135
Views
0
CrossRef citations to date
0
Altmetric
Review

Factors affecting the preparation of nanocrystals: characterization, surface modifications and toxicity aspects

&
Pages 871-894 | Received 18 Dec 2022, Accepted 22 May 2023, Published online: 26 May 2023

References

  • Imono M, Uchiyama H, Yoshida S, et al. The elucidation of key factors for oral absorption enhancement of nanocrystal formulations: in vitro–in vivo correlation of nanocrystals. Eur J Pharm Biopharm. 2020;146:84–92. DOI:10.1016/j.ejpb.2019.12.002
  • Joseph E, Singhvi G. Nanomaterials for drug delivery and therapy: multifunctional nanocrystals for cancer therapy: a potential nanocarrier. Cambridge (MA): Elsevier; 2019.
  • Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res. 2008;10:845–862.
  • Zhao J, Liu Y, Wang L, et al. Functional and modified nanocrystals technology for target drug delivery. J Nanosci Nanotechnol. 2018;18:5207–5221.
  • Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm. 2013;453:142–156.
  • Patel V, Sharma OP, Mehta T. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin Drug Deliv. 2018;15:351–368.
  • Zhang J, Huang Y, Liu D, et al. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur J Pharm Sci. 2013;48:740–747.
  • Pelikh O, Stahr PL, Huang J, et al. Nanocrystals for improved dermal drug delivery. Eur J Pharm Biopharm. 2018;128:170–178.
  • Jahangir MA, Imam SS, Muheem A, et al. Nanocrystals: characterization overview, applications in drug delivery, and their toxicity concerns. J Pharm Innov. 2020;17:1–12.
  • Gao L, Liu G, Ma J. Drug nanocrystals: in vivo performances. J Control Release. 2012;160:418–430.
  • Pardhi VP, Verma T, Flora SJS, et al. Nanocrystals: an overview of fabrication, characterization and therapeutic applications in drug delivery. Curr Pharm Des. 2018;24:5129–5146.
  • Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10:13–23.
  • Malamatari M, Taylor KM, Malamataris S, et al. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today. 2018;23:534–547.
  • Jarvis M, Krishnan V, Mitragotri S. Nanocrystals: a perspective on translational research and clinical studies. Bioeng Transl Med. 2019;4:5–16.
  • Sharma S, Verma A, Pandey G, et al. Investigating the role of Pluronic-g-Cationic polyelectrolyte as functional stabilizer for nanocrystals: impact on Paclitaxel oral bioavailability and tumor growth. Acta Biomater. 2015;26:169–183.
  • Zuo B, Sun Y, Li H, et al. Preparation and in vitro/in vivo evaluation of fenofibrate nanocrystals. Int J Pharm. 2013;455:267–275.
  • Liu T, Yu X, Yin H, et al. Advanced modification of drug nanocrystals by using novel fabrication and downstream approaches for tailor-made drug delivery. Drug Deliv. 2019;26:1092–1103.
  • Tuomela A, Hirvonen J, Peltonen L. Stabilizing agents for drug nanocrystals: effect on bioavailability. Pharmaceutics. 2016;8:16.
  • Fuhrmann K, Gauthier MA, Leroux JC. Targeting of injectable drug nanocrystals. Mol Pharm. 2014;11:1762–1771.
  • Junghanns JUAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed. 2008;3(3):295–310.
  • Zhu Y, Fu Y, Zhang A, et al. Rod-shaped nintedanib nanocrystals improved oral bioavailability through multiple intestinal absorption pathways. Eur J Pharm Sci. 2022;168:106047.
  • Bakhaidar RB, Naveen NR, Basim P, et al. Response Surface Methodology (RSM) powered formulation development, optimization and evaluation of thiolated based mucoadhesive nanocrystals for local delivery of simvastatin. Polymers. 2022;14(23):5184. DOI:10.3390/polym14235184
  • Tashan E, Karakucuk A, Celebi N. Optimization and in vitro evaluation of ziprasidone nanosuspensions produced by a top-down approach. J Drug Deliv Sci Technol. 2019;52:37–45.
  • Parmar PK, Bansal AK. Novel nanocrystal-based formulations of apremilast for improved topical delivery. Drug Deliv Transl Res. 2021;11:966–983.
  • Pelikh O, Eckert RW, Pinnapireddy SR, et al. Hair follicle targeting with curcumin nanocrystals: influence of the formulation properties on the penetration efficacy. J Control Release. 2021;329:598–613.
  • Deguchi S, Ogata F, Watanabe M, et al. Nanocrystalline suspensions of irbesartan enhance oral bioavailability by improving drug solubility and leading endocytosis uptake into the intestine. Pharmaceutics. 2021;13(9):1404. DOI:10.3390/pharmaceutics13091404
  • Peltonen L, Hirvonen J. Drug nanocrystals – Versatile option for formulation of poorly soluble materials. Int J Pharm. 2018;537(1):73–83.
  • Zhang G, Guan H, Li J, et al. Roles of effective stabilizers in improving oral bioavailability of naringenin nanocrystals: maintenance of supersaturation generated upon dissolution by inhibition of drug dimerization. Asian J Pharm Sci. 2022;17(5):741–750. DOI:10.1016/j.ajps.2022.09.001
  • Merisko-Liversidge E. Particles: nanocrystals: resolving pharmaceutical formulation issues associated with poorly water-soluble compounds. Orlando: Marcel Dekker; 2002.
