334
Views
0
CrossRef citations to date
0
Altmetric
Review

Iontophoresis for the cutaneous delivery of nanoentraped drugs

, , &
Pages 785-798 | Received 27 Feb 2023, Accepted 28 Apr 2023, Published online: 03 May 2023

References

  • Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Controlled Release. 2014;190:15–28.
  • Ghosn J, Taiwo B, Seedat S, et al. Hiv. Lancet. 2018;392:685–697.
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–1268.
  • Liu X, Testa B, Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm Res. 2010;28:962–977.
  • Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin’s barrier function. Pharm Sci Technol Today. 2000;3:318–326.
  • Gratieri T, Santer V, Kalia YN. Basic principles and current status of transcorneal and transscleral iontophoresis. Expert Opin Drug Deliv. 2016;14:1091–1102.
  • Kalia YN, Naik A, Garrison J, et al. Iontophoretic drug delivery. Adv Drug Deliv Rev. 2004;56:619–658. DOI:10.1016/j.addr.2003.10.026
  • Gratieri T, Kalia YN. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier. Adv Drug Deliv Rev. 2013;65:315–329. DOI:10.1016/j.addr.2012.04.012
  • Cázares-Delgadillo J, Ganem-Rondero A, Merino V, et al. Controlled transdermal iontophoresis for poly-pharmacotherapy: simultaneous delivery of granisetron, metoclopramide and dexamethasone sodium phosphate in vitro and in vivo. Eur J Pharm Sci. 2016;85:31–38.
  • Santer V, Del Río Sancho S, Lapteva M, et al. Targeted intracorneal delivery—Biodistribution of triamcinolone acetonide following topical iontophoresis of cationic amino acid ester prodrugs. Int J Pharm. 2017;525:43–53.
  • Singhal M, Serna C, Merino V, et al. Current profile controlled transdermal delivery of pramipexole from an iontophoretic patch system in vitro and in vivo. Eur J Pharm Biopharm. 2021;166:175–181.
  • Singhal M, Serna C, Kalaria D, et al. Effect of continuous and multi-phasic current profiles on the iontophoretic transport of pramipexole, rasagiline and huperzine A: depicting temporal variation and biodistribution in the skin. Int J Pharm. 2021;599:120445.
  • Lapteva M, Sallam MA, Goyon A, et al. Non-invasive targeted iontophoretic delivery of cetuximab to skin. Expert Opin Drug Deliv. 2020;17:589–602.
  • Gelfuso GM, Figueiredo FV, Gratieri T, et al. The effects of pH and ionic strength on Topical Delivery of a Negatively Charged Porphyrin (TPPS4). J Pharm Sci. 2008;97:4249–4257.
  • Kalaria DR, Singhal M, Patravale V, et al. Simultaneous controlled iontophoretic delivery of pramipexole and rasagiline in vitro and in vivo: transdermal polypharmacy to treat Parkinson’s disease. Eur J Pharm Biopharm. 2018;127:204–212.
  • Singhal M, Merino V, Rosini M, et al. Controlled iontophoretic delivery in vitro and in vivo of ARN14140—A multitarget compound for alzheimer’s disease. Mol Pharm. 2019;16:3460–3468.
  • Abla N, Naik A, Guy RH, et al. Topical iontophoresis of valaciclovir hydrochloride improves cutaneous aciclovir delivery. Pharm Res. 2006;23:1842–1849.
  • Abla N, Naik A, Guy RH, et al. Effect of charge and molecular weight on transdermal peptide delivery by iontophoresis. Pharm Res. 2005;22:2069–2078.
  • Del Río-Sancho S, Cros C, Coutaz B, et al. Cutaneous iontophoresis of μ-conotoxin CnIIIC—A potent Na V 1.4 antagonist with analgesic, anaesthetic and myorelaxant properties. Int J Pharm. 2017;518:59–65.
