103
Views
0
CrossRef citations to date
0
Altmetric
Review

Preclinical and clinical developments in enzyme-loaded red blood cells: an update

, , , ORCID Icon, , & show all
Pages 921-935 | Received 01 Feb 2023, Accepted 26 May 2023, Published online: 06 Jun 2023

References

  • Ihler GM, Glew RH, Schnure FW Enzyme loading of erythrocytes. Proc Natl Acad Sci USA. 1973;70(9):2663–2666. DOI:10.1073/pnas.70.9.2663
  • Zhang E, Phan P, Algarni HA, et al. Red blood cell inspired strategies for drug delivery: emerging concepts and new advances. Pharm Res. 2022;39(11):2673–2698. DOI:10.1007/s11095-022-03328-5
  • Li Y, Raza F, Liu Y, et al. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials. 2021;279:121202.
  • Rossi L, Pierigè F, Aliano MP, et al. Ongoing developments and clinical progress in drug-loaded red blood cell technologies. BioDrugs. 2020;34(3):265–272. DOI:10.1007/s40259-020-00415-0
  • Pierigè F, Bigini N, Rossi L, et al. Reengineering red blood cells for cellular therapeutics and diagnostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(5):e1454.
  • Bax BE. Erythrocytes as carriers of therapeutic enzymes. Pharmaceutics. 2020;12(5). DOI:10.3390/pharmaceutics12050435
  • Glassman PM, Muzykantov VR. Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J Pharmacol Exp Ther. 2019;370(3):570–580.
  • Rossi L, Pierigè F, Bregalda A, et al. Preclinical developments of enzyme-loaded red blood cells. Expert Opin Drug Deliv. 2021;18(1):43–54. DOI:10.1080/17425247.2020.1822320
  • Abou-Alfa GK, Qin S, Ryoo BY, et al. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann Oncol Off J Eur Soc Med Oncol. 2018;29(6):1402–1408. DOI:10.1093/annonc/mdy101
  • Gay F, Aguera K, Senechal K, et al. Abstract 4812: arginine deiminase loaded in erythrocytes: a promising formulation for L-arginine deprivation therapy in cancers. Cancer Res. 2016;76(14_Supplement):4812. DOI:10.1158/1538-7445.AM2016-4812
  • Sanz S, Lizano C, Luque J, et al. In vitro and in vivo study of glutamate dehydrogenase encapsulated into mouse erythrocytes by a hypotonic dialysis procedure. Life Sci. 1999;65(26):2781–2789. DOI:10.1016/S0024-3205(99)00546-9
  • Kosenko EA, Venediktova NI, Kudryavtsev AA, et al. Encapsulation of glutamine synthetase in mouse erythrocytes: a new procedure for ammonia detoxification. Biochem Cell Biol. 2008;86(6):469–476. DOI:10.1139/O08-134
  • Koleva L, Bovt E, Ataullakhanov F, et al. Erythrocytes as carriers: from drug delivery to biosensors. Pharmaceutics. 2020;12(3):276.
  • Hydery T, Coppenrath VA. A comprehensive review of pegvaliase, an enzyme substitution therapy for the treatment of phenylketonuria. Drug Target Insights. 2019;13:1177392819857089.
  • Palynziq [package insert]. Novato (CA): BioMarin Pharmaceutical Inc. 2018.
  • ir.rubiustx.com [Internet]. Cambridge (MA USA); [cited 2023 May 23]. Available from: https://ir.rubiustx.com/.
  • Isabella VM, Ha BN, Castillo MJ, et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol. 2018;36(9):857–864. DOI:10.1038/nbt.4222
  • Narasimhan D, Woods JH, Sunahara RK. Bacterial cocaine esterase: a protein-based therapy for cocaine overdose and addiction. Future Med Chem. 2012;4(2):137–150.
  • Khoja S, Lambert J, Nitzahn M, et al. Gene therapy for guanidinoacetate methyltransferase deficiency restores cerebral and myocardial creatine while resolving behavioral abnormalities. Mol Ther Methods Clin Dev. 2022;25:278–296.