  • Srivalli KMR, Mishra B. Drug nanocrystals: a way toward scale-up. Saudi Pharm J. 2016;24:386–404.
  • Romero GB, Keck CM, Müller RH. Simple low-cost miniaturization approach for pharmaceutical nanocrystals production. Int J Pharm. 2016;501:236–244.
  • Tomić I, Juretić M, Jug M, et al. Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. Int J Pharm. 2019;563:249–258.
  • Borchard G. Non-biological complex drugs: drug nanocrystals. Switzerland: Springer; 2015.
  • Mohammad IS, Hu H, Yin L, et al. Drug nanocrystals: fabrication methods and promising therapeutic applications. Int J Pharm. 2019;562:187–202.
  • Srivalli KMR, Mishra B. Drug nanocrystals: four basic prerequisites for formulation development and scale-up. Curr Drug Targets. 2015;16:136–147.
  • Bansal S, Bansal M, Kumria R. Nanocrystals: current strategies and trends. Int J Res Pharm BioMed Sci. 2012;4:10.
  • Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36:43–48.
  • Zingale E, Bonaccorso A, Carbone C, et al. Drug nanocrystals: focus on brain delivery from therapeutic to diagnostic applications. Pharmaceutics. 2022;14(4):691. DOI:10.3390/pharmaceutics14040691
  • Lu L, Xu Q, Wang J, et al. Drug nanocrystals for active tumor-targeted drug delivery. Pharmaceutics. 2022;14(4):797. DOI:10.3390/pharmaceutics14040797
  • Bilgili E, Guner G. Mechanistic modeling of wet stirred media milling for production of drug nanosuspensions. AAPS Pharm Sci Tech. 2020;22(1):2.
  • Parker N, Rahman M, Bilgili E. Impact of media material and process parameters on breakage kinetics–energy consumption during wet media milling of drugs. Eur J Pharm Biopharm. 2020;153:52–67.
  • Guner G, Kannan M, Berrios M, et al. Use of bead mixtures as a novel process optimization approach to nanomilling of drug suspensions. Pharm Res. 2021;38(7):1279–1296.
  • Li M, Alvarez P, Bilgili E. A microhydrodynamic rationale for selection of bead size in preparation of drug nanosuspensions via wet stirred media milling. Int J Pharm. 2017;524(1):178–192.
  • Knieke C, Romeis S, Peukert W. Influence of process parameters on breakage kinetics and grinding limit at the nanoscale. AIChE J. 2011;57(7):1751–1758.
  • Li M, Yaragudi N, Afolabi A, et al. Sub-100nm drug particle suspensions prepared via wet milling with low bead contamination through novel process intensification. Chem Eng Sci. 2015;130:207–220.
  • Medarević D, Djuriš J, Ibrić S, et al. Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. Int J Pharm. 2018;540(1):150–161. DOI:10.1016/j.ijpharm.2018.02.011
  • Juhnke M, Märtin D, John E. Generation of wear during the production of drug nanosuspensions by wet media milling. Eur J Pharm Biopharm. 2012;81(1):214–222.
  • Breitung-Faes S, Kwade A. Use of an enhanced stress model for the optimization of wet stirred media milling processes. Chem Eng Technol. 2014;37(5):819–826.
  • Flach F, Konnerth C, Peppersack C, et al. Impact of formulation and operating parameters on particle size and grinding media wear in wet media milling of organic compounds – a case study for pyrene. Adv Powder Technol. 2016;27(6):2507–2519. DOI:10.1016/j.apt.2016.09.026
  • Guner G, Seetharaman N, Elashri S, et al. Analysis of heat generation during the production of drug nanosuspensions in a wet stirred media mill. Int J Pharm. 2022;624:122020.
  • Knieke C, Sommer M, Peukert W. Identifying the apparent and true grinding limit. Powder Technol. 2009;195(1):25–30.
  • Romero GB, Keck CM, Müller RH, et al. Development of cationic nanocrystals for ocular delivery. Eur J Pharm Biopharm. 2016;107:215–222.
  • Zong R, Ruan H, Zhu W, et al. Curcumin nanocrystals with tunable surface zeta potential: preparation, characterization and antibacterial study. J Drug Deliv Sci Technol. 2022;76:103771.
  • Medarević D, Ibrić S, Vardaka E, et al. Insight into the formation of glimepiride nanocrystals by wet media milling. Pharmaceutics. 2020;12(1):53. DOI:10.3390/pharmaceutics12010053
  • Ferrar JA, Sellers BD, Chan C, et al. Towards an improved understanding of drug excipient interactions to enable rapid optimization of nanosuspension formulations. Int J Pharm. 2020;578:119094.
  • Bilgili E, Li M, Afolabi A. Is the combination of cellulosic polymers and anionic surfactants a good strategy for ensuring physical stability of BCS Class II drug nanosuspensions? Pharm Dev Technol. 2016;21(4):499–510. DOI:10.3109/10837450.2015.1022788
  • Kim EA, Park JS, Kim MS, et al. High-payload nanosuspension of centella asiatica extract for improved skin delivery with no irritation. Int J Nanomed. 2021;16:7417.
