386
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanocarrier functionalization strategies for targeted drug delivery in skin cancer therapy: current progress and upcoming challenges

, , , , & ORCID Icon
Pages 831-849 | Received 28 Feb 2023, Accepted 30 May 2023, Published online: 13 Jun 2023

References

  • Armstrong BK, Kricker A. Skin cancer. Dermatol Clin. 1995;13:583–594.
  • Kaur G, Yusuf N. 2021. The epidemiology of skin cancer worldwide. In: Skin cancer: pathogenesis and diagnosis. Springer Singapore; Singapore. p. 69–77. doi: 10.1007/978-981-16-0364-8_4
  • Linares MA, Zakaria A, Nizran P. Skin cancer. Prim Care. 2015;42:645–659.
  • Mukadam SB, Patil HY. Skin cancer classification framework using enhanced super resolution generative adversarial network and custom convolutional neural network. Appl Sci. 2023;13:1210.
  • Rigon RB, Oyafuso MH, Fujimura AT, et al. Nanotechnology-based drug delivery systems for melanoma antitumoral therapy: a review. BioMed Res Int. 2015;2015:1–22.
  • Mello VC, Araújo VHS, de Paiva KLR, et al. Development of new natural lipid-based nanoparticles loaded with aluminum-phthalocyanine for photodynamic therapy against melanoma. Nanomaterials. 2022;12(20):3547. doi: 10.3390/NANO12203547/S1
  • Robinmarksm BBS. An overview of skin cancers incidence and causation. Cancer. 1995;75:607–612.
  • de Gruijl FR. Skin cancer and solar UV radiation. Eur J Cancer. 1999;35:2003–2009.
  • Lo JA, Fisher DE. The melanoma revolution: from UV carcinogenesis to a new era in therapeutics. Science. 2014;346:945.
  • Libra M, Malaponte G, Navolanic PM, et al. Analysis of BRAF mutation in primary and metastatic melanoma. Cell Cycle. 2005;4(10):1382–1384. doi: 10.4161/CC.4.10.2026
  • Patel H, Yacoub N, Mishra R, et al. Current advances in the treatment of BRAF-Mutant melanoma. Cancers. 2020;12:482.
  • Łasińska I, Zielińska A, Mackiewicz J, et al. Basal cell carcinoma: pathology, current clinical treatment, and potential use of lipid nanoparticles. Cancers. 2022;14:2778.
  • Pellegrini C, Maturo MG, di Nardo L, et al. Understanding the molecular genetics of basal cell carcinoma. Int J Mol Sci. 2017;18:2485.
  • Ali FR, Lear JT. Systemic treatments for Basal Cell Carcinoma (BCC): the advent of dermato‐oncology in BCC. Br J Dermatol. 2013;169(1):53–57.
  • Rudolph R, Zelac DE. Squamous cell carcinoma of the skin. Plast Reconstr Surg. 2004;114:82e–94e.
  • Kallini JR, Hamed N, Khachemoune A. Squamous cell carcinoma of the skin: epidemiology, classification, management, and novel trends. Int J Dermatol. 2015;54:130–140.
  • Mogensen M, Jemec GBE. Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies. Dermatol Surg. 2007;33:1158–1174.
  • JERANT AF, JOHNSON JT, SHERIDAN CD, et al. Early detection and treatment of skin cancer. Am Fam Physician. 2000;62:357–368.
  • Simões MCF, Sousa JJS, Pais AACC. Skin cancer and new treatment perspectives: a review. Cancer Lett. 2015;357:8–42. doi: 10.1016/J.CANLET.2014.11.001
  • Kumari S, Choudhary PK, Shukla R, et al. Recent advances in nanotechnology based combination drug therapy for skin cancer. J Biomater Sci Polym Ed. 2022;33:1435–1468.
  • Naves LB, Dhand C, Venugopal JR, et al. Nanotechnology for the treatment of melanoma skin cancer. Prog Biomater. 2017;6:13–26.