  • Zhang G, Huang X, Xiu H, et al. Extracellular vesicles: natural liver-accumulating drug delivery vehicles for the treatment of liver diseases. J Extracell Vesicles. 2020;10(2):e12030. DOI:10.1002/jev2.12030
  • Liu L, Zhang J, Li Z, et al. Enzyme-loaded catalytic macrophage vesicles with cascade amplification of tumor-targeting for oxygenated photodynamic therapy. Int J Nanomedicine. 2021;16:7801–7812.
  • Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–530.
  • Wilder CS, Chen Z, DiGiovanni J. Pharmacologic approaches to amino acid depletion for cancer therapy. Mol Carcinog. 2022;61(2):127–152.
  • Kuo MT, Chen HHW, Feun LG, et al. Targeting the proline–glutamine–asparagine–arginine metabolic axis in amino acid starvation cancer therapy. Pharmaceuticals (Basel). 2021;14(1):72. DOI:10.3390/ph14010072
  • Backlund PSJ, Chang CP, Smith RA. Identification of 2-keto-4-methylthiobutyrate as an intermediate compound in methionine synthesis from 5’-methylthioadenosine. J Biol Chem. 1982;257(8):4196–4202.
  • Lynggaard LS, Vaitkeviciene G, Langenskiöld C, et al. Asparaginase encapsulated in erythrocytes as second-line treatment in hypersensitive patients with acute lymphoblastic leukaemia. Br J Haematol. 2022;197(6):745–754. DOI:10.1111/bjh.18152
  • erytech.com [Internet]. Lyon (France); [cited 2023 May 23]. Available from: https://erytech.com/.
  • Sugimura T, Birnbaum SM, Winitz M, et al. Quantitative nutritional studies with water-soluble, chemically defined diets. VIII. The forced feeding of diets each lacking in one essential amino acid. Arch Biochem Biophys. 1959;81(2):448–455. DOI:10.1016/0003-9861(59)90225-5
  • Masaki N, Han Q, Wu NF, et al. Oral-recombinant methioninase lowers the effective dose and eliminates toxicity of cisplatinum for primary osteosarcoma of the mammary gland in a patient-derived orthotopic xenograft mouse model. Vivo. 2022;36(6):2598–2603. DOI:10.21873/invivo.12994
  • Aoki Y, Tome Y, Han Q, et al. Oral-recombinant methioninase converts an osteosarcoma from methotrexate-resistant to -sensitive in a Patient-derived Orthotopic-xenograft (PDOX) mouse model. Anticancer Res. 2022;42(2):731–737. DOI:10.21873/anticanres.15531
  • Kubota Y, Han Q, Hamada K, et al. Long-term stable disease in a rectal-cancer patient treated by methionine restriction with oral recombinant methioninase and a low-methionine diet. Anticancer Res. 2022;42(8):3857–3861. DOI:10.21873/anticanres.15877
  • Han Q, Hoffman RM. Lowering and stabilizing PSA levels in advanced-prostate cancer patients with oral methioninase. Anticancer Res. 2021;41(4):1921–1926.
  • Kubota Y, Han Q, Hamada K, et al. Oral installation of recombinant methioninase-producing Escherichia coli into the microbiome inhibits colon-cancer growth in a syngeneic mouse model. Cancer Genomics Proteomics. 2022;19(6):683–691. DOI:10.21873/cgp.20351
  • Anderson BB, Fulford-Jones CE, Child JA, et al. Conversion of vitamin B 6 compounds to active forms in the red blood cell. J Clin Invest. 1971;50(9):1901–1909. DOI:10.1172/JCI106682
  • Gay F, Aguera K, Sénéchal K, et al. Methionine tumor starvation by erythrocyte-encapsulated methionine gamma-lyase activity controlled with per os vitamin B6. Cancer Med. 2017;6(6):1437–1452. DOI:10.1002/cam4.1086
  • Machover D, Rossi L, Hamelin J, et al. Effects in cancer cells of the recombinant l-methionine gamma-lyase from brevibacterium aurantiacum. encapsulation in human erythrocytes for sustained l-methionine elimination. J Pharmacol Exp Ther. 2019;369(3):489–502. DOI:10.1124/jpet.119.256537
  • Machover D, Goldschmidt E, Mollicone R, et al. Enhancement of 5-fluorouracil cytotoxicity by pyridoxal 5’-phosphate and folinic acid in tandem. J Pharmacol Exp Ther. 2018;366(2):238–243. DOI:10.1124/jpet.118.249367
  • Hoffman RM, Tan Y, Li S, et al. Development of recombinant methioninase for cancer treatment. Methods Mol Biol. 2019;1866:107–131.
