323
Views
1
CrossRef citations to date
0
Altmetric
Review

Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy

, , , , , , , , , , , & show all
Pages 937-954 | Received 05 Nov 2022, Accepted 06 Jun 2023, Published online: 23 Jun 2023

References

  • Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: recent advances. Carbohydr Polym. 2021;272:118464. doi: 10.1016/j.carbpol.2021.118464
  • Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci. 2020;278:102125. doi: 10.1016/j.cis.2020.102125
  • Ion D, Niculescu A-G, Păduraru DN, et al. An up-to-date review of natural nanoparticles for cancer management. Pharmaceutics. 2021;14(1):18. doi: 10.3390/pharmaceutics14010018
  • Naderlou E, Salouti M, Amini B, et al. Enhanced sensitivity and efficiency of detection of Staphylococcus aureus based on modified magnetic nanoparticles by photometric systems. Artific Cells Nanomed Biotechnol. 2020;48(1):810–817. doi: 10.1080/21691401.2020.1748638
  • Akhlaq M, Azad AK, Ullah I, et al. Methotrexate-loaded gelatin and polyvinyl alcohol (Gel/PVA) hydrogel as a Ph-sensitive matrix. Polymers. 2021;13(14):2300. doi: 10.3390/polym13142300
  • Narmani A, Farhood B, Haghi-Aminjan H, et al. Gadolinium nanoparticles as diagnostic and therapeutic agents: their delivery systems in magnetic resonance imaging and neutron capture therapy. J Drug Delivery Sci Technol. 2018;44:457–466. doi: 10.1016/j.jddst.2018.01.011
  • Narmani A, Yavari K, Mohammadnejad J. Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex. Colloids Surf B Biointerfaces. 2017;159:232–240. doi: 10.1016/j.colsurfb.2017.07.089
  • Jia X, Zhang B, Chen C, et al. Immobilization of chitosan grafted carboxylic Zr-MOF to porous starch for sulfanilamide adsorption. Carbohydr Polym. 2021;253:117305. doi: 10.1016/j.carbpol.2020.117305
  • Khalaf EM, Abood NA, Atta RZ, et al. Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: a comprehensive review. Int j biol macromol. 2023;231:123354. doi: 10.1016/j.ijbiomac.2023.123354
  • Narmani A, Kamali M, Amini B, et al. Highly sensitive and accurate detection of Vibrio cholera O1 OmpW gene by fluorescence DNA biosensor based on gold and magnetic nanoparticles. Process Biochem. 2018;65:46–54. doi: 10.1016/j.procbio.2017.10.009
  • Mortezaee K, Narmani A, Salehi M, et al. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci. 2021;269:119020. doi: 10.1016/j.lfs.2021.119020
  • Narmani A, Arani MAA, Mohammadnejad J, et al. Breast tumor targeting with PAMAM-PEG-5FU-99mTc as a new therapeutic nanocomplex: in in-vitro and in-vivo studies. Biomed Microdevices. 2020;22(2):1–13. doi: 10.1007/s10544-020-00485-5
  • Zhuang J, Kuo C-H, Chou L-Y, et al. Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano. 2014;8(3):2812–2819. doi: 10.1021/nn406590q
  • Zhong H, Chan G, Hu Y, et al. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics. 2018;10(4):263. DOI:10.3390/pharmaceutics10040263
  • Ghitman J, Biru EI, Stan R, et al. Review of hybrid PLGA nanoparticles: future of smart drug delivery and theranostics medicine. Mater Design. 2020;193:108805. doi: 10.1016/j.matdes.2020.108805
  • Zhao X, Liu Y, Yu Y, et al. Hierarchically porous composite microparticles from microfluidics for controllable drug delivery. Nanoscale. 2018;10(26):12595–12604. doi: 10.1039/C8NR03728K
  • Pandita D, Kumar S, Lather V. Hybrid poly (lactic-co-glycolic acid) nanoparticles: design and delivery prospectives.Drug discovery today 2015;20(1):95–104.
  • Harguindey A, Domaille DW, Fairbanks BD, et al. Synthesis and assembly of click‐nucleic‐acid‐containing PEG–PLGA nanoparticles for DNA delivery. Adv Mater. 2017;29(24):1700743. doi: 10.1002/adma.201700743
  • Zhou S, Huang Y, Chen Y, et al. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Biomaterials. 2020;235:119795. doi: 10.1016/j.biomaterials.2020.119795
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. JControlled Release. 2012;161(2):505–522. doi: 10.1016/j.jconrel.2012.01.043
  • Operti MC, Bernhardt A, Grimm S, et al. PLGA-based nanomedicines manufacturing: technologies overview and challenges in industrial scale-up. Int J Pharmaceut. 2021;605:120807.