  • Krishnan G, Roberts MS, Grice J, et al. Iontophoretic skin permeation of peptides: an investigation into the influence of molecular properties, iontophoretic conditions and formulation parameters. Drug Deliv Transl Res. 2014;4:222–232.
  • Dubey S, Perozzo R, Scapozza L, et al. Noninvasive transdermal iontophoretic delivery of biologically active human basic fibroblast growth factor. Mol Pharm. 2011;8:1322–1331.
  • Darade AR, Lapteva M, Hoffmann T, et al. Effect of mRNA delivery modality and formulation on cutaneous mRNA distribution and downstream eGFP expression. Pharmaceutics. 2022;14:151.
  • Cázares-Delgadillo J, Naik A, Ganem-Rondero A, et al. Transdermal delivery of cytochrome C—A 12.4 kDa protein—Across intact skin by constant–Current iontophoresis. Pharm Res. 2007;24:1360–1368.
  • Dubey S, Kalia YN. Electrically-assisted delivery of an anionic protein across intact skin: cathodal iontophoresis of biologically active ribonuclease T1. J Controlled Release. 2011;152:356–362.
  • Dubey S, Kalia YN. Non-invasive iontophoretic delivery of enzymatically active ribonuclease a (13.6kDa) across intact porcine and human skins. J Controlled Release. 2010;145:203–209.
  • Gelfuso GM, Gratieri T, Delgado-Charro MB, et al. Iontophoresis-targeted, follicular delivery of minoxidil sulfate for the treatment of alopecia. J Pharm Sci. 2013;102:1488–1494.
  • Turner NG, Guy RH. Visualization and quantitation of iontophoretic pathways using confocal microscopy. J Investig Dermatol Symp Proc. 1998;3:136–142.
  • Cullander C, Guy RH. Sites of iontophoretic current flow into the skin: identification and characterization with the vibrating probe electrode. J Invest Dermatol. 1991;97:55–64.
  • Kajimoto K, Yamamoto M, Watanabe M, et al. Noninvasive and persistent transfollicular drug delivery system using a combination of liposomes and iontophoresis. Int J Pharm. 2011;403:57–65.
  • Quintão WD, Alencar-Silva T, de Fátima Borin M, et al. Microemulsions incorporating brosimum gaudichaudii extracts as a topical treatment for vitiligo: in vitro stimulation of melanocyte migration and pigmentation. J Mol Liq. 2019;294:111685.
  • Patzelt A, Lademann J. Recent advances in follicular drug delivery of nanoparticles. Expert Opin Drug Deliv. 2020;17:49–60.
  • Goyal R, Macri LK, Kaplan HM, et al. Nanoparticles and nanofibers for topical drug delivery. J Controlled Release. 2016;240:77–92.
  • Lima AL, Gratieri T, Cunha-Filho M, et al. Polymeric nanocapsules: a review on design and production methods for pharmaceutical purpose. Methods. 2022;199:54–66.
  • Ferreira-Nunes R, de Silva SMM, de Souza PEN, et al. Incorporation of Eugenia dysenterica extract in microemulsions preserves stability, antioxidant effect and provides enhanced cutaneous permeation. J Mol Liq. 2018;265:408–415.
  • Kazemi M, Mombeiny R, Tavakol S, et al. A combination therapy of nanoethosomal piroxicam formulation along with iontophoresis as an anti‐inflammatory transdermal delivery system for wound healing. Int Wound J. 2019;16:1144–1152.
  • Mombeiny R, Tavakol S, Kazemi M, et al. Anti‐inflammatory ethosomal nanoformulation in combination with iontophoresis in chronic wound healing: an ex vivo study. IET Nanobiotechnol. 2021;15:710–718.
  • Aguilella V, Kontturi K, Murtomäki L, et al. Estimation of the pore size and charge density in human cadaver skin. J Controlled Release. 1994;32:249–257.