  • Dhankhar R, Gupta V, Kumar S, et al. Microbial enzymes for deprivation of amino acid metabolism in malignant cells: biological strategy for cancer treatment. Appl Microbiol Biotechnol. 2020;104(7):2857–2869. DOI:10.1007/s00253-020-10432-2
  • Endicott M, Jones M, Hull J. Amino acid metabolism as a therapeutic target in cancer: a review. Amino Acids. 2021;53(8):1169–1179.
  • Kumari N, Bansal S. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment. Cancer Chemother Pharmacol. 2021;88(4):565–594.
  • Chen CL, Hsu SC, Ann DK, et al. Arginine signaling and cancer metabolism. Cancers (Basel). 2021;13(14):3541.
  • Cioni P, Gabellieri E, Campanini B, et al. Use of exogenous enzymes in human therapy: approved drugs and potential applications. Curr Med Chem. 2022;29(3):411–452. DOI:10.2174/0929867328666210713094722
  • Miyazaki K, Takaku H, Umeda M, et al. Potent growth inhibition of human tumor cells in culture by arginine deiminase purified from a culture medium of a Mycoplasma-infected cell line. Cancer Res. 1990;50(15):4522–4527.
  • Patil MD, Bhaumik J, Babykutty S, et al. Arginine dependence of tumor cells: targeting a chink in cancer’s armor. Oncogene. 2016;35(38):4957–4972. DOI:10.1038/onc.2016.37
  • Holtsberg FW, Ensor CM, Steiner MR, et al. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J Control Release Off J Control Release Soc. 2002;80(1–3):259–271. DOI:10.1016/S0168-3659(02)00042-1
  • Ensor CM, Holtsberg FW, Bomalaski JS, et al. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 2002;62(19):5443–5450.
  • Tomlinson BK, Thomson JA, Bomalaski JS, et al. Phase I trial of arginine deprivation therapy with ADI-PEG 20 plus docetaxel in patients with advanced malignant solid tumors. Clin Cancer Res An Off J Am Assoc Cancer Res. 2015;21(11):2480–2486. DOI:10.1158/1078-0432.CCR-14-2610
  • Lowery MA, Yu KH, Kelsen DP, et al. A phase 1/1B trial of ADI-PEG 20 plus nab-paclitaxel and gemcitabine in patients with advanced pancreatic adenocarcinoma. Cancer. 2017;123(23):4556–4565. DOI:10.1002/cncr.30897
  • Hall PE, Lewis R, Syed N, et al. A phase I study of pegylated arginine deiminase (pegargiminase), cisplatin, and pemetrexed in argininosuccinate synthetase 1-deficient recurrent high-grade glioma. Clin Cancer Res An Off J Am Assoc Cancer Res. 2019;25(9):2708–2716. DOI:10.1158/1078-0432.CCR-18-3729
  • Chan PY, Phillips MM, Ellis S, et al. A phase 1 study of ADI-PEG20 (pegargiminase) combined with cisplatin and pemetrexed in ASS1-negative metastatic uveal melanoma. Pigment Cell Melanoma Res. 2022;35(4):461–470. DOI:10.1111/pcmr.13042
  • Tsai HJ, Jiang SS, Hung WC, et al. A phase II study of Arginine Deiminase (ADI-PEG20) in relapsed/refractory or poor-risk acute myeloid leukemia patients. Sci Rep. 2017;7(1):11253. DOI:10.1038/s41598-017-10542-4
  • Ott PA, Carvajal RD, Pandit-Taskar N, et al. Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. Invest New Drugs. 2013;31(2):425–434. DOI:10.1007/s10637-012-9862-2
  • Godfrin Y, Goineau PO Erythrocytes containing arginine deiminase. United States patent; US 9,125,876 B2, 2015.