  • Cano A, Sánchez-López E, Ettcheto M, et al. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine. 2020;15(12):1239–1261. doi: 10.2217/nnm-2019-0443
  • Swider E, Koshkina O, Tel J, et al. Customizing poly (lactic-co-glycolic acid) particles for biomedical applications. Acta Biomaterialia. 2018;73:38–51. doi: 10.1016/j.actbio.2018.04.006
  • Andhariya JV, Jog R, Shen J, et al. In vitro-in vivo correlation of parenteral PLGA microspheres: effect of variable burst release. JControlled Release. 2019;314:25–37. doi: 10.1016/j.jconrel.2019.10.014
  • Fonte P, Araújo F, Silva C, et al. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv. 2015;33(6):1342–1354. doi: 10.1016/j.biotechadv.2015.02.010
  • Gentile P, Chiono V, Carmagnola I, et al. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–3659. doi: 10.3390/ijms15033640
  • Angkawinitwong U, Courtenay AJ, Rodgers AM, et al. A novel transdermal protein delivery strategy via electrohydrodynamic coating of PLGA microparticles onto microneedles. ACS Appl Mater Inter. 2020;12(11):12478–12488. doi: 10.1021/acsami.9b22425
  • Battisti M, Vecchione R, Casale C, et al. Non-invasive production of multi-compartmental biodegradable polymer microneedles for controlled intradermal drug release of labile molecules. Front Bioeng Biotechnol. 2019;7:296. doi: 10.3389/fbioe.2019.00296
  • Biswal AK, Hariprasad P, Saha S. Efficient and prolonged antibacterial activity from porous PLGA microparticles and their application in food preservation. Mater Sci Eng C. 2020;108:110496. doi: 10.1016/j.msec.2019.110496
  • Cocks E, Somavarapu S, Alpar O, et al. Influence of suspension stabilisers on the delivery of protein-loaded porous poly (dl-lactide-co-glycolide)(PLGA) microparticles via pressurised metered dose inhaler (pMDI). Pharm Res. 2014;31(8):2000–2009. doi: 10.1007/s11095-014-1302-x
  • Jiménez A, Peltzer M, Ruseckaite R, et al. Poly(lactic acid) science and technology. Royal Society of Chemistry: 2014. doi: 10.1039/9781782624806
  • Alkilany AM, Rachid O, Alkawareek MY, et al. PLGA-Gold nanocomposite: preparation and biomedical applications. Pharmaceutics. 2022;14(3):660. doi: 10.3390/pharmaceutics14030660
  • Vlachopoulos A, Karlioti G, Balla E, et al. Poly (Lactic Acid)-based microparticles for drug delivery applications: an overview of recent advances. Pharmaceutics. 2022;14(2):359. doi: 10.3390/pharmaceutics14020359
  • Sheffey VV, Siew EB, Tanner EEL, et al. PLGA’s plight and the role of stealth surface modification strategies in its use for intravenous particulate drug delivery. Adv Healthcare Mater. 2022;11(8):2101536. doi: 10.1002/adhm.202101536
  • Vrignaud S, Benoit J-P, Saulnier P. Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials. 2011;32(33):8593–8604. doi: 10.1016/j.biomaterials.2011.07.057
  • Chatterjee M, Chanda N. Formulation of PLGA nano-carrier: specialized modification for cancer therapeutic applications. Mater Adv. 2022;3(2):837–858. doi: 10.1039/D1MA00600B
  • Hasan AS, Socha M, Lamprecht A, et al. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int J Pharmaceut. 2007;344(1–2):53–61. doi: 10.1016/j.ijpharm.2007.05.066
  • Al-Nemrawi NK, Altawabeyeh RM, Darweesh RS. Preparation and characterization of Docetaxel-PLGA nanoparticles coated with folic acid-chitosan conjugate for cancer treatment. J Pharmaceut sci. 2022;111(2):485–494. doi: 10.1016/j.xphs.2021.10.034
  • Albertsson A-C, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules. 2003;4(6):1466–1486. doi: 10.1021/bm034247a
  • Fuoco T, Pappalardo D. Aluminum alkyl complexes bearing salicylaldiminato ligands: versatile initiators in the ring-opening polymerization of cyclic esters. Catalysts. 2017;7(12):64. doi: 10.3390/catal7020064
  • Jérôme C, Lecomte P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv Drug Delivery Rev. 2008;60(9):1056–1076. doi: 10.1016/j.addr.2008.02.008