  • Tian Z, Zhao Y, Mai Y, et al. Nanocrystals with different stabilizers overcome the mucus and epithelial barriers for oral delivery of multicomponent Bufadienolides. Int J Pharm. 2022;616:121522.
  • Bitterlich A, Laabs C, Krautstrunk I, et al. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling. Eur J Pharm Biopharm. 2015;92:171–179.
  • Branham ML, Moyo T, Govender T. Preparation and solid-state characterization of ball milled saquinavir mesylate for solubility enhancement. Eur J Pharm Biopharm. 2012;80(1):194–202.
  • Konnerth C, Braig V, Ito A, et al. Formation of mefenamic acid nanocrystals with improved dissolution characteristics. Chemie Ingenieur Technik. 2017;89(8):1060–1071. DOI:10.1002/cite.201600190
  • Lu Y, Chen Y, Gemeinhart RA, et al. Developing nanocrystals for cancer treatment. Nanomedicine. 2015;10:2537–2552.
  • Zhang D, Tan T, Gao L, et al. Preparation of azithromycin nanosuspensions by high pressure homogenization and its physicochemical characteristics studies. Drug Dev Ind Pharm. 2007;33:569–575.
  • Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62:3–16.
  • Kakran M, Shegokar R, Sahoo NG, et al. Fabrication of quercetin nanocrystals: comparison of different methods. Eur J Pharm Biopharm. 2012;80:113–121.
  • Oktay AN, Ilbasmis-Tamer S, Celebi N. The effect of critical process parameters of the high pressure homogenization technique on the critical quality attributes of flurbiprofen nanosuspensions. Pharm Dev Technol. 2019;24:1278–1286.
  • Sahoo NG, Kakran M, Shaal LA, et al. Preparation and characterization of quercetin nanocrystals. J Pharm Sci. 2011;100:2379–2390.
  • Martena V, Shegokar R, Di Martino P, et al. Effect of four different size reduction methods on the particle size, solubility enhancement and physical stability of nicergoline nanocrystals. Drug Dev Ind Pharm. 2014;40(9):1199–1205. DOI:10.3109/03639045.2013.810635
  • Krause KP, Kayser O, Mäder K, et al. Heavy metal contamination of nanosuspensions produced by high-pressure homogenisation. Int J Pharm. 2000;196(2):169–172. DOI:10.1016/S0378-5173(99)00414-7
  • Chen ML, John M, Lee SL, et al. Development considerations for nanocrystal drug products. Aaps J. 2017 May 1;19(3):642–651. DOI:10.1208/s12248-017-0064-x
  • Liu T, Yu X, Yin H. Impact of nanoparticle size and solid state on dissolution rate by investigating modified drug powders. Powder Technol. 2020;376:167–175.
  • Liu Q, Guan J, Sun Z, et al. Influence of stabilizer type and concentration on the lung deposition and retention of resveratrol nanosuspension-in-microparticles. Int J Pharm. 2019;569:118562.
  • Morakul B, Suksiriworapong J, Leanpolchareanchai J, et al. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability. Int J Pharm. 2013;457(1):187–196. DOI:10.1016/j.ijpharm.2013.09.022
  • Friedrich I, Reichl S, Müller-Goymann CC. Drug release and permeation studies of nanosuspensions based on solidified reverse micellar solutions (SRMS). Int J Pharm. 2005;305(1):167–175.
  • Håkansson A. Flow pulsation plays an important role for high-pressure homogenization in laboratory-scale. Chem Eng Res Des. 2018;138:472–481.
  • Kakran M, Sahoo NG, Li L, et al. Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technol. 2012;223:59–64.
  • Fontana F, Figueiredo P, Zhang P, et al. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliv Rev. 2018;131:3–21.
  • Bhakay A, Rahman M, Dave RN, et al. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: formulation–processing aspects and challenges. Pharmaceutics. 2018;10(3):86. DOI:10.3390/pharmaceutics10030086
  • Lee H, Bang JB, Na YG, et al. Development and evaluation of tannic acid-coated nanosuspension for enhancing oral bioavailability of curcumin. Pharmaceutics. 2021;13:1460.
  • Liu Y, Liu W, Xiong S, et al. Highly stabilized nanocrystals delivering Ginkgolide B in protecting against the Parkinson’s disease. Int J Pharm. 2020;577:119053.
  • Matos RL, Lu T, Prosapio V, et al. Coprecipitation of curcumin/PVP with enhanced dissolution properties by the supercritical antisolvent process. J CO2 Util. 2019;30:48–62.
  • Haghighizadeh A, Mahdavi H, Rajabi O. Continuous and size-controlled preparation of ibuprofen nanosuspension by antisolvent crystallization method using hollow fiber membrane. J Pharm Innov. 2022;18(1):1–10.
  • Zhao J, Du J, Wang J, et al. Folic acid and poly(ethylene glycol) decorated paclitaxel nanocrystals exhibit enhanced stability and breast cancer-targeting capability. ACS Appl Mater Interfaces. 2021;13(12):14577–14586. DOI:10.1021/acsami.1c00184
  • Taymouri S, Ahmadi Z, Mirian M, et al. Simvastatin nanosuspensions prepared using a combination of Ph-sensitive and timed-release approaches for potential treatment of colorectal cancer. Pharm Dev Technol. 2021;26(3):335–348. DOI:10.1080/10837450.2021.1872086
  • Padrela L, Rodrigues MA, Duarte A, et al. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals – a comprehensive review. Adv Drug Deliv Rev. 2018;131:22–78.