  • Lademann J, Patzelt A, Richter H, et al. Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. J Biomed Opt. ∙∙ A study determining the optimal nanoparticle size for penetration into hair follicles 2009;14:021014.doi: 10.1117/1.3078813
  • Matos BN, Reis TA, Gratieri T, et al. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles. Int j biol macromol. 2015;75:225–229.
  • Santos GA, Angelo T, Andrade LM, et al. The role of formulation and follicular pathway in voriconazole cutaneous delivery from liposomes and nanostructured lipid carriers. Colloids Surf B Biointerfaces. 2018;170:341–346.
  • Pires FQ, da Silva JKR, Sa-Barreto LL, et al. Lipid nanoparticles as carriers of cyclodextrin inclusion complexes: a promising approach for cutaneous delivery of a volatile essential oil. Colloids Surf B Biointerfaces. 2019;182:110382.
  • Ushirobira CY, Afiune LAF, Pereira MN, et al. Dutasteride nanocapsules for hair follicle targeting: effect of chitosan-coating and physical stimulus. Int j biol macromol. 2020;151:56–61.
  • Ferreira-Nunes R, Cunha-Filho M, Gratieri T, et al. Follicular-targeted delivery of spironolactone provided by polymeric nanoparticles. Colloids Surf B Biointerfaces. 2021;208:112101.
  • Tolentino S, Pereira MN, de Sousa MC, et al. The influence of sebaceous content on the performance of nanosystems designed for the treatment of follicular diseases. J Drug Deliv Sci Technol. 2020;59:101895. DOI:10.1016/j.jddst.2020.101895
  • Angelo T, El-Sayed N, Jurisic M, et al. Effect of physical stimuli on hair follicle deposition of clobetasol-loaded lipid nanocarriers. Sci Rep. 2020;10:176.
  • Gao Y, Du L, Li Q, et al. How physical techniques improve the transdermal permeation of therapeutics: a review. Medicine (Baltimore). 2022;101:e29314.
  • Nawrocki S, Cha J. The etiology, diagnosis, and management of hyperhidrosis: a comprehensive review. J Am Acad Dermatol. 2019;81:669–680.
  • Pariser DM, Ballard A. Iontophoresis for palmar and plantar hyperhidrosis. Dermatol Clin. 2014;32:491–494.
  • McConaghy JR, Fosselman D. Hyperhidrosis: management options. Am Fam Physician. 2018;97:729–734.
  • Serrano-Castañeda P, Escobar-Chavez JJ, Rodriguez-Cruz IM, et al. Microneedles as enhancer of drug absorption through the skin and applications in medicine and cosmetology. J Pharm Pharm Sci. 2018;21:73–93.
  • Zhang Y, Yu J, Kahkoska AR, et al. Advances in transdermal insulin delivery. Adv Drug Deliv Rev. 2019;139:51–70.
  • Curdy C, Kalia YN, Guy RH. Post-iontophoresis recovery of human skin impedance in vivo. Eur J Pharm Biopharm. 2002;53:15–21.
  • Kalia YN, Nonato LB, Guy RH. The effect of iontophoresis on skin barrier integrity: non-invasive evaluation by impedance spectroscopy and transepidermal water loss. Pharm Res. 1996;13:957–960.
  • Gratieri T, Kalaria D, Kalia YN. Non-invasive iontophoretic delivery of peptides and proteins across the skin. Expert Opin Drug Deliv. 2011;8:645–663.
  • Tomoda K, Watanabe A, Suzuki K, et al. Enhanced transdermal permeability of estradiol using combination of PLGA nanoparticles system and iontophoresis. Colloids Surf B Biointerfaces. 2012;97:84–89.
  • Liu W, Hu M, Liu W, et al. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. Int J Pharm. 2008;364:135–141.
  • Kalaria DR, Patel P, Merino V, et al. Controlled iontophoretic delivery of pramipexole: electrotransport kinetics in vitro and in vivo. Eur J Pharm Biopharm. 2014;88:56–63.