  • Iqbal M, Zafar N, Fessi H, et al. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharmaceut. 2015;496(2):173–190. doi: 10.1016/j.ijpharm.2015.10.057
  • Molavi F, Barzegar-Jalali M, Hamishehkar H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: a review on formulation approaches. J Controlled Release. 2020;320:265–282. doi: 10.1016/j.jconrel.2020.01.028
  • Tasci ME, Dede B, Tabak E, et al. Production, optimization and characterization of polylactic acid microparticles using electrospray with porous structure. Appl Sci. 2021;11(11):5090. doi: 10.3390/app11115090
  • Morais AÍS, Vieira EG, Afewerki S, et al. Fabrication of polymeric microparticles by electrospray: the impact of experimental parameters. JFB. 2020;11(1):4. doi: 10.3390/jfb11010004
  • Almoustafa HA, Alshawsh MA, Chik Z. Technical aspects of preparing PEG-PLGA nanoparticles as carrier for chemotherapeutic‎ agents by nanoprecipitation method. Int J Pharmaceut. 2017;533(1):275–284. doi: 10.1016/j.ijpharm.2017.09.054
  • Rivas CJM, Tarhini M, Badri W, et al. Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharmaceut. 2017;532(1):66–81. doi: 10.1016/j.ijpharm.2017.08.064
  • Tabatabaei Mirakabad FS, Nejati-Koshki K, Akbarzadeh A, et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev. 2014;15(2):517–535. doi: 10.7314/APJCP.2014.15.2.517
  • Mir M, Ahmed N, Ur Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017;159:217–231. doi: 10.1016/j.colsurfb.2017.07.038
  • Giorello A, Nicastro A, Berli CLA. Microfluidic platforms for the production of nanoparticles at flow rates larger than one liter per hour. Adv Mater Technol. 2022;7(9):2101588. doi: 10.1002/admt.202101588
  • Hwang J, Mros S, Gamble AB, et al. Improving antibacterial activity of a HtrA Protease inhibitor JO146 against Helicobacter pylori: a novel approach using microfluidics-engineered PLGA nanoparticles. Pharmaceutics. 2022;14(2):348. doi: 10.3390/pharmaceutics14020348
  • Shan X, Gong X, Li J, et al. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B. 2022;12(7):3028–3048. doi: 10.1016/j.apsb.2022.02.025
  • Guan W, Ma Y, Ding S, et al. The technology for improving stability of nanosuspensions in drug delivery. J Nanopart Res. 2022;24(1):1–38. doi: 10.1007/s11051-022-05403-9
  • Smirnova VV, Chausov DN, Serov DA, et al. A novel biodegradable composite polymer material based on PLGA and silver oxide nanoparticles with unique physicochemical properties and biocompatibility with mammalian cells. Materials. 2021;14(22):6915. doi: 10.3390/ma14226915
  • Wan B, Andhariya JV, Bao Q, et al. Effect of polymer source on in vitro drug release from PLGA microspheres. Int J Pharmaceut. 2021;607:120907. doi: 10.1016/j.ijpharm.2021.120907
  • Xu Y, Kim C-S, Saylor DM, et al. Polymer degradation and drug delivery in PLGA‐based drug–polymer applications: a review of experiments and theories. J Biomed Mater Res, Part B. 2017;105(6):1692–1716. doi: 10.1002/jbm.b.33648
  • Zhang B, Sai Lung P, Zhao S, et al. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci Rep. 2017;7(1):1–8. doi: 10.1038/s41598-017-07588-9
  • Rocha CV, Gonçalves V, da Silva MC, et al. PLGA-Based composites for various biomedical applications. Int J Mol Sci. 2022;23(4):2034. doi: 10.3390/ijms23042034
  • Liu G, McEnnis K. Glass transition temperature of PLGA particles and the influence on drug delivery applications. Polymers. 2022;14(5):993. doi: 10.3390/polym14050993
  • Lim YW, Tan WS, Ho KL, et al. challenges and complications of poly (lactic-co-glycolic acid)-based long-acting drug product development. Pharmaceutics. 2022;14(3):614. doi: 10.3390/pharmaceutics14030614
  • Emami F, Mostafavi Yazdi SJ, Na DH. Poly (lactic acid)/poly (lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. J Pharm Invest. 2019;49(4):427–442. doi: 10.1007/s40005-019-00443-1