  • Wu KE, Li J, Wang W, et al. Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent. J Pharm Sci. 2009;98:2422–2431.
  • Lee CW, Kim SJ, Youn YS, et al. Preparation of bitter taste masked cetirizine dihydrochloride/β-cyclodextrin inclusion complex by supercritical antisolvent (SAS) process. J Supercrit Fluids. 2010;55:348–357.
  • Yekefallah M, Raofie F. Preparation of stable nanosuspensions from Asplenium scolopendrium leaves via rapid expansion of supercritical solution into aqueous solutions (RESSAS). J Drug Deliv Sci Technol. 2021;64:102566.
  • Sodeifian G, Sajadian SA, Derakhsheshpour R. CO2 utilization as a supercritical solvent and supercritical antisolvent in production of sertraline hydrochloride nanoparticles. J CO2 Util. 2022;55:101799.
  • Amani M, Saadati Ardestani N, Majd NY. Utilization of supercritical CO2 gas antisolvent (GAS) for production of Capecitabine nanoparticles as anti-cancer drug: analysis and optimization of the process conditions. J CO2 Util. 2021;46:101465.
  • Arzi RS, Sosnik A. Electrohydrodynamic atomization and spray-drying for the production of pure drug nanocrystals and co-crystals. Adv Drug Deliv Rev. 2018;131:79–100.
  • Poozesh S, Bilgili E. Scale-up of pharmaceutical spray drying using scale-up rules: a review. Int J Pharm. 2019;562:271–292.
  • Li X, Anton N, Arpagaus C, et al. Nanoparticles by spray drying using innovative new technology: the büchi nano spray dryer B-90. J Control Release. 2010;147:304–310.
  • Paredes AJ, Llabot JM, Sanchez Bruni S, et al. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying. Drug Dev Ind Pharm. 2016;42:1564–1570.
  • Hecq J, Deleers M, Fanara D, et al. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm. 2005;299(1):167–177. DOI:10.1016/j.ijpharm.2005.05.014
  • Hou Y, Shao J, Fu Q, et al. Spray-dried nanocrystals for a highly hydrophobic drug: increased drug loading, enhanced redispersity, and improved oral bioavailability. Int J Pharm. 2017;516(1):372–379. DOI:10.1016/j.ijpharm.2016.11.043
  • Ambrus R, Radacsi N, Szunyogh T, et al. Analysis of submicron-sized niflumic acid crystals prepared by electrospray crystallization. J Pharm Biomed Anal. 2013;76:1–7.
  • Nyström M, Roine J, Murtomaa M, et al. Solid state transformations in consequence of electrospraying – a novel polymorphic form of piroxicam. Eur J Pharm Biopharm. 2015;89:182–189.
  • Zheng F, Wang D, Fang H, et al. Controlled crystallization of sodium chloride nanocrystals in microdroplets produced by electrospray from an ultra-dilute solution. Eur J Inorg Chem. 2016;2016(12):1860–1865. DOI:10.1002/ejic.201501453
  • Nguyen DN, Clasen C, Van den Mooter G. Pharmaceutical applications of electrospraying. J Pharm Sci. 2016;105(9):2601–2620.
  • Liu D, Zhang H, Fontana F, et al. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliv Rev. 2018;128:54–83.
  • Hakke V, Sonawane S, Anandan S, et al. Process intensification approach using microreactors for synthesizing nanomaterials—a critical review. Nanomaterials. 2021;11(1):98. DOI:10.3390/nano11010098
  • Patil A, Patil P, Pardeshi S, et al. Combined microfluidics and drying processes for the continuous production of micro-/nanoparticles for drug delivery: a review. Dry Technol. 2023;1–36. DOI:10.1080/07373937.2023.2167827
  • Bojang AA, Design WH. Fundamental principles of fabrication and applications of microreactors. Processes. 2020;8(8):891.
  • Hamdallah SI, Zoqlam R, Erfle P, et al. Microfluidics for pharmaceutical nanoparticle fabrication: the truth and the myth. Int J Pharm. 2020;584:119408.
  • Kim S, Wang H, Yan L, et al. Continuous preparation of itraconazole nanoparticles using droplet-based microreactor. Chem Eng. 2020;393:124721.
  • Ali HSM, York P, Blagden N. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. Int J Pharm. 2009;375(1):107–113.
  • Zhang X, Chen H, Qian F, et al. Preparation of itraconazole nanoparticles by anti-solvent precipitation method using a cascaded microfluidic device and an ultrasonic spray drier. Chem Eng J. 2018;334:2264–2272.
  • Rahimi M, Valeh-E-Sheyda P, Rashidi H. Statistical optimization of curcumin nanosuspension through liquid anti-solvent precipitation (LASP) process in a microfluidic platform: box-Behnken design approach. Korean J Chem Eng. 2017;34(11):3017–3027.