  • Kalal BS, Upadhya D, Pai VR. Chemotherapy resistance mechanisms in advanced skin cancer. Oncol Rev. 2017. doi: 10.4081/oncol.2017.326
  • Souto EB, da Ana R, Vieira V, et al. Non-melanoma skin cancers: physio-pathology and role of lipid delivery systems in new chemotherapeutic treatments. Neoplasia. 2022;30. doi:10.1016/J.NEO.2022.100810
  • Fabbrocini G, Cameli N, Romano MC, et al. Chemotherapy and skin reactions. J Exp Clin Cancer Res. 2012;31:1–6.
  • Helmbach H, Rossmann E, Kern MA, et al. Drug-resistance in human melanoma. Int J Cancer. 2001;93:617–622.
  • Grossman D, Altieri DC. Drug resistance in melanoma: mechanisms, apoptosis, and new potential therapeutic targets. Cancer Metast Rev. 2001;20:3–11.
  • Baveloni FG, Riccio BVF, Di Filippo LD, et al. Nanotechnology-based drug delivery systems as potential for skin application: a review. Curr Med Chem. 2020;28:3216–3248.
  • Lu H, Zhang S, Wang J, et al. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems. Front Nutr. 2021;8. doi:10.3389/fnut.2021.783831
  • Dhiman N, Awasthi R, Sharma B, et al. Lipid nanoparticles as carriers for bioactive delivery. Front Chem. 2021;9. doi:10.3389/fchem.2021.580118.
  • Tewari AK, Upadhyay SC, Kumar M, et al. Insights on development aspects of polymeric nanocarriers: the translation from bench to clinic. Polymers. 2022;14(3545):3545.
  • De R, Mahata MK, Kim K. Structure‐based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles. Adv Sci. 2022;9:2105373.
  • Paris JL, Baeza A, Vallet-Regí M. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opin Drug Deliv. 2019;16:1095–1112.
  • Pramanik N, Kumar Jagirdar S. Hyaluronic acid derivatives for targeted cancer therapy. 2021. doi: 10.5772/intechopen.97224
  • Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4:33–45.
  • Erfani E, Roudi R, Rakhshan A, et al. Comparative expression analysis of putative cancer stem cell markers CD44 and ALDH1A1 in various skin cancer subtypes. Int J Biol Markers. 2016;31:53–61.
  • Chen S, Yang K, Tuguntaev RG, et al. Targeting tumor microenvironment with PEG-Based amphiphilic nanoparticles to overcome chemoresistance. Nanomedicine. 2016;12:269–286.
  • Koster BD, López González M, van den Hout MF, et al. T cell infiltration on local cpG-B delivery in early-stage melanoma is predominantly related to CLEC9A + CD141 + CDC1 and CD14 + antigen-presenting cell recruitment. J Immunother Cancer. 2021;9:e001962.
  • Ryva B, Zhang K, Asthana A, et al. Wheat germ agglutinin as a potential therapeutic agent for leukemia. Front Oncol. 2019;9. doi:10.3389/fonc.2019.00100
  • Martínez-Carmona M, Lozano D, Colilla M, et al. Lectin-conjugated PH-Responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater. 2018;65:393–404.
  • Tong X, Ga L, Ai J, et al. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology. 2022;20:57.
  • Farokhzad OC, Karp JM, Langer R. Nanoparticle–aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv. 2006;3:311–324.
  • ElBayoumi TA, Torchilin VP. Tumor-specific anti-nucleosome antibody improves therapeutic efficacy of doxorubicin-loaded long-circulating liposomes against primary and metastatic tumor in mice. Mol Pharm. 2009;6:246–254.
  • Narayanaswamy R, Torchilin VP. Targeted delivery of combination therapeutics using monoclonal antibody 2C5-modified immunoliposomes for cancer therapy. Pharm Res. 2021;38:429–450.
  • Song W, Tang Z, Zhang D, et al. Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. Biomaterials. 2014;35:3005–3014.
  • Dhaini B, Kenzhebayeva B, Ben-Mihoub A, et al. Peptide-conjugated nanoparticles for targeted photodynamic therapy. Nanophotonics. 2021;10:3089–3134. doi: 10.1515/nanoph-2021-0275
  • Zwicke GL, Ali Mansoori G, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012;3:18496.