  • Xu W, Sasaki M, Niidome T. Sirolimus release from biodegradable polymers for coronary stent application: a review. Pharmaceutics. 2022;14(3):492. doi: 10.3390/pharmaceutics14030492
  • Unagolla JM, Jayasuriya AC. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharmaceut Sci. 2018;114:199–209. doi: 10.1016/j.ejps.2017.12.012
  • El-Hammadi MM, Arias JL. Recent advances in the surface functionalization of PLGA-Based nanomedicines. Nanomaterials. 2022;12(3):354. doi: 10.3390/nano12030354
  • Bikiaris R, Christodoulou E, Kostoglou M, et al. Paliperidone palmitate depot microspheres based on biocompatible poly (alkylene succinate) polyesters as long-acting injectable formulations. J Drug Delivery Sci Technol. 2022;68:103056. doi: 10.1016/j.jddst.2021.103056
  • Doty AC, Weinstein DG, Hirota K, et al. Mechanisms of in vivo release of triamcinolone acetonide from PLGA microspheres. JControlled Release. 2017;256:19–25. doi: 10.1016/j.jconrel.2017.03.031
  • Von Burkersroda F, Schedl L, Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 2002;23(21):4221–4231. doi: 10.1016/S0142-9612(02)00170-9
  • Bassand C, Verin J, Lamatsch M, et al. How agarose gels surrounding PLGA implants limit swelling and slow down drug release. JControlled Release. 2022;343:255–266. doi: 10.1016/j.jconrel.2022.01.028
  • Rapier CE, Shea KJ, Lee AP. Investigating PLGA microparticle swelling behavior reveals an interplay of expansive intermolecular forces. Sci Rep. 2021;11(1):1–12. doi: 10.1038/s41598-021-93785-6
  • Dai J, Tan X, Liang M, et al. Fabrication of porous crystalline PLGA-PEG induced by swelling during the recrystallization annealing process. ACS Biomater Sci Eng. 2021;7(12):5524–5531. doi: 10.1021/acsbiomaterials.1c01187
  • Wang C-PJ, Byun MJ, Kim S-N, et al. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment. JControlled Release. 2022;345:1–19. doi: 10.1016/j.jconrel.2022.02.028
  • Sahu R, Dixit S, Verma R, et al. Encapsulation of recombinant MOMP in extended-releasing PLGA 85: 15 nanoparticles confer protective immunity against a Chlamydia muridarum genital challenge and re-challenge. Front Immunol. 2021;12:1197. doi: 10.3389/fimmu.2021.660932
  • Chachlioutaki K, Karavasili C, Adamoudi E, et al. Silk sericin/PLGA electrospun scaffolds with anti-inflammatory drug-eluting properties for periodontal tissue engineering. Mater Sci Eng C. 2022;133:112723. doi: 10.1016/j.msec.2022.112723
  • Huang S-J, Wang T-H, Chou Y-H, et al. Hybrid PEGylated chitosan/PLGA nanoparticles designed as Ph-responsive vehicles to promote intracellular drug delivery and cancer chemotherapy. Int j biol macromol. 2022;210:565–578. doi: 10.1016/j.ijbiomac.2022.04.209
  • Pang H, Huang X, Xu ZP, et al. Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discovery Today. 2022;28(1):103393. doi: 10.1016/j.drudis.2022.103393
  • Agnihotri TG, Jadhav GS, Sahu B, et al. Recent trends of bioconjugated nanomedicines through nose-to-brain delivery for neurological disorders. Drug Deliv Transl Res. 2022;12(12):3104–3120. doi: 10.1007/s13346-022-01173-y
  • Shapiro RL, DeLong K, Zulfiqar F, et al. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Adv Drug Delivery Rev. 2022;191:114543. doi: 10.1016/j.addr.2022.114543
  • Perinelli DR, Cespi M, Bonacucina G, et al. Pegylated polylactide (PLA) and poly (lactic-co-glycolic acid)(PLGA) copolymers for the design of drug delivery systems. J Pharm Invest. 2019;49(4):443–458. doi: 10.1007/s40005-019-00442-2
  • Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, et al. In vivo gene delivery mediated by non-viral vectors for cancer therapy. JControlled Release. 2020;325:249–275. doi: 10.1016/j.jconrel.2020.06.038
  • Mukherjee A, et al., Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Nanomed J, 2019. 14: p. 1937.