  • Protasov ES, Borsakova DV, Alexandrovich YG, et al. Erythrocytes as bioreactors to decrease excess ammonium concentration in blood. Sci Rep. 2019;9(1):1455. DOI:10.1038/s41598-018-37828-5
  • Borsakova DV, Koleva LD, Protasov ES, et al. Ammonium removal by erythrocyte-bioreactors based on glutamate dehydrogenase from Proteus sp. jointly with porcine heart alanine aminotransferase. Sci Rep. 2022;12(1):5437. DOI:10.1038/s41598-022-09435-y
  • Bilder DA, Kobori JA, Cohen-Pfeffer JL, et al. Neuropsychiatric comorbidities in adults with phenylketonuria: a retrospective cohort study. Mol Genet Metab. 2017;121(1):1–8. DOI:10.1016/j.ymgme.2017.03.002
  • van Spronsen FJ, Blau N, Harding C, et al. Phenylketonuria. Nat Rev Dis Prim. 2021;7(1):36. DOI:10.1038/s41572-021-00267-0
  • Elhawary NA, AlJahdali IA, Abumansour IS, et al. Genetic etiology and clinical challenges of phenylketonuria. Hum Genomics. 2022;16(1):22. DOI:10.1186/s40246-022-00398-9
  • Gupta S, Lau K, Harding CO, et al. Association of immune response with efficacy and safety outcomes in adults with phenylketonuria administered pegvaliase in phase 3 clinical trials. EBioMedicine. 2018;37:366–373.
  • Rossi L, Pierigè F, Carducci C, et al. Erythrocyte-mediated delivery of phenylalanine ammonia lyase for the treatment of phenylketonuria in BTBR-Pah(enu2) mice. J Control Release. 2014;194:37–44.
  • Pascucci T, Rossi L, Colamartino M, et al. A new therapy prevents intellectual disability in mouse with phenylketonuria. Mol Genet Metab. 2018;124(1):39–49. DOI:10.1016/j.ymgme.2018.03.009
  • Pipeline. 2009-2023. A late stage and broad pipeline; Bresso (MI Italy); [cited 2023 May 23]; Available from: https://www.erydel.com/pipeline.php/.
  • ir.rubiustx.com. Rubius Therapeutics Inc. Cambridge (MA USA); 2019. [cited 2023 May 23]; Availbale from: https://ir.rubiustx.com/static-files/4fead852-dd61-4d0a-ac94-6843456f99e2.
  • Puurunen MK, Vockley J, Searle SL, et al. Safety and pharmacodynamics of an engineered E. coli Nissle for the treatment of phenylketonuria: a first-in-human phase 1/2a study. Nat Metab. 2021;3(8):1125–1132. DOI:10.1038/s42255-021-00430-7
  • Vockley J, Sacharow S, Searle S, et al. A phase 1/2a oral placebo-controlled study of SYNB1618 in healthy adult volunteers and subjects with phenylketonuria. J Inherit Metab Dis. 2019;42:13.
  • Adolfsen KJ, Callihan I, Monahan CE, et al. Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering. Nat Commun. 2021;12(1):6215. DOI:10.1038/s41467-021-26524-0
  • Ihler G, Lantzy A, Purpura J, et al. Enzymatic degradation of uric acid by uricase-loaded human erythrocytes. J Clin Invest. 1975;56(3):595–602. DOI:10.1172/JCI108129
  • Magnani M, Mancini U, Bianchi M, et al. Comparison of uricase-bound and uricase-loaded erythrocytes as bioreactors for uric acid degradation. Adv Exp Med Biol. 1992;326:189–194.
  • Kratzer JT, Lanaspa MA, Murphy MN, et al. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc Natl Acad Sci U S A. 2014;111(10):3763–3768. DOI:10.1073/pnas.1320393111
  • Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet (London, England). 2016;388(10055):2039–2052.
