion dollar crusade to eradicate polio come to an end? BMJ. 2021 2021 Jul9;374:n1818. DOI:10.1136/bmj.n1818
  • Anand A, Zaman K, Estívariz CF, et al. Early priming with inactivated poliovirus vaccine (IPV) and intradermal fractional dose IPV administered by a microneedle device: a randomized controlled trial. Vaccine. 2015 2015 Nov 27;33(48):6816–6822. DOI:10.1016/j.vaccine.2015.09.039.
  • Kolluru C, Gomaa Y, Prausnitz MR. Development of a thermostable microneedle patch for polio vaccination. Drug Deliv Transl Res. 2019 Feb;9(1):192–203.
  • Moon S-S, Richter-Roche M, Resch TK, et al. Microneedle patch as a new platform to effectively deliver inactivated polio vaccine and inactivated rotavirus vaccine [OriginalPaper]. NPJ Vaccines. 2022 2022 Feb 28;7(1):1–9. DOI:10.1038/s41541-022-00443-7.
  • Kim E, Erdos G, Huang S, et al. Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine. 2020 May;55:102743.
  • Ortega-Rivera OA, Matthew DS, Angela C, et al. Trivalent subunit vaccine candidates for COVID-19 and their delivery devices. J Am Chem Soc. 2021;143(36):14748–14765.
  • Boone CE, Wang C, Lopez-Ramirez MA, et al. Active microneedle administration of plant virus nanoparticles for cancer in situ vaccination improves immunotherapeutic efficacy. Appl Nano Mater. 2020;3:8037–8051.
  • Lopez-Ramirez MA, Soto F, Wang C, et al. Built-in active microneedle patch with enhanced autonomous drug delivery. Adv Mater (Deerfield Beach, Fla). 2020 Jan;32(1):1905740.
  • Yin Y, Su W, Zhang J, et al. Separable microneedle patch to protect and deliver DNA nanovaccines against COVID-19. ACS Nano. 2021 Sep/28/2021;15(9):14347–14359. DOI:10.1021/acsnano.1c03252.
  • Xia D, Jin R, Byagathvalli G, et al. An ultra-low-cost electroporator with microneedle electrodes (ePatch) for SARS-CoV-2 vaccination [research-article].2021. 2021 Oct 20.
  • Qilin L, Rengui X, Huiling F, et al. Smart mushroom-inspired imprintable and lightly detachable (MILD) microneedle patterns for effective COVID-19 vaccination and decentralized information storage. Clin Ther. 2022 Apr 22;44(7):971–981. research-article
  • Yu J, Kuwentrai C, Gong HR, et al. Intradermal delivery of mRNA using cryomicroneedles. Acta Biomaterialia. 2022 Aug;148:133–141.
  • Organisation TWH WHO Coronavirus (COVID-19) dashboard 2022 [17 Aug 22]. Available from: https://covid19.who.int
  • McMillan CLD, Azuar A, Choo JJY, et al. Dermal delivery of a SARS-CoV-2 subunit vaccine induces immunogenicity against variants of concern [article]. Vaccines. 2022 2022Apr 08;10(4):578. DOI:10.3390/vaccines10040578.
  • McMillan CLD, Choo JJY, Idris A, et al. Complete protection by a single-dose skin patch-delivered SARS-CoV-2 spike vaccine. Sci Adv. 2021 [Oct/29/2021];7(44). Doi:10.1126/sciadv.abj8065.
  • Avcil M, Çelik A. Microneedles in drug delivery: progress and challenges. Micromach. 2021 Nov;12(11):1321.
  • Römgens AM, Bader DL, Bouwstra JA, et al. Monitoring the penetration process of single microneedles with varying tip diameters. J Mech Behav Biomed Mater. 2014 2014 Dec 1;40:397–405.
  • Romani N, Thurnher M, Idoyaga J, et al. Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy. Immunol Cell Biol. 2010 May;88(4):424–430.
  • Li CG, Ma Y, Huh I, et al. A novel ultrafine needle (UN) for innocuous and efficient subcutaneous insulin delivery. Adv Funct Mater. 2017;27(2):1603228. DOI:10.1002/adfm.201603228
  • Detamornrat U, McAlister E, Hutton ARJ, et al. The role of 3D printing technology in microengineering of microneedles. Small 2022 May;1818: e2106392. Small (Weinheim an Der Bergstrasse Germany.10.1002/smll.202106392
  • Caudill C, Perry J, Iliadis K, et al. Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. PNAS. 2021 [2021 Sep 28];118(39). Doi:10.1073/pnas.2102595118.
  • Bayliss SC, Harris PJ, Buckberry LD, et al. Phosphate and cell growth on nanostructured semiconductors. J Mater Sci Lett. 1997;16(9):737–740. DOI:10.1023/A:1018581014416
  • Guimarães TMT, Moniz T, Nunes C, et al. Polymeric microneedles for transdermal delivery of rivastigmine: design and application in skin mimetic model. Pharmaceutics. 2022 Apr;14(4):752.
  • Fateme Nazary A, Leila S, Sepideh S, et al. Application of microneedle patches for drug delivery; doorstep to novel therapies [review-article].2022 2022 Apr 29. DOI:10.1177/2041-73142.21085.390.
  • Dabbagh SR, Sarabi M, Rahbarghazi R, et al. 3D-printed microneedles in biomedical applications. iScience. 2022 22 Jan 2021;24(1):102012. DOI:10.1016/j.isci.2020.102012.
  • Yu M, Arteaga DN, Aksit A, et al. Anatomical and functional consequences of microneedle perforation of round window membrane. Otology & Neurotology: Official Publ Am Otological Soc, Am Neurotology Soc [And] Eur Academy of Otology and Neurotology. 2020 Feb;41(2):e280–287.
  • Hansen LJJ, Daoussi R, Vervaet C, et al. Freeze-drying of live virus vaccines: a review. Vaccine. 2015 Oct 13 2015;33(42):5507–5519. DOI:10.1016/j.vaccine.2015.08.085.
  • Health CfDaR. Use of international standard ISO 10993-1, “Biological evaluation of medical devices - Part 1: evaluation and testing within a risk management process”. U.S. Food and Drug Administration. 2020 [updated Wed, 09/30/2020 - 12:13].
  • McCrudden MTC, Alkilani AZ, Courtenay AJ, et al. Considerations in the sterile manufacture of polymeric microneedle arrays. Drug Deliv Transl Res. 2015 Feb;5(1):3–14.
  • Executive THaS. Avoiding sharps injuries - blood borne viruses (BBV) n.d. Available from: https://www.hse.gov.uk/biosafety/blood-borne-viruses/avoiding-sharps-injuries.htm
  • Den W, Chen C-H, Luo Y-C. Revisiting the water-use efficiency performance for microelectronics manufacturing facilities: using Taiwan’s science parks as a case study.Water-Energy Nexus. 2018 2018 Dec 1;1(2):116–133. DOI:10.1016/j.wen.2018.12.002.
  • Sullivan SP, Koutsonanos DG, Del Pilar Martin M, et al. Dissolving polymer microneedle patches for influenza vaccination. Nature Med. 2010 Aug;16(8):915–920.