  • Maghrebi S, Prestidge CA, Joyce P. An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opin Drug Delivery. 2019;16(5):507–524. doi: 10.1080/17425247.2019.1605353
  • Pagels RF, Prud’homme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Controlled Release. 2015;219:519–535. doi: 10.1016/j.jconrel.2015.09.001
  • Buzmakov AV, Dunaev A, Krivonosov Y, et al. Wide-ranging multitool study of structure and porosity of PLGA scaffolds for tissue engineering. Polymers. 2021;13(7):1021. doi: 10.3390/polym13071021
  • Ragelle H, Danhier F, Préat V, et al. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Delivery. 2017;14(7):851–864. doi: 10.1080/17425247.2016.1244187
  • Payen VL, Brisson L, Dewhirst MW, et al. Common responses of tumors and wounds to hypoxia. Cancer J. 2015;21(2):75–87. doi: 10.1097/PPO.0000000000000098
  • Sun S, Li H, Chen J, et al. Lactic acid: no longer an inert and end-product of glycolysis. Physiology. 2017;32(6):453–463. doi: 10.1152/physiol.00016.2017
  • Curran CS, Kopp JB. Aryl hydrocarbon receptor mechanisms affecting chronic kidney disease. Front Pharmacol. 2022;13:782199–782199. doi: 10.3389/fphar.2022.782199
  • Chen S, Zhou L, Sun J, et al. The role of camp-PKA pathway in lactate-induced intramuscular triglyceride accumulation and mitochondria content increase in mice. Front Physiol. 2021;12:12. doi: 10.3389/fphys.2021.709135
  • Luo Y, Li L, Chen X, et al. Effects of lactate in immunosuppression and inflammation: progress and prospects. Int Rev Immunol. 2022;41(1):19–29. doi: 10.1080/08830185.2021.1974856
  • Certo M, Tsai C-H, Pucino V, et al. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 2021;21(3):151–161. doi: 10.1038/s41577-020-0406-2
  • Holzer P. Acid-sensitive ion channels and receptors. Sensory nerves. 2009;283–332.
  • Weder B, Schefer F, van Haaften WT, et al. New therapeutic approach for intestinal fibrosis through inhibition of ph-sensing receptor GPR4. Inflamm Bowel Dis. 2022;28(1):109–125. doi: 10.1093/ibd/izab140
  • Li Z, et al. Normalization of tumor microvasculature basing on targeting and modulation of tumor microenvironment. Nanoscale. 2021;13:17254–17271.
  • Hayes C, Donohoe CL, Davern M, et al. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett. 2021;500:75–86. doi: 10.1016/j.canlet.2020.12.021
  • Narmani A, Kamali M, Amini B, et al. Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: in vitro studies. Process Biochem. 2018;69:178–187. doi: 10.1016/j.procbio.2018.01.014
  • Liu Y, Workalemahu B, Jiang X. The effects of physicochemical properties of nanomaterials on their cellular uptake in vitro and in vivo. Small. 2017;13(43):1701815. doi: 10.1002/smll.201701815
  • Amini A, Kamali M, Amini B, et al. Bio-barcode technology for detection of Staphylococcus aureus protein a based on gold and iron nanoparticles. Int j biol macromol. 2019;124:1256–1263. doi: 10.1016/j.ijbiomac.2018.11.123
  • Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 2015;14(3):203–219. doi: 10.1038/nrd4519.
  • Faramarzi N, Mohammadnejad J, Jafary H, et al. Synthesis and in vitro evaluation of tamoxifen-loaded gelatin as effective nanocomplex in drug delivery systems. Int J Nanosci. 2020;19(5):2050002. doi: 10.1142/S0219581X20500027
  • Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Delivery. 2017;14(2):201–214. doi: 10.1080/17425247.2016.1213238
  • Narmani A, Rezvani M, Farhood B, et al. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res. 2019;80(4):404–424. doi: 10.1002/ddr.21545
  • Mukherjee S, Mazumder P, Joshi M, et al. Biomedical application, drug delivery and metabolic pathway of antiviral nanotherapeutics for combating viral pandemic: a review. Environ Res. 2020;191:110119. doi: 10.1016/j.envres.2020.110119
  • Moutabian H, et al. The cardioprotective effects of nano‐curcumin against doxorubicin‐induced cardiotoxicity: a systematic review. BioFactors. 2022;48:597–610.