  • Arzi RS, Kay A, Raychman Y, et al. Excipient-free pure drug nanoparticles fabricated by microfluidic hydrodynamic focusing. Pharmaceutics. 2021;13(4):529. DOI:10.3390/pharmaceutics13040529
  • Odetade DF, Vladisavljevic GT. Microfluidic fabrication of hydrocortisone nanocrystals coated with polymeric stabilisers. Micromach. 2016;7(12):236.
  • Xia D, Quan P, Piao H, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40:325–334.
  • Choi JS. Design of cilostazol nanocrystals for improved solubility. J Pharm Innov. 2020;15:416–423.
  • Elmowafy M, Shalaby K, Al-Sanea MM, et al. Influence of stabilizer on the development of luteolin nanosuspension for cutaneous delivery: an in vitro and in vivo evaluation. Pharmaceutics. 2021;13:1812.
  • Wang N, Qi F, He X, et al. Preparation and pharmacokinetic characterization of an anti-virulence compound nanosuspensions. Pharmaceutics. 2021;13:1586.
  • Rangaraj N, Pailla SR, Chowta P, et al. Fabrication of ibrutinib nanosuspension by quality by design approach: intended for enhanced oral bioavailability and diminished fast fed variability. AAPS Pharm Sci Tech. 2019;20(8):326. DOI:10.1208/s12249-019-1524-7
  • Choi JS, Park JS. Effects of paclitaxel nanocrystals surface charge on cell internalization. Eur J Pharm Sci. 2016;93:90–96.
  • Mei D, Gong L, Zou Y, et al. Platelet membrane-cloaked paclitaxel-nanocrystals augment postoperative chemotherapeutical efficacy. J Control Release. 2020;324:341–353.
  • Magar KT, Boafo GF, Zoulikha M, et al. Metal phenolic network-stabilized nanocrystals of andrographolide to alleviate macrophage-mediated inflammation in-vitro. Chin Chem Lett. 2023;34(1):107453. DOI:10.1016/j.cclet.2022.04.051
  • Huang F, Jiang X, Sallam MA, et al. A nanocrystal platform based on metal-phenolic network wrapping for drug solubilization. AAPS Pharm Sci Tech. 2022;23(3):76. DOI:10.1208/s12249-022-02220-0
  • Li Y, Teng C, Azevedo HS, et al. Cocrystallization-like strategy for the codelivery of hydrophobic and hydrophilic drugs in a single carrier material formulation. Chin Chem Lett. 2021;32(10):3071–3075. DOI:10.1016/j.cclet.2021.03.085
  • Teng C, Li B, Lin C, et al. Targeted delivery of baicalein-p53 complex to smooth muscle cells reverses pulmonary hypertension. J Control Release. 2022;341:591–604.
  • Teng C, Lin C, Huang F, et al. Intracellular codelivery of anti-inflammatory drug and anti-miR 155 to treat inflammatory disease. Acta Pharm Sin B. 2020;10(8):1521–1533. DOI:10.1016/j.apsb.2020.06.005
  • Jadhav PA, Yadav AV. Design, development and characterization of ketorolac tromethamine polymeric nanosuspension. Ther Deliv. 2019;10(9):585–597.
  • Salazar J, Heinzerling O, Müller RH, et al. Process optimization of a novel production method for nanosuspensions using design of experiments (DoE). Int J Pharm. 2011;420:395–403.
  • Salazar J, Müller RH, Möschwitzer JP. Performance comparison of two novel combinative particle-size-reduction technologies. J Pharm Sci. 2013;102:1636–1649.
  • Bukovec P, Meden A, Smrkolj M, et al. Influence of crystal habit on the dissolution of simvastatin single crystals. Acta Chim Slov. 2015;62:958–966.
  • Guo M, Wei M, Li W, et al. Impacts of particle shapes on the oral delivery of drug nanocrystals: mucus permeation, transepithelial transport and bioavailability. J Control Release. 2019;307:64–75.
  • Jain D, Thakur PS, Thakore SD, et al. Impact of differential particle size of fenofibrate nanosuspensions on biopharmaceutical performance using physiologically based absorption modeling in rats. J Drug Deliv Sci Technol. 2020;60:102040.
  • Al-Zubaydi F, Gao D, Kakkar D, et al. Breast intraductal nanoformulations for treating ductal carcinoma in situ II: dose de-escalation using a slow releasing/slow bioconverting prodrug strategy. Drug Deliv Transl Res. 2022;12:240–256.
  • Al Zahraa G, Eissa NG, El Nahas HM, et al. Fast disintegrating tablet of doxazosin mesylate nanosuspension: preparation and characterization. J Drug Deliv Sci Technol. 2021;61:102210.
  • Patel HP, Chaudhari PS, Gandhi PA, et al. Nose to brain delivery of tailored clozapine nanosuspension stabilized using (+)-alpha-tocopherol polyethylene glycol 1000 succinate: optimization and in vivo pharmacokinetic studies. Int J Pharm. 2021;600:120474.
  • Wadhawan J, Parmar PK, Bansal AK. Nanocrystals for improved topical delivery of medium soluble drug: a case study of acyclovir. J Drug Deliv Sci Technol. 2021;65:102662.
  • Fu Q, Jin X, Zhang Z, et al. Preparation and in vitro antitumor effects on MDA-MB-231 cells of niclosamide nanocrystals stabilized by poloxamer188 and PBS. Int J Pharm. 2020;584:119432.