  • Ledger PW. Skin biological issues in electrically enhanced transdermal delivery. Adv Drug Deliv Rev. 1992;9:289–307.
  • Tari K, Khamoushian S, Madrakian T, et al. Controlled transdermal iontophoresis of insulin from water-soluble polypyrrole nanoparticles: an in vitro study. Int J Mol Sci. 2021;22:12479.
  • Pikal MJ. The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev. 2001;46:281–305.
  • Pikal MJ. Transport mechanisms in iontophoresis. III. An experimental study of the contributions of electroosmotic flow and permeability change in transport of low and high molecular weight solutes. Pharm Res. 1990;07:118–126.
  • Pikal MJ, Shah S. Transport mechanisms in iontophoresis. II. electroosmotic flow and transference number measurements for hairless mouse skin. Pharm Res. 1990;07:213–221.
  • Pikal MJ, Shah S. Transport mechanisms in iontophoresis. III. An experimental study of the contributions of electroosmotic flow and permeability change in transport of low and high molecular weight solutes. Pharm Res. 1990;07:222–229.
  • Takeuchi I, Takeshita T, Suzuki T, et al. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for positively charged drugs. Colloids Surf B Biointerfaces. 2017;160:520–526.
  • Takeuchi I, Suzuki T, Makino K. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for transcutaneous immunization. Colloids Surf Physicochem Eng Asp. 2021;608:125607.
  • Toyoda M, Hama S, Ikeda Y, et al. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int J Pharm. 2015;483:110–114.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Controlled Release. 2012;161:505–522.
  • Tomoda K, Terashima H, Suzuki K, et al. Enhanced transdermal delivery of indomethacin-loaded PLGA nanoparticles by iontophoresis. Colloids Surf B Biointerfaces. 2011;88:706–710.
  • Tomoda K, Terashima H, Suzuki K, et al. Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo. Colloids Surf B Biointerfaces. 2012;92:50–54.
  • Takeuchi I, Fukuda K, Kobayashi S, et al. Transdermal delivery of estradiol-loaded PLGA nanoparticles using iontophoresis for treatment of osteoporosis. Biomed Mater Eng. 2016;27:475–483.
  • Takeuchi I, Kobayashi S, Hida Y, et al. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: application of enhanced charged nanoparticles with iontophoresis. Colloids Surf B Biointerfaces. 2017;155:35–40.
  • Takeuchi I, Suzuki T, Makino K. Skin permeability and transdermal delivery route of 50-nm indomethacin-loaded PLGA nanoparticles. Colloids Surf B Biointerfaces. 2017;159:312–317.
  • Takeuchi I, Hidaka Y, Oshizaka T, et al. Chitosan-coated PLGA nanoparticles for transcutaneous immunization: skin distribution in lysozyme-sensitized mice. Colloids Surf B Biointerfaces. 2022;220:112916.
  • Malinovskaja-Gomez K, Labouta HI, Schneider M, et al. Transdermal iontophoresis of flufenamic acid loaded PLGA nanoparticles. Eur J Pharm Sci. 2016;89:154–162.
  • Shiota K, Hama S, Yoshitomi T, et al. Prevention of UV-Induced melanin production by accumulation of redox nanoparticles in the epidermal layer via iontophoresis. Biol Pharm Bull. 2017;40:941–944.
  • Essa EA, Bonner MC, Barry BW. Electrically assisted skin delivery of liposomal estradiol; phospholipid as damage retardant. J Controlled Release. 2004;95:535–546.
  • Malinovskaja-Gomez K, Espuelas S, Garrido MJ, et al. Comparison of liposomal drug formulations for transdermal iontophoretic drug delivery. Eur J Pharm Sci. 2017;106:294–301.
  • Petrilli R, Eloy JO, Saggioro FP, et al. Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection. J Controlled Release. 2018;283:151–162.