  • FitzGerald JD, Dalbeth N, Mikuls T, et al. 2020 American college of rheumatology guideline for the management of gout. Arthritis Care Res (Hoboken). 2020;72(6):744–760. DOI:10.1002/acr.24180
  • Botson JK, Baraf HSB, Keenan RT, et al. Expert opinion on pegloticase with concomitant immunomodulatory therapy in the treatment of uncontrolled gout to improve efficacy, safety, and durability of response. Curr Rheumatol Rep. 2022;24(1):12–19. DOI:10.1007/s11926-022-01055-9
  • Geraldino-Pardilla L, Sung D, Xu JZ, et al. Methaemoglobinaemia and haemolysis following pegloticase infusion for refractory gout in a patient with a falsely negative glucose-6-phosphate dehydrogenase deficiency result. Rheumatology. 2014;53:2310–2311. England.
  • Lakra R, Grewal US, Ramadas P. Testing for glucose-6-phosphate dehydrogenase deficiency before rasburicase use for tumor lysis syndrome. Am J Ther. 2023;Publish Ahead of Print. DOI:10.1097/MJT.0000000000001597
  • Cohen G, Hochstein P. Glutathione peroxidase: the primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry. 1963;2:1420–1428.
  • Mueller S, Riedel HD, Stremmel W. Direct evidence for catalase as the predominant H2O2 -removing enzyme in human erythrocytes. Blood. 1997;90(12):4973–4978.
  • Magnani M, Rossi L, Bianchi M, et al. Role of hexokinase in the regulation of erythrocyte hexose monophosphate pathway under oxidative stress. Biochem Biophys Res Commun. 1988;155(1):423–428. DOI:10.1016/S0006-291X(88)81103-3
  • Ming J, Zhu T, Li J, et al. A novel cascade nanoreactor integrating two-dimensional Pd-Ru nanozyme, uricase and red blood cell membrane for highly efficient hyperuricemia treatment. Small. 2021;17(46):e2103645. DOI:10.1002/smll.202103645
  • Gao D, Narasimhan DL, Macdonald J, et al. Thermostable variants of cocaine esterase for long-time protection against cocaine toxicity. Mol Pharmacol. 2009;75(2):318–323. DOI:10.1124/mol.108.049486
  • Nasser AF, Fudala PJ, Zheng B, et al. A randomized, double-blind, placebo-controlled trial of RBP-8000 in cocaine abusers: pharmacokinetic profile of rbp-8000 and cocaine and effects of RBP-8000 on cocaine-induced physiological effects. J Addict Dis. 2014;33(4):289–302. DOI:10.1080/10550887.2014.969603
  • Leuzzi V, Rossi L, Gabucci C, et al. Erythrocyte-mediated delivery of recombinant enzymes. J Inherit Metab Dis. 2016;39(4):519–530. DOI:10.1007/s10545-016-9926-0
  • Rossi L, Pierigè F, Antonelli A, et al. Engineering erythrocytes for the modulation of drugs’ and contrasting agents’ pharmacokinetics and biodistribution. Adv Drug Deliv Rev. 2016;106(Pt A):73–87. DOI:10.1016/j.addr.2016.05.008
  • Rossi L, Pierigè F, Agostini M, et al. Efficient cocaine degradation by cocaine esterase-loaded red blood cells. Front Physiol. 2020;11:573492.