  • Huang G, Xie J, Shuai S, et al. Nose-to-brain delivery of drug nanocrystals by using Ca2+ responsive deacetylated gellan gum based in situ-nanogel. Int J Pharm. 2021;594:120182.
  • Coty JB, Martin C, Telo I, et al. Use of Spray Flash Evaporation (SFE) technology to improve dissolution of poorly soluble drugs: case study on furosemide nanocrystals. Int J Pharm. 2020;589:119827.
  • Wang J, Lv FM, Wang DL, et al. Synergistic antitumor effects on drug-resistant breast cancer of paclitaxel/lapatinib composite nanocrystals. Molecules. 2020;25:604.
  • Zhao D, Hu C, Fu Q, et al. Combined chemotherapy for triple negative breast cancer treatment by paclitaxel and niclosamide nanocrystals loaded thermosensitive hydrogel. Eur J Pharm Sci. 2021;167:105992.
  • Stefaniak AB, Hackley VA, Roebben G, et al. Nanoscale reference materials for environmental, health and safety measurements: needs, gaps and opportunities. Nanotoxicology. 2013;7:1325–1337.
  • Lapresta-Fernández A, Salinas-Castillo A, Anderson De La Llana S, et al. A general perspective of the characterization and quantification of nanoparticles: imaging, spectroscopic, and separation techniques. Crit Rev Solid State Mater Sci. 2014;39:423–458.
  • Vladár AE, Hodoroaba VD. Characterization of nanoparticles: characterization of nanoparticles by scanning electron microscopy. [place unknown]: Elsevier; 2020.
  • Asano N, Lu J, Asahina S, et al. Direct observation techniques using scanning electron microscope for hydrothermally synthesized nanocrystals and nanoclusters. Nanomaterials. 2021;11:908.
  • Angeloni L, Reggente M, Passeri D, et al. Identification of nanoparticles and nanosystems in biological matrices with scanning probe microscopy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10:1521.
  • Maver U, Velnar T, Gaberšček M, et al. Recent progressive use of atomic force microscopy in biomedical applications. TRAC-Trends Anal Chem. 2016;80:96–111.
  • Korayem MH, Khaksar H. A survey on dynamic modeling of manipulation of nanoparticles based on atomic force microscope and investigation of involved factors. J Nanopart Res. 2020;22:1–19.
  • Shi X, Qing W, Marhaba T, et al. Atomic force microscopy-Scanning electrochemical microscopy (AFM-SECM) for nanoscale topographical and electrochemical characterization: principles, applications and perspectives. Electrochim Acta. 2020;332:135472.
  • Sitterberg J, Özcetin A, Ehrhardt C, et al. Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. Eur J Pharm Biopharm. 2010;74:2–13.
  • Li K, Du S, Ginkel SV, et al. Atomic force microscopy study of the interaction of DNA and nanoparticles. Nanomaterial. 2014;811:93–109.
  • Harrison AJ, Bilgili EA, Beaudoin SP, et al. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals. Anal Chem. 2013;85:11449–11455.
  • Hassellöv M, Readman JW, Ranville JF, et al. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology. 2008;17:344–361.
  • Lamprecht C, Hinterdorfer P, Ebner A. Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opin Drug Deliv. 2014;11:1237–1253.
  • Deng X, Xiong F, Li X, et al. Application of atomic force microscopy in cancer research. J Nanobiotechnology. 2018;16:1–15.
  • Wang ZL. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B. 2000;104:1153–1175.
  • Malatesta M. Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. Int J Mol Sci. 2021;22:12789.
  • Mühlfeld C, Rothen-Rutishauser B, Vanhecke D, et al. Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part Fibre Toxicol. 2007;4:1–17.
  • Carvalho PM, Felício MR, Santos NC, et al. Application of light scattering techniques to nanoparticle characterization and development. Front Chem. 2018;6:237.
  • Brar SK, Verma M. Measurement of nanoparticles by light-scattering techniques. TRAC-Trends Anal Chem. 2011;30:4–17.
  • Xu R. Light scattering: a review of particle characterization applications. Particuology. 2015;18:11–21.
  • Li T, Senesi AJ, Lee B. Small angle X-ray scattering for nanoparticle research. Chem Rev. 2016;116:11128–11180.
  • Kammler HK, Beaucage G, Kohls DJ, et al. Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle x-ray scattering. J Appl Phys. 2005;97:054309.
  • Agbabiaka A, Wiltfong M, Park C. Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. J Nanoparticles. 2013;2013:640436.
  • Li T, Hawley A, Rades T, et al. Exposure of liposomes containing nanocrystallised ciprofloxacin to digestive media induces solid-state transformation and altered in vitro drug release. J Control Release. 2020;323:350–360.
  • Lai SY, Knudsen KD, Sejersted BT, et al. Silicon nanoparticle ensembles for lithium-ion batteries elucidated by small-angle neutron scattering. ACS Appl Energy Mater. 2019;2:3220–3227.
  • Luo Z, Marson D, Ong QK, et al. Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering. Nat Commun. 2018;9:1–10.
  • Costabile G, Provenzano R, Azzalin A, et al. Pegylated mucus-penetrating nanocrystals for lung delivery of a new FtsZ inhibitor against Burkholderia cenocepacia infection. Nanomed Nanotechnol Biol Med. 2020;23:102113.