  • Liu D, Liu C, Zou W, et al. Enhanced gastrointestinal absorption of N3-O-Toluyl-fluorouracil by cationic solid lipid nanoparticles. J Nanopart Res. 2010;12:975–984.
  • Chime SA, Attama AA, Builders PF, et al. Sustained-release diclofenac potassium-loaded solid lipid microparticle based on solidified reverse micellar solution: in vitro and in vivo evaluation. J Microencapsul. 2013;30:335–345.
  • Shukla T, Upmanyu N, Prakash Pandey S, et al. 2018. Lipid Nanocarriers. In: Lipid nanocarriers for drug targeting. Elsevier. p. 1–47. doi: 10.1016/B978-0-12-813687-4.00001-3
  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Controlled Release. 2010;148:135–146.
  • Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials. 2019;9:474.
  • Hernández-Esquivel R-A, Navarro-Tovar G, Zárate-Hernández E, et al. Solid Lipid Nanoparticles (SLN). In: Nanocomposite materials for biomedical and energy storage applications. IntechOpen; 2022. doi: 10.5772/intechopen.102536
  • Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2014;44:381–391.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
  • Desmet E, Van Gele M, Lambert J. Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders. Expert Opin Drug Deliv. 2017;14:109–122.
  • Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123.
  • Goncalez ML, Rigon RB, Pereira-Da-Silva MA, et al. Curcumin-loaded cationic solid lipid nanoparticles as a potential platform for the treatment of skin disorders. Pharmazie. 2017;72:721–727.
  • Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: a review. Nanosci Nanotechnol Res. 2017;4:67–72.
  • Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308.
  • Pardeshi C, Rajput P, Belgamwar V, et al. Solid lipid based nanocarriers: an overview/nanonosači na bazi čvrstih lipida: pregled. Acta Pharm. 2012;62:433–472.
  • dos Santos AM, Junior AGT, Carvalho SG, et al. An updated review on properties, nanodelivery systems, and analytical methods for the determination of 5-fluorouracil in pharmaceutical and biological samples. Curr Pharm Des. 2022;28:1501–1512.
  • Salah E, Abouelfetouh MM, Pan Y, et al. Solid lipid nanoparticles for enhanced oral absorption: a review. Colloids Surf B Biointerfaces. 2020;196:111305.
  • Campos PM, Bentley MVLB, Torchilin VP. 2016. Nanopreparations for skin cancer therapy. In: Nanobiomaterials in cancer therapy. Elsevier. p. 1–28. doi: 10.1016/B978-0-323-42863-7.00001-3
  • Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol. 2016;44:27–40.
  • Abdel Fadeel DA, Kamel R, Fadel M. PEGylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: in-vitro/in-vivo studies and histopathological examination. Sci Rep. 2020;10:10435.
  • Mansoori MA, Agrawal S, Jawade S, et al. A Review on Liposome. International Journal of Advanced Research in Pharmaceutical & Bio Sciences. 2012;2(1):453+ .
  • Obeid MA, Tate RJ, Mullen AB, et al. 2018. Lipid-based nanoparticles for cancer treatment. In: Grumezescu Alexandru Mihai, editor. Lipid Nanocarriers for Drug Targeting. Amsterdam: Elsevier. p. 313–359. doi: 10.1016/B978-0-12-813687-4.00008-6
  • Chorilli M, Calixto G, Rimério TC, et al. Caffeine encapsulated in small unilamellar liposomes: characerization and in vitro release profile. J Dispers Sci Technol. 2013;34:1465–1470.
  • Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68:701–787.
  • Zhang J, Li X, Huang L. Non-viral nanocarriers for SiRNA delivery in breast cancer. JControlled Release. 2014;190:440–450.
  • Santana MHA, Zanchetta B. Elastic liposomes. In: Beck Ruy, Guterres, Silvia, Pohlmann Adrianaa, editors. Nanocosmetics and nanomedicines. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 139–162.
  • Rahimpour Y, Hamishehkar H. Liposomes in cosmeceutics. Expert Opin Drug Delivery. 2012;9(4):443–455.
  • Nogueira E, Gomes AC, Preto A, et al. Design of liposomal formulations for cell targeting. Colloids Surf B Biointerfaces. 2015;136:514–526.