  • Bae YH, Park K. Advanced drug delivery 2020 and beyond: perspectives on the future. Adv Drug Delivery Rev. 2020;158:4–16. doi: 10.1016/j.addr.2020.06.018
  • Fotouhi P, Sohrabi S, Nosrati N, et al. Surface modified and rituximab functionalized PAMAM G4 nanoparticle for targeted imatinib delivery to leukemia cells: in vitro studies. Process Biochem. 2021;111:221–229. doi: 10.1016/j.procbio.2021.09.006
  • Zhao X, Si J, Huang D, et al. Application of star poly (ethylene glycol) derivatives in drug delivery and controlled release. JControlled Release. 2020;323:565–577. doi: 10.1016/j.jconrel.2020.04.039
  • Wu P, Zhou Q, Zhu H, et al. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. BMC Cancer. 2020;20(1):1–10. doi: 10.1186/s12885-020-06803-7
  • Klippstein R, Wang JT-W, El-Gogary RI, et al. Passively targeted curcumin‐loaded pegylated PLGA nanocapsules for colon cancer therapy in vivo. Small. 2015;11(36):4704–4722. doi: 10.1002/smll.201403799
  • Zi Y, Yang K, He J, et al. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Delivery Rev. 2022;188:114449. doi: 10.1016/j.addr.2022.114449
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. doi: 10.1038/nrc.2016.108
  • Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? JControlled Release. 2016;244:108–121. doi: 10.1016/j.jconrel.2016.11.015
  • Zhao Y, Wang K, Zheng Y, et al. Co-delivery of salinomycin and curcumin for cancer stem cell treatment by inhibition of cell proliferation, cell cycle arrest, and epithelial–mesenchymal transition. Front Chem. 2021;8:1149. doi: 10.3389/fchem.2020.601649
  • In’t Veld RVH, Ritsma L, Kleinovink JW, et al. Photodynamic cancer therapy enhances accumulation of nanoparticles in tumor-associated myeloid cells. JControlled Release. 2020;320:19–31. doi: 10.1016/j.jconrel.2019.12.052
  • Alvear-Jiménez A, Zabala Gutierrez I, Shen Y, et al. Electrospraying as a technique for the controlled synthesis of biocompatible PLGA@ Ag2S and PLGA@ Ag2S@ SPION nanocarriers with drug release capability. Pharmaceutics. 2022;14(1):214. doi: 10.3390/pharmaceutics14010214
  • Kim H-Y, Li R, Ng TSC, et al. Quantitative imaging of tumor-associated macrophages and their response to therapy using 64Cu-labeled macrin. ACS Nano. 2018;12(12):12015–12029. doi: 10.1021/acsnano.8b04338
  • Xiao L, Huang Y, Yang Y, et al. Biomimetic cytomembrane nanovaccines prevent breast cancer development in the long term. Nanoscale. 2021;13(6):3594–3601. doi: 10.1039/D0NR08978H
  • Liu L, et al. A biomimetic polymer magnetic nanocarrier polarizing tumor‐associated macrophages for potentiating immunotherapy. Small. 2020;16(38):2003543. doi: 10.1002/smll.202003543
  • Elbassiouni FE, El-Kholy WM, Elhabibi E-SM, et al. Comparative study between curcumin and nanocurcumin loaded PLGA on colon carcinogenesis induced mice. Nanomaterials. 2022;12(3):324. doi: 10.3390/nano12030324
  • Wei B, Pan J, Yuan R, et al. Polarization of tumor-associated macrophages by nanoparticle-loaded Escherichia coli combined with immunogenic cell death for cancer immunotherapy. Nano Lett. 2021;21(10):4231–4240. doi: 10.1021/acs.nanolett.1c00209
  • Deepika MS, Thangam R, Sheena TS, et al. Dual drug loaded PLGA nanospheres for synergistic efficacy in breast cancer therapy. Mater Sci Eng C. 2019;103:109716. doi: 10.1016/j.msec.2019.05.001
  • Guo K, Liu Y, Tang L, et al. Homotypic biomimetic coating synergizes chemo-photothermal combination therapy to treat breast cancer overcoming drug resistance. Chem Eng J. 2022;428:131120. doi: 10.1016/j.cej.2021.131120
  • Zumaya ALV, Rimpelová S, Štějdířová M, et al. Antibody conjugated PLGA nanocarriers and superparmagnetic nanoparticles for targeted delivery of Oxaliplatin to cells from colorectal carcinoma. Int J Mol Sci. 2022;23(3):1200. doi: 10.3390/ijms23031200
  • Wang H, Agarwal P, Zhao S, et al. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials. 2015;72:74–89. doi: 10.1016/j.biomaterials.2015.08.048
  • Gao J, Liu J, Xie F, et al. CO-delivery of docetaxel and salinomycin to target both breast cancer cells and stem cells by PLGA/TPGS nanoparticles. Int J Nanomed. 2019;14:9199. doi: 10.2147/IJN.S230376
  • Wang L, Hu Y, Hao Y, et al. Tumor-targeting core-shell structured nanoparticles for drug procedural controlled release and cancer sonodynamic combined therapy. JControlled Release. 2018;286:74–84.