  • Lu Y, Li Y, Wu W. Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B. 2016;6:106–113.
  • Liu J, Tu L, Cheng M, et al. Mechanisms for oral absorption enhancement of drugs by nanocrystals. J Drug Deliv Sci Technol. 2020;56:101607.
  • Peltonen L, Strachan C. Understanding critical quality attributes for nanocrystals from preparation to delivery. Molecules. 2015;20:22286–22300.
  • Yang H, Kim H, Jung S, et al. Pharmaceutical strategies for stabilizing drug nanocrystals. Curr Pharm Des. 2018;24:2362–2374.
  • Sapsford KE, Tyner KM, Dair BJ, et al. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem. 2011;83:4453–4488.
  • Hall JB, Dobrovolskaia MA, Patri AK, et al. Characterization of nanoparticles for therapeutics. Future Med. 2007;2:789–803.
  • Newbury DE, Ritchie NW. Is scanning electron microscopy/energy dispersive X‐ray spectrometry (SEM/EDS) quantitative? Scanning. 2013;35:141–168.
  • Witika BA, Smith VJ, Walker RB. Quality by design optimization of cold sonochemical synthesis of zidovudine-lamivudine nanosuspensions. Pharmaceutics. 2020;12:367.
  • Dumont E, De Bleye C, Sacré PY, et al. From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis. Bioanalysis. 2016;8:1077–1103.
  • Chogale MM, Ghodake VN, Patravale VB. Performance parameters and characterizations of nanocrystals: a brief review. Pharmaceutics. 2016;8:26.
  • de Waard H, De Beer T, Hinrichs WL, et al. Controlled crystallization of the lipophilic drug fenofibrate during freeze-drying: elucidation of the mechanism by in-line Raman spectroscopy. Aaps J. 2010;12:569–575.
  • Ingham B. X-ray scattering characterisation of nanoparticles. Crystallogr Rev. 2015;21:229–303.
  • Pinna N. Scattering methods and the properties of polymer materials: x-Ray diffraction from nanocrystals. Berlin: Springer; 2005.
  • Sahibzada MUK, Sadiq A, Faidah HS, et al. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity. Drug Des Devel Ther. 2018;12:303.
  • Bunjes H, Unruh T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev. 2007;59:379–402.
  • Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21:167.
  • Koshy O, Subramanian L, Thomas S. Thermal and rheological measurement techniques for nanomaterials characterization: differential scanning calorimetry in nanoscience and nanotechnology. Cambridge (MA): Elsevier; 2017.
  • Li J, Yang M, Xu WR. Enhanced oral bioavailability of fluvastatin by using nanosuspensions containing cyclodextrin. Drug Des Devel Ther. 2018;12:3491.
  • Ullah N, Khan S, Ahmed S, et al. Dexibuprofen nanocrystals with improved therapeutic performance: fabrication, characterization, in silico modeling, and in vivo evaluation. Int J Nanomed. 2018;13:1677.
  • Liu P, Viitala T, Kartal-Hodzic A, et al. Interaction studies between indomethacin nanocrystals and PEO/PPO copolymer stabilizers. Pharm Res. 2015;32:628–639.
  • Cheng M, Yuan F, Liu J, et al. Fabrication of fine puerarin nanocrystals by box–behnken design to enhance intestinal absorption. AAPS Pharm Sci Tech. 2020;21:1–12.
  • Gao Y, Vogus D, Zhao Z, et al. Injectable hyaluronic acid hydrogels encapsulating drug nanocrystals for long‐term treatment of inflammatory arthritis. Bioeng Transl Med. 2022;7:10245.
  • Lohan SB, Saeidpour S, Colombo M, et al. Nanocrystals for improved drug delivery of dexamethasone in skin investigated by EPR spectroscopy. Pharmaceutics. 2020;12:400.
  • Baba K, Hashida N, Tujikawa M, et al. The generation of fluorometholone nanocrystal eye drops, their metabolization to dihydrofluorometholone and penetration into rabbit eyes. Int J Pharm. 2021;592:120067.
  • Sun Y, Chen D, Zhao Y, et al. Exploitation of nanocrystal suspension as an effective oral formulation for oxfendazole. Drug Deliv Transl Res. 2022;12:1219–1229.
  • Kong J, Wu K, Ji Y, et al. Enhanced bioavailability by orally administered sirolimus nanocrystals. ACS Appl Bio Mater. 2019;2:4612–4621.
  • Chang D, Ma Y, Cao G, et al. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol. 2018;46:1018–1024.
  • Fan Y, Hao W, Cui Y, et al. Cancer cell membrane-coated nanosuspensions for enhanced chemotherapeutic treatment of glioma. Molecules. 2021;26:5103.
  • Nagai N, Seiriki R, Deguchi S, et al. Hydrogel formulations incorporating drug nanocrystals enhance the therapeutic effect of rebamipide in a hamster model for oral mucositis. Pharmaceutics. 2020;12:532.
  • Jain S, Patel K, Arora S, et al. Formulation, optimization, and in vitro–in vivo evaluation of olmesartan medoxomil nanocrystals. Drug Deliv Transl Res. 2017;7:292–303.