  • Chen X, Xue L, Hou S, et al. Long-acting cocaine hydrolase for addiction therapy. Proc Natl Acad Sci U S A. 2016;113(2):422–427. DOI:10.1073/pnas.1517713113
  • Zheng F, Jin Z, Deng J, et al. Development of a highly efficient long-acting cocaine hydrolase entity to accelerate cocaine metabolism. Bioconjug Chem. 2022;33(7):1340–1349. DOI:10.1021/acs.bioconjchem.2c00210
  • Shang L, Jin Z, Wei H, et al. Catalytic activities of a highly efficient cocaine hydrolase for hydrolysis of biologically active cocaine metabolites norcocaine and benzoylecgonine. Sci Rep. 2023;13(1):640. DOI:10.1038/s41598-022-27280-x
  • Zhan M, Hou S, Zhan CG, et al. Kinetic characterization of high-activity mutants of human butyrylcholinesterase for the cocaine metabolite norcocaine. Biochem J. 2014;457(1):197–206. DOI:10.1042/BJ20131100
  • Hou S, Zhan M, Zheng X, et al. Kinetic characterization of human butyrylcholinesterase mutants for the hydrolysis of cocaethylene. Biochem J. 2014;460(3):447–457. DOI:10.1042/BJ20140360
  • Chen X, Zheng X, Zhan M, et al. Metabolic enzymes of cocaine metabolite benzoylecgonine. ACS Chem Biol. 2016;11(8):2186–2194. DOI:10.1021/acschembio.6b00277
  • Zheng X, Chen X, Zhang T, et al. Catalytic activities of cocaine hydrolases against the most toxic cocaine metabolite norcocaethylene. Org Biomol Chem. 2020;18(10):1968–1977. DOI:10.1039/C9OB02762A
  • Brimijoin S, Gao Y, Anker JJ, et al. A cocaine hydrolase engineered from human butyrylcholinesterase selectively blocks cocaine toxicity and reinstatement of drug seeking in rats. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2008;33(11):2715–2725. DOI:10.1038/sj.npp.1301666
  • Schindler CW, Justinova Z, Lafleur D, et al. Modification of pharmacokinetic and abuse-related effects of cocaine by human-derived cocaine hydrolase in monkeys. Addict Biol. 2013;18(1):30–39. DOI:10.1111/j.1369-1600.2011.00424.x
  • Cohen-Barak O, Wildeman J, van de Wetering J, et al. Safety, pharmacokinetics, and pharmacodynamics of TV-1380, a novel mutated butyrylcholinesterase treatment for cocaine addiction, after single and multiple intramuscular injections in healthy subjects. J Clin Pharmacol. 2015;55(5):573–583. DOI:10.1002/jcph.450
  • Shram MJ, Cohen-Barak O, Chakraborty B, et al. Assessment of pharmacokinetic and pharmacodynamic interactions between albumin-fused mutated butyrylcholinesterase and intravenously administered cocaine in recreational cocaine users. J Clin Psychopharmacol. 2015;35(4):396–405. DOI:10.1097/JCP.0000000000000347
  • Gilgun-Sherki Y, Eliaz RE, McCann DJ, et al. Placebo-controlled evaluation of a bioengineered, cocaine-metabolizing fusion protein, TV-1380 (AlbuBche), in the treatment of cocaine dependence. Drug Alcohol Depend. 2016;166:13–20.
  • Xing S, Li Q, Xiong B, et al. Structure and therapeutic uses of butyrylcholinesterase: application in detoxification, Alzheimer’s disease, and fat metabolism. Med Res Rev. 2021;41(2):858–901. DOI:10.1002/med.21745
  • Mercimek-Andrews S, Salomons GS. Creatine deficiency disorders. 2009 Jan 15[Updated 2022 Feb 10]. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH editors. Seattle (WA): University of Washington, Seattle; 1993-2023. GeneReviews® [Internet].
  • Mercimek-Mahmutoglu S, Stoeckler-Ipsiroglu S, Adami A, et al. GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology. 2006;67(3):480–484. DOI:10.1212/01.wnl.0000234852.43688.bf
  • Hanna-El-Daher L, Béard E, Henry H, et al. Mild guanidinoacetate increase under partial guanidinoacetate methyltransferase deficiency strongly affects brain cell development. Neurobiol Dis. 2015;79:14–27.
  • orpha.net [Internet]. 1997-2023; [cited 2023 May 23]. Available from: https://www.orpha.net/.
  • Mercimek-Mahmutoglu S, Ndika J, Kanhai W, et al. Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene. Hum Mutat. 2014;35(4):462–469. DOI:10.1002/humu.22511
  • Schulze A. Creatine deficiency syndromes. Mol Cell Biochem. 2003;244(1–2):143–150.