  • Alanazi JS, Alqahtani FY, Aleanizy FS, et al. MicroRNA-539-5p-loaded PLGA nanoparticles grafted with iRGD as a targeting treatment for choroidal Neovascularization. Pharmaceutics. 2022;14(2):243. doi: 10.3390/pharmaceutics14020243
  • Paul B, Gaonkar RH, Dutta D, et al. Inhibitory potential of iRGD peptide-conjugated garcinol-loaded biodegradable nanoparticles in rat colorectal carcinoma. Mater Sci Eng C. 2022;134:112714. doi: 10.1016/j.msec.2022.112714
  • Zhang Y, Wang Y, Xin Q, et al. Zwitterionic choline phosphate conjugated folate-poly (ethylene glycol): a general decoration of erythrocyte membrane-coated nanoparticles for enhanced tumor-targeting drug delivery. J Mat Chem B. 2022;10(14):2497–2503. doi: 10.1039/D1TB02493K
  • Helmy SA, El-Mofty S, El Gayar AM, et al. Novel doxorubicin/folate-targeted trans-ferulic acid-loaded PLGA nanoparticles combination: in-vivo superiority over standard chemotherapeutic regimen for breast cancer treatment. Biomed Pharmacother. 2022;145:112376. doi: 10.1016/j.biopha.2021.112376
  • Hao Y, Zhang B, Zheng C, et al. The tumor-targeting core–shell structured DTX-loaded PLGA@ Au nanoparticles for chemo-photothermal therapy and X-ray imaging. JControlled Release. 2015;220:545–555. doi: 10.1016/j.jconrel.2015.11.016
  • Sweeney EE, Balakrishnan PB, Powell AB, et al. PLGA nanodepots co-encapsulating prostratin and anti-CD25 enhance primary natural killer cell antiviral and antitumor function. Nano Res. 2020;13(3):736–744. doi: 10.1007/s12274-020-2684-1
  • Li T, Yang Y, Jing W, et al. Melanin-gelatin nanoparticles with both EPR effect and renal clearance for PA/MRI dual-modal imaging of tumors. Mater Sci Eng C. 2022;134:112718. doi: 10.1016/j.msec.2022.112718
  • Rezvani M, Mohammadnejad J, Narmani A, et al. Synthesis and in vitro study of modified chitosan-polycaprolactam nanocomplex as delivery system. Int j biol macromol. 2018;113:1287–1293. doi: 10.1016/j.ijbiomac.2018.02.141
  • Stipa P, Marano S, Galeazzi R, et al. Prediction of drug-carrier interactions of PLA and PLGA drug-loaded nanoparticles by molecular dynamics simulations. Eur Polym J. 2021;147:110292. doi: 10.1016/j.eurpolymj.2021.110292
  • Khakinahad Y, Sohrabi S, Razi S, et al. Margetuximab conjugated-PEG-PAMAM G4 nano-complex: a smart nano-device for suppression of breast cancer. Biomed Eng Lett. 2022;12(3):317–329. doi: 10.1007/s13534-022-00225-z
  • Dana P, Bunthot S, Suktham K, et al. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf B Biointerfaces. 2020;196:111270. doi: 10.1016/j.colsurfb.2020.111270
  • Zeb A, Gul M, Nguyen TTL, et al. Controlled release and targeted drug delivery with poly (lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. J Pharm Invest. 2022;52(6):683–724. doi: 10.1007/s40005-022-00584-w
  • Scheeren LE, Nogueira-Librelotto DR, Mathes D, et al. Multifunctional PLGA nanoparticles combining transferrin-targetability and Ph-stimuli sensitivity enhanced doxorubicin intracellular delivery and in vitro antineoplastic activity in MDR tumor cells. Toxicol In Vitro. 2021;75:105192. doi: 10.1016/j.tiv.2021.105192
  • Arslan FB, Öztürk K, Tavukçuoğlu E, et al. A novel combination for the treatment of small cell lung cancer: active targeted irinotecan and stattic co-loaded PLGA nanoparticles. Int J Pharmaceut. 2023;632:122573. doi: 10.1016/j.ijpharm.2022.122573
  • Yang C, He B, Dai W, et al. The role of caveolin-1 in the biofate and efficacy of anti-tumor drugs and their nano-drug delivery systems. Acta Pharm Sin B. 2021;11(4):961–977. doi: 10.1016/j.apsb.2020.11.020