  • Liu Q, Mai Y, Gu X, et al. A wet-milling method for the preparation of cilnidipine nanosuspension with enhanced dissolution and oral bioavailability. J Drug Deliv Sci Technol. 2020;55:101371.
  • Mehta CH, Narayan R, Aithal G, et al. Molecular simulation driven experiment for formulation of fixed dose combination of Darunavir and Ritonavir as anti-HIV nanosuspension. J Mol Liq. 2019;293:111469.
  • Tekko IA, Permana AD, Vora L, et al. Localised and sustained intradermal delivery of methotrexate using nanocrystal-loaded microneedle arrays: potential for enhanced treatment of psoriasis. Eur J Pharm Sci. 2020;152:105469.
  • Youssef JR, Boraie NA, Ibrahim HF, et al. Glibenclamide nanocrystal-loaded bioactive polymeric scaffolds for skin regeneration: in vitro characterization and preclinical evaluation. Pharmaceutics. 2021;13:1469.
  • Lv Y, Wu W, Corpstein CD, et al. Biological and intracellular fates of drug nanocrystals through different delivery routes: recent development enabled by bioimaging and PK modeling. Adv Drug Deliv Rev. 2022;188:114466.
  • Mittapelly N, Thalla M, Pandey G, et al. Long acting ionically paired embonate based nanocrystals of donepezil for the treatment of Alzheimer’s disease: a proof of concept study. Pharm Res. 2017;34:2322–2335.
  • Kumar M, Jha A, Dr M, et al. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Exp Opin Drug Deliv. 2020;17(10):1459–1472
  • Khatib I, Khanal D, Ruan J, et al. Ciprofloxacin nanocrystals liposomal powders for controlled drug release via inhalation. Int J Pharm. 2019;566:641–651.
  • Shi C, Ignjatović J, Liu T, et al. In vitro-in vivo-in silico approach in the development of inhaled drug products: nanocrystal-based formulations with budesonide as a model drug. Asian J Pharm Sci. 2021;16:350–362.
  • Permana AD, Utami RN, Layadi P, et al. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int J Pharm. 2021;602:120623.
  • McGuckin MB, Wang J, Ghanma R, et al. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release. 2022;345:334–353.
  • Wu C, Li B, Zhang Y, et al. Intranasal delivery of paeoniflorin nanocrystals for brain targeting. Asian J Pharm Sci. 2020;15(3):326–335. DOI:10.1016/j.ajps.2019.11.002
  • Liang Y, Fu X, Du C, et al. Enzyme/Enzyme/Ph-triggered anticancer drug delivery of chondroitin sulfate modified doxorubicin nanocrystal. Artif Cells Nanomed Biotechnol. 2020;48:1114–1124.
  • Chai Z, Ran D, Lu L, et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano. 2019;13:5591–5601.
  • Ci LQ, Huang ZG, Lv FM, et al. Enhanced delivery of imatinib into vaginal mucosa via a new positively charged nanocrystal-loaded in situ hydrogel formulation for treatment of cervical cancer. Pharmaceutics. 2019;11:15.
  • Park JE, Park J, Jun Y, et al. Expanding therapeutic utility of carfilzomib for breast cancer therapy by novel albumin-coated nanocrystal formulation. J Control Release. 2019;302:148–159.
  • Noh JK, Naeem M, Cao J, et al. Herceptin-functionalized pure paclitaxel nanocrystals for enhanced delivery to HER2-postive breast cancer cells. Int J Pharm. 2016;513:543–553.
  • Han X, Su R, Huang X, et al. Triphenylphosphonium-modified mitochondria-targeted paclitaxel nanocrystals for overcoming multidrug resistance. Asian J Pharm Sci. 2019;14:569–580.
  • Xie J, Yan C, Yan Y, et al. Multi-modal Mn–Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale. 2016;8:16902–16915.
  • Shegokar R, Singh KK. Surface modified nevirapine nanosuspensions for viral reservoir targeting: in vitro and in vivo evaluation. Int J Pharm. 2011;421:341–352.
  • Sohn JS, Yoon DS, Sohn JY, et al. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals. Mater Sci Eng C. 2017;72:228–237.
  • Quan P, Shi K, Piao H, et al. A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability. Int J Pharm. 2012;430:366–371.
  • Peng J, Chen J, Xie F, et al. Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer. Biomaterials. 2019;222:119420.
  • Lv F, Wang J, Chen H, et al. Enhanced mucosal penetration and efficient inhibition efficacy against cervical cancer of PEGylated docetaxel nanocrystals by TAT modification. J Control Release. 2021;336:572–582.
  • Khan MA, Ansari MM, Arif ST, et al. Eplerenone nanocrystals engineered by controlled crystallization for enhanced oral bioavailability. Drug Deliv. 2021;28:2510–2524.
  • Agrawal S, Dwivedi M, Ahmad H, et al. CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. Nanomed Nanotechnol Biol Med. 2018;14:327–337.
  • Zhu S, Zhang S, Pang L, et al. Effects of armodafinil nanocrystal nasal hydrogel on recovery of cognitive function in sleep-deprived rats. Int J Pharm. 2021;597:120343.
  • Li W, Li Z, Wei L, et al. Evaluation of paclitaxel nanocrystals in vitro and in vivo. Drug Res. 2018;68:205–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.