  • Schulze A, Ebinger F, Rating D, et al. Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation. Mol Genet Metab. 2001;74(4):413–419. DOI:10.1006/mgme.2001.3257
  • Stockler-Ipsiroglu S, van Karnebeek C, Longo N, et al. Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab. 2014;111(1):16–25. DOI:10.1016/j.ymgme.2013.10.018
  • Hirayasu Y, Morimoto K, Otsuki S. Increase of methylguanidine and guanidinoacetic acid in the brain of amygdala-kindled rats. Epilepsia. 1991;32(6):761–766.
  • Gordon N. Guanidinoacetate methyltransferase deficiency (GAMT). Brain Dev. 2010;32(2):79–81.
  • Iqbal F. Review: human guanidinoacetate n-methyl transferase (GAMT) deficiency: a treatable inborn error of metabolism. Pak J Pharm Sci. 2015;28(6):2207–2211.
  • Sykut-Cegielska J, Gradowska W, Mercimek-Mahmutoglu S, et al. Biochemical and clinical characteristics of creatine deficiency syndromes. Acta Biochim Pol. 2004;51(4):875–882.
  • Stöckler S, Hanefeld F, Frahm J. Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet (London, England). 1996;348(9030):789–790.
  • Viau KS, Ernst SL, Pasquali M, et al. Evidence-based treatment of guanidinoacetate methyltransferase (GAMT) deficiency. Mol Genet Metab. 2013;110(3):255–262. DOI:10.1016/j.ymgme.2013.08.020
  • Mercimek-Mahmutoglu S, Pop A, Kanhai W, et al. A pilot study to estimate incidence of guanidinoacetate methyltransferase deficiency in newborns by direct sequencing of the GAMT gene. Gene. 2016;575(1):127–131. DOI:10.1016/j.gene.2015.08.045
  • Schmidt A, Marescau B, Boehm EA, et al. Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum Mol Genet. 2004;13(9):905–921. DOI:10.1093/hmg/ddh112
  • Sant’anna TB, Araujo NM. Adeno-associated virus infection and its impact in human health: an overview. Virol J. 2022;19(1):173.
  • Shi J, Kundrat L, Pishesha N, et al. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proc Natl Acad Sci U S A. 2014;111(28):10131–10136. DOI:10.1073/pnas.1409861111
  • Bianchi M, Rossi L, Pierigè F, et al. Engineering new metabolic pathways in isolated cells for the degradation of guanidinoacetic acid and simultaneous production of creatine. Mol Ther Methods Clin Dev. 2022;25:26–40.
  • Rossi L, Fraternale A, Bianchi M, et al. Red blood cell membrane processing for biomedical applications. Front Physiol. 2019;10:1070.
  • Glassman PM, Villa CH, Ukidve A, et al. Vascular drug delivery using carrier red blood cells: focus on rbc surface loading and pharmacokinetics. Pharmaceutics. 2020;12(5). DOI: 10.3390/pharmaceutics12050440
  • Villa CH, Pan DC, Zaitsev S, et al. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther Deliv. 2015;6(7):795–826. DOI:10.4155/tde.15.34
  • Zhao Z, Kim J, Suja VC, et al. Red blood cell anchoring enables targeted transduction and re-administration of AAV-Mediated gene therapy. Adv Sci (Weinheim, Baden-Wurttemberg, Ger. 2022;9(24):e2201293. DOI:10.1002/advs.202201293
  • Thangaraju K, Neerukonda SN, Katneni U, et al. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int J Mol Sci. 2020;22(1):153.
  • Yang L, Huang S, Zhang Z, et al. Roles and applications of red blood cell-derived extracellular vesicles in health and diseases. Int J Mol Sci. 2022;23(11):5927.
  • Biagiotti S, Abbas F, Montanari M, et al. Extracellular vesicles as new players in drug delivery: a focus on red blood cells-derived EVs. Pharmaceutics. 2023;15(2):365.
  • Peng B, Nguyen TM, Jayasinghe MK, et al. Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy. J Extracell Vesicles. 2022;11(4):e12187.