  • Mizrahy S, Goldsmith M, Leviatan-Ben-Arye S, et al. Tumor targeting profiling of hyaluronan-coated lipid based-nanoparticles. Nanoscale. 2014;6:3742–3752.
  • Song CK, Jung SH, Kim D-D, et al. Disaccharide-modified liposomes and their in vitro intracellular uptake. Int J Pharm. 2009;380:161–169.
  • Cadinoiu AN, Rata DM, Atanase LI, et al. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polymers. 2019;11:1515.
  • Wilson RJ, Li Y, Yang G, et al. Nanoemulsions for drug delivery. Particuology. 2022;64:85–97.
  • Kale SN, Deore SL. Emulsion micro emulsion and nano emulsion: a review. Syst Rev Pharm. 2016;8:39–47.
  • Grumezescu AM. Emulsions . 1st ed. Amsterdam: Elsevier; 2016. ISBN 9780128043066.
  • Ohshima H, Makino K. Colloid and interface science in pharmaceutical research and development. Amsterdam: Elsevier; 2014. ISBN 9780444626141.
  • Tartaro G, Mateos H, Schirone D, et al. Microemulsion microstructure(s): a tutorial review. Nanomaterials. 2020;10:1657.
  • Callender SP, Mathews JA, Kobernyk K, et al. Microemulsion utility in pharmaceuticals: implications for multi-drug delivery. Int J Pharm. 2017;526:425–442.
  • dos Santos Ramos MA, da Silva PB, de Toledo LG, et al. Intravaginal delivery of syngonanthus nitens (Bong.) Ruhland fraction based on a nanoemulsion system applied to vulvovaginal candidiasis treatment. J Biomed Nanotechnol. 2019;15:1072–1089.
  • Aboofazeli R. Nanometric-scaled emulsions (Nanoemulsions). Iran J Pharm Res. 2010;9:325–326.
  • Sutradhar KB, Amin L. Nanoemulsions: increasing possibilities in drug delivery. Eur J Nanomed. 2013;5:97–110.
  • Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. JControlled Release. 2017;252:28–49.
  • Zeng B, Middelberg APJ, Gemiarto A, et al. Self-adjuvanting nanoemulsion targeting dendritic cell receptor Clec9A enables antigen-specific immunotherapy. J Clin Investig. 2018;128:1971–1984.
  • Prete ACL, Maria DA, Rodrigues D, et al. Evaluation in melanoma-bearing mice of an etoposide derivative associated to a cholesterol-rich nanoemulsion. J Pharm Pharmacol. 2010;58:801–808.
  • Khan NH, Mir M, Qian L, et al. Skin cancer biology and barriers to treatment: recent applications of polymeric micro/nanostructures. J Adv Res. 2022;36:223–247.
  • Ramanunny AK, Wadhwa S, Gulati M, et al. Nanocarriers for treatment of dermatological diseases: principle, perspective and practices. Eur J Pharmacol. 2021;890:173691.
  • Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–7309.
  • Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des. 2006;12:4669–4684.
  • Yokoyama M. Polymeric micelles as drug carriers: their lights and shadows. J Drug Targeting. 2014;22(7):576–583.
  • Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and SiRNA. Front Pharmacol. 2014;5:77.
  • Kahraman E, Güngör S, Özsoy Y. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther Deliv. 2017;8:967–985.
  • Yokoyama M. Polymeric micelles as drug carriers: their lights and shadows. J Drug Target. 2014;22:576–583.
  • Skidan I, Dholakia P, Torchilin VP. Photodynamic therapy of experimental b-16 melanoma in mice with tumor-targeted 5,10,15,20-tetraphenylporphin-loaded PEG-PE micelles. J Drug Target. 2008;16:486–493.
  • Zheng L, Gou M, Zhou S, et al. Antitumor activity of monomethoxy poly(Ethylene Glycol)-Poly (ε-Caprolactone) micelle-encapsulated doxorubicin against mouse melanoma. Oncol Rep. 2011;25:1557–1564.
  • Lapteva M, Mignot M, Mondon K, et al. Self-assembled MPEG-HexPLA polymeric nanocarriers for the targeted cutaneous delivery of imiquimod. Eur J Pharm Biopharm. 2019;142:553–562.