  • Kigasawa K, Miyashita M, Kajimoto K, et al. Efficient intradermal delivery of superoxide dismutase using a combination of liposomes and iontophoresis for protection against UV-Induced skin damage. Biol Pharm Bull. 2012;35:781–785.
  • Moura RBP, Andrade LM, Alonso L, et al. Combination of lipid nanoparticles and iontophoresis for enhanced lopinavir skin permeation: impact of electric current on lipid dynamics. Eur J Pharm Sci. 2022;168:106048. DOI:10.1016/j.ejps.2021.106048
  • Charoenputtakun P, Li SK, Ngawhirunpat T. Iontophoretic delivery of lipophilic and hydrophilic drugs from lipid nanoparticles across human skin. Int J Pharm. 2015;495:318–328.
  • Fang C-L, Aljuffali IA, Y-C L, et al. Delivery and targeting of nanoparticles into hair follicles. Ther Deliv. 2014;5:991–1006.
  • Andrade LM, de Fátima Reis C, Maione-Silva L, et al. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2014;88:40–47.
  • Camera E, Ludovici M, Galante M, et al. Comprehensive analysis of the major lipid classes in sebum by rapid resolution high-performance liquid chromatography and electrospray mass spectrometry. J Lipid Res. 2010;51:3377–3388.
  • Lademann J, Knorr F, Richter H, et al. Hair follicles as a target structure for nanoparticles. J Innov Opt Health Sci. 2015;08:1530004.
  • Patzelt A, Richter H, Knorr F, et al. Selective follicular targeting by modification of the particle sizes. J Controlled Release. 2011;150:45–48.
  • Xiang H, Xu S, Zhang W, et al. Skin permeation of curcumin nanocrystals: effect of particle size, delivery vehicles, and permeation enhancer. Colloids Surf B Biointerfaces. 2023;224:113203.
  • Martins Andrade JF, da Cunha Miranda T, Cunha-Filho M, et al. Iontophoresis application for drug delivery in high resistivity membranes: nails and teeth. Drug Deliv Transl Res. 2022 [cited 2022 Nov 2];13(5):1272–1287. DOI:10.1007/s13346-022-01244-0
  • Mutalik S, Parekh HS, Anissimov YG, et al. Iontophoresis-mediated transdermal permeation of peptide dendrimers across human epidermis. Skin Pharmacol Physiol. 2013;26:127–138. DOI:10.1159/000348469
  • Hegde AR, Rewatkar PV, Manikkath J, et al. Peptide dendrimer-conjugates of ketoprofen: synthesis and ex vivo and in vivo evaluations of passive diffusion, sonophoresis and iontophoresis for skin delivery. Eur J Pharm Sci. 2017;102:237–249.
  • Bernardi DS, Bitencourt C, da Silveira DSC, et al. Effective transcutaneous immunization using a combination of iontophoresis and nanoparticles. Nanomed Nanotechnol Biol Med. 2016;12:2439–2448.
  • Labala S, Mandapalli PK, Kurumaddali A, et al. Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol Pharm. 2015;12:878–888.
  • Labala S, Jose A, Venuganti VVK. Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma. Colloids Surf B Biointerfaces. 2016;146:188–197.
  • Gratieri T, Kalia YN Iontophoresis in penetration enhancement. Percutaneous Absorpt [Internet]. 5th ed. Boca Raton: CRC Press; 2021 [cited 2023 Feb 10]. p. 667–686. Available from: https://www.taylorfrancis.com/books/9780429202971/chapters/10.1201/9780429202971-46.
  • Dubey S, Kalia YN. Understanding the poor iontophoretic transport of lysozyme across the skin: when high charge and high electrophoretic mobility are not enough. J Controlled Release. 2014;183:35–42.
  • Gratieri T, Zarhloule R, Dubey S, et al. The influence of skin barrier impairment on the iontophoretic transport of low and high molecular weight permeants. Int J Pharm. 2021;602:120607. DOI:10.1016/j.ijpharm.2021.120607

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.