  • Usman WM, Pham TC, Kwok YY, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. 2018;9(1):2359. DOI:10.1038/s41467-018-04791-8
  • Do MA, Levy D, Brown A, et al. Targeted delivery of lysosomal enzymes to the endocytic compartment in human cells using engineered extracellular vesicles. Sci Rep. 2019;9(1):17274. DOI:10.1038/s41598-019-53844-5
  • Haney MJ, Klyachko NL, Harrison EB, et al. TPP1 delivery to lysosomes with extracellular vesicles and their enhanced brain distribution in the animal model of batten disease. Adv Healthc Mater. 2019;8(11):e1801271. DOI:10.1002/adhm.201801271
  • Tang JC, Lee CH, Lu T, et al. Membrane cholesterol enrichment of red blood cell-derived microparticles results in prolonged circulation. ACS Appl Bio Mater. 2022;5(2):650–660. DOI:10.1021/acsabm.1c01104
  • He M, Yu P, Hu Y, et al. Erythrocyte-membrane-enveloped biomineralized metal-organic framework nanoparticles enable intravenous glucose-responsive insulin delivery. ACS Appl Mater Interfaces. 2021;13(17):19648–19659. DOI:10.1021/acsami.1c01943
  • Rossi L, Bianchi M, Magnani M. Increased glucose metabolism by enzyme-loaded erythrocytes in vitro and in vivo normalization of hyperglycemia in diabetic mice. Biotechnol Appl Biochem. 1992;15(2):207–216.
  • Rossi L, Bianchi M, Fraternale A, et al. Normalization of hyperglycemia in diabetic mice by enzyme-loaded erythrocytes. Adv Exp Med Biol. 1992;326:183–188.
  • Levene M, Bain MD, Moran NF, et al. Safety and efficacy of erythrocyte encapsulated thymidine phosphorylase in mitochondrial neurogastrointestinal encephalomyopathy. J Clin Med. 2019;8(4):457. DOI:10.3390/jcm8040457
  • Bax BE, Bain MD, Fairbanks LD, et al. A 9-yr evaluation of carrier erythrocyte encapsulated adenosine deaminase (ADA) therapy in a patient with adult-type ADA deficiency. Eur J Haematol. 2007;79(4):338–348. DOI:10.1111/j.1600-0609.2007.00927.x
  • Bax BE, Bain MD, Talbot PJ, et al. Survival of human carrier erythrocytes in vivo. Clin Sci (Lond). 1999;96(2):171–178. DOI:10.1042/cs0960171
  • Coker SA, Szczepiorkowski ZM, Siegel AH, et al. A study of the pharmacokinetic properties and the in vivo kinetics of erythrocytes loaded with dexamethasone sodium phosphate in healthy volunteers. Transfus Med Rev. 2018;32(2):102–110. DOI:10.1016/j.tmrv.2017.09.001
  • Chessa L, Leuzzi V, Plebani A, et al. Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia teleangiectasia patients: results of a phase 2 trial. Orphanet J Rare Dis. 2014;9:5.
  • Leuzzi V, Micheli R, D’Agnano D, et al. Positive effect of erythrocyte-delivered dexamethasone in ataxia-telangiectasia. Neurol Neuroimmunol Neuroinflammation. 2015;2(3):e98. DOI:10.1212/NXI.0000000000000098
  • Bax BE, Levene M, Bain MD, et al. Erythrocyte encapsulated thymidine phosphorylase for the treatment of patients with mitochondrial neurogastrointestinal encephalomyopathy: study protocol for a multi-centre, multiple dose, open label trial. J Clin Med. 2019;8(8):1096. DOI:10.3390/jcm8081096
  • Howard M, Zern BJ, Anselmo AC, et al. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS Nano. 2014;8(5):4100–4132. DOI:10.1021/nn500136z
  • Pan D, Vargas-Morales O, Zern B, et al. The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS ONE. 2016;11(3):e0152074. DOI:10.1371/journal.pone.0152074
  • Parhiz H, Khoshnejad M, Myerson JW, et al. Unintended effects of drug carriers: big issues of small particles. Adv Drug Deliv Rev. 2018;130:90–112.
  • Mambrini G, Mandolini M, Rossi L, et al. Ex vivo encapsulation of dexamethasone sodium phosphate into human autologous erythrocytes using fully automated biomedical equipment. Int J Pharm. 2017;517(1–2):175–184. DOI:10.1016/j.ijpharm.2016.12.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.