  • Mehan N, Kumar M, Bhatt S, et al. Self-assembly polymeric nano micelles for the futuristic treatment of skin cancer and phototoxicity: therapeutic and clinical advancement. Crit Rev Ther Drug Carrier Syst. 2022;39:79–95.
  • Maeda H, Miyamoto Y, Seymour LW, et al. Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjug Chem. 2002;3:351–362.
  • Cui M, Wiraja C, Chew SWT, et al. Nanodelivery systems for topical management of skin disorders. Mol Pharm. 2021;18:491–505.
  • Aljuffali IA, Lin CH, Yang SC, et al. Nanoencapsulation of tea catechins for enhancing skin absorption and therapeutic efficacy. AAPS Pharm Sci Tech. 2022;23:187–187.
  • Skidan I, Dholakia P, Torchilin V. Photodynamic therapy of experimental b-16 melanoma in mice with tumor-targeted 5,10,15,20-tetraphenylporphin-loaded PEG-PE micelles. J Drug Target. 2008;16:486–493.
  • Barkey NM, Tafreshi NK, Josan JS, et al. Development of melanoma-targeted polymer micelles by conjugation of a Melanocortin 1 Receptor (MC1R) specific ligand. J Med Chem. 2011;54:8078–8084.
  • Varshosaz J, Taymouri S, Hassanzadeh F, et al. Folated synperonic-cholesteryl hemisuccinate polymeric micelles for the targeted delivery of docetaxel in melanoma. BioMed Res Int. 2015;2015. doi: 10.1155/2015/746093
  • Varshosaz J, Taymouri S, Hassanzadeh F, et al. Folated synperonic-cholesteryl hemisuccinate polymeric micelles for the targeted delivery of docetaxel in melanoma. BioMed Res Int. 2015;2015:1–17.
  • Wan D, Li C, Pan J. Polymeric micelles with reduction-responsive function for targeted cancer chemotherapy. ACS Appl Bio Mater. 2020;3:1139–1146. doi: 10.1021/ACSABM.9B01070/ASSET/IMAGES/MEDIUM/MT9B01070_0009.GIF
  • Md S, Alhakamy NA, Neamatallah T, et al. Development characterization, and evaluation of α-mangostin-loaded polymeric nanoparticle gel for topical therapy in skin cancer. Gels. 2021;7:230.
  • Tang Y, Chen M, Xie Q, et al. Construction and evaluation of hyaluronic acid-based copolymers as a targeted chemotherapy drug carrier for cancer therapy. Nanotechnology. 2020;31:305702.
  • Bhatt H, Kiran Rompicharla SV, Ghosh B, et al. α-Tocopherol succinate-anchored PEGylated Poly(Amidoamine) dendrimer for the delivery of paclitaxel: assessment of in vitro and in vivo therapeutic efficacy. Mol Pharm. 2019;16:1541–1554.
  • Mehrabian A, Mashreghi M, Dadpour S, et al. Nanocarriers call the last shot in the treatment of brain cancers. Technol Cancer Res Treat. 2022;21:1–21.
  • Kim D, Kim J, Park YI, et al. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent Sci. 2018;4:324–336.
  • Yan H, Xue Z, Xie J, et al. Toxicity of carbon nanotubes as anti-tumor drug carriers. Int J Nanomedicine. 2019;14:10179–10194.
  • Bharti C, Gulati N, Nagaich U, et al. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5:124.
  • Wahajuddin N, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;2012:3445.
  • Zeng L, Gowda BHJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer. 2023;22:1–50.
  • Drača D, Edeler D, Saoud M, et al. Antitumor potential of cisplatin loaded into SBA-15 mesoporous silica nanoparticles against B16F1 Melanoma Cells: In Vitro and in Vivo studies. J Inorg Biochem 2021, 217, p. 111383. doi: 10.1016/j.jinorgbio.2021.111383
  • Zhao P, Qiu L, Zhou S, et al. Cancer cell membrane camouflaged mesoporous silica nanoparticles combined with immune checkpoint blockade for regulating tumor microenvironment and enhancing antitumor therapy. Int J Nanomedicine. 2021;16:2107–2121.