  • Vasey CE, Cavanagh RJ, Taresco V, et al. Polymer pro-drug nanoparticles for sustained release of cytotoxic drugs evaluated in patient-derived glioblastoma cell lines and in situ gelling formulations. Pharmaceutics. 2021;13(2):208. doi: 10.3390/pharmaceutics13020208
  • Xu E, Saltzman WM, Piotrowski-Daspit AS. Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. JControlled Release. 2021;335:465–480. doi: 10.1016/j.jconrel.2021.05.038
  • Zhou S, Wu J, Huang X, et al. Cellular uptake of a cationic amphiphilic fluorophore in the form of assemblies via Clathrin-dependent endocytosis. Mater Design. 2021;200:109464. doi: 10.1016/j.matdes.2021.109464
  • Wright L, Joyce P, Barnes TJ, et al. A comparison of chitosan, mesoporous silica and poly (lactic-co-glycolic) acid nanocarriers for optimising intestinal uptake of oral protein therapeutics. J Pharmaceut sci. 2021;110(1):217–227. doi: 10.1016/j.xphs.2020.09.026
  • Zhi K, Raji B, Nookala AR, et al. PLGA nanoparticle-based formulations to cross the blood–brain barrier for drug delivery: from R&D to cGMP. Pharmaceutics. 2021;13(4):500. doi: 10.3390/pharmaceutics13040500
  • Veeran MG, Thomas RR, Ramakrishnan R, et al. QuaLity-by-design approach for optimization and processing of PLGA polymer film by hot melt extrusion. J Pharm Innov. 2022;17(4):1282–1294. doi: 10.1007/s12247-021-09600-2
  • Malinovskaya Y, Melnikov P, Baklaushev V, et al. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. Int J Pharmaceut. 2017;524(1–2):77–90. doi: 10.1016/j.ijpharm.2017.03.049
  • Operti MC, Bernhardt A, Sincari V, et al. IndustrIal scale manufacturing and downstream processing of PLGA-Based nanomedicines suitable for fully continuous operation. Pharmaceutics. 2022;14(2):276. doi: 10.3390/pharmaceutics14020276
  • Wasalathanthri DP, Feroz H, Puri N, et al. Real‐time monitoring of quality attributes by in‐line fourier transform infrared spectroscopic sensors at ultrafiltration and diafiltration of bioprocess. Biotechnol Bioeng. 2020;117(12):3766–3774. doi: 10.1002/bit.27532
  • Park K, Skidmore S, Hadar J, et al. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. JControlled Release. 2019;304:125–134. doi: 10.1016/j.jconrel.2019.05.003
  • Lee BK, Yun Y, Park K. PLA micro- and nano-particles. Adv Drug Delivery Rev. 2016;107:176–191. doi: 10.1016/j.addr.2016.05.020
  • Pardeshi SR, Nikam A, Chandak P, et al. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. Int J Polym Mater Polym Biomater. 2021;72(1):49–78. doi: 10.1080/00914037.2021.1985495
  • Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol. 2017;27(14):R713–R715. doi: 10.1016/j.cub.2017.05.064
  • Chen H, Li F, Yao Y, et al. Redox dual-responsive and o2‑evolving theranostic nanosystem for highly selective chemotherapy against hypoxic tumors. Theranostics. 2019;9(1):90. doi: 10.7150/thno.30259
  • Yao W, Yao J, Qian F, et al. Paclitaxel-loaded and folic acid-modified PLGA nanomedicine with glutathione response for the treatment of lung cancer. ABBS. 2021;53(8):1027–1036. doi: 10.1093/abbs/gmab073
  • Li X, Luo L, Jiang M, et al. Cocktail strategy for ‘cold’tumors therapy via active recruitment of CD8+ T cells and enhancing their function. JControlled Release. 2021;334:413–426. doi: 10.1016/j.jconrel.2021.05.002
  • Cappellano G, Comi C, Chiocchetti A, et al. Exploiting PLGA-based biocompatible nanoparticles for next-generation tolerogenic vaccines against autoimmune disease. Int J Mol Sci. 2019;20(1):204. doi: 10.3390/ijms20010204
  • Cayero-Otero M, Gomes MJ, Martins C, et al. In vivo biodistribution of venlafaxine-PLGA nanoparticles for brain delivery: plain vs. functionalized nanoparticles. Expert Opin Drug Delivery. 2019;16(12):1413–1427. doi: 10.1080/17425247.2019.1690452

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.