  • García-Hevia L, Villegas JC, Fernández F, et al. Multiwalled carbon nanotubes inhibit tumor progression in a mouse model. Adv Healthc Mater. 2016;5:1080–1087.
  • Burkert SC, Shurin GV, White DL, et al. HHS public access. 2019;10:17990–18000. doi: 10.1039/c8nr04437f.Targeting
  • Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Investig. 2015;125:3356–3364.
  • Zhao Y, Burkert SC, Tang Y, et al. Nano-gold corking and enzymatic uncorking of carbon nanotube cups. J Am Chem Soc. 2015;137(2):675–684.
  • Burkert SC, Shurin GV, White DL, et al. Targeting myeloid regulators by paclitaxel-loaded enzymatically degradable nanocups. Nanoscale. 2018;10:17990–18000.
  • Rao Y, Chen W, Liang X, et al. Nanoparticles for transdermal delivery : cancer therapy by circumventing the skin barrier. 2015:239–247. doi: 10.1101/pdb.top066068
  • Bagasariya D, Charankumar K, Shah S, et al. Biomimetic nanotherapeutics: employing nanoghosts to fight melanoma. Eur J Pharm Biopharm. 2022;177:157–174.
  • Li B, Wang F, Gui L, et al. The Potential of biomimetic nanoparticles for tumor-targeted drug delivery. Nanomedicine. 2018;13:2099–2118.
  • Wu M, Mei T, Lin C, et al. Melanoma cell membrane biomimetic versatile CuS nanoprobes for homologous targeting photoacoustic imaging and photothermal chemotherapy. ACS Appl Mater Interfaces. 2020;12:16031–16039.
  • Wu T, Hou X, Li J, et al. Microneedle-mediated biomimetic cyclodextrin metal organic frameworks for active targeting and treatment of hypertrophic scars. ACS Nano. 2021;15:20087–20104.
  • Jing Q, Ruan H, Li J, et al. Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials. 2021;278:121142.
  • Xia S, Liu Z, Cai J, et al. Liver fibrosis therapy based on biomimetic nanoparticles which deplete activated hepatic stellate cells. JControlled Release. 2023;355:54–67.
  • Li W, Ma T, He T, et al. Cancer cell membrane–encapsulated biomimetic nanoparticles for tumor immuno-photothermal therapy. Chem Eng J. 2023;463:142495.
  • Xiao Y, Zhu T, Zeng Q, et al. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy. Acta Biomater. 2023;157:451–466.
  • Rajeev J, Kamalasanan K, Sapa H, et al. Controlled Release Nanomedicine (CRNM) of Aspirin using “Biomimetic Niosomal Nanoparticles (BNNs)”for COVID-19 and cardiovascular treatment: DOE based optimization. OpenNano. 2023;9:100119.
  • Wang Q, Wang Z, Li Z, et al. Biomimetic camouflaged nanoparticle-based folfirinox platform for optimizing clinical pancreatic cancer treatment. Nano Today. 2023;48:101733.
  • Wu T, Hou X, Li J, et al. Microneedle-mediated biomimetic cyclodextrin metal organic frameworks for active targeting and treatment of hypertrophic scars. ACS Nano. 2021. doi: 10.1021/ACSNANO.1C07829
  • Hua S, de Matos MBC, Metselaar JM, et al. Current Trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790.
  • Sanna V, Sechi M. Therapeutic potential of targeted nanoparticles and perspective on nanotherapies. Cite This: ACS Med Chem Lett. 2020;11:1069–1073.
  • Gu W, Meng F, Haag R, et al. Actively targeted nanomedicines for precision cancer therapy: concept, construction, challenges and clinical translation. JControlled Release. 2021;329:676–695.
  • Zeng H, Li J, Hou K, et al. Melanoma and nanotechnology-based treatment. Front Oncol. 2022;12:875.
  • Krishnan V, Mitragotri S. Nanoparticles for topical drug delivery: potential for skin cancer treatment. Adv Drug Deliv Rev. 2020;153:87–108.
  • Mundekkad D, Cho WC. Nanoparticles in clinical translation for cancer therapy. 2022. doi: 10.3390/ijms23031685

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.