120
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Enzyme/pH dual stimuli-responsive nanoplatform co-deliver disulfiram and doxorubicin for effective treatment of breast cancer lung metastasis

, , , , , , , , ORCID Icon, , & show all
Pages 1015-1031 | Received 24 Apr 2023, Accepted 07 Jul 2023, Published online: 17 Jul 2023

References

  • Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world [Review]. Breast Cancer: Targets Ther. 2019;11:151–164. doi: 10.2147/BCTT.S176070
  • Jin X, Mu P. Targeting breast cancer metastasis [Review]. Breast Cancer. 2015;9(Suppl 1):23–34. doi: 10.4137/BCBCR.S25460
  • Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 1989;8(2): 98–101.
  • Liang Y, Zhang H, Song X, et al. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets [Review]. Semin Cancer Biol. 2020 Feb;60:14–27. doi:10.1016/j.semcancer.2019.08.012
  • Eckhardt BL, Francis PA, Parker BS, et al. Strategies for the discovery and development of therapies for metastatic breast cancer [Review]. Nat Rev Drug Discov. 2012 Jun;11(6):479–497. doi:10.1038/nrd2372
  • Tang S, Yin Q, Su J, et al. Inhibition of metastasis and growth of breast cancer by Ph-sensitive poly (beta-amino ester) nanoparticles co-delivering two siRNA and paclitaxel [Article]. Biomaterials. 2015 Apr;48:1–15. doi:10.1016/j.biomaterials.2015.01.049
  • Yap TA, Workman P. Exploiting the cancer genome: strategies for the discovery and clinical development of targeted molecular therapeutics. In: Insel P, Amara S, and Blaschke T, editors. Annual Review of Pharmacology and Toxicology. Vol. 52. United states: Annual Reviews Inc; 2012. doi:10.1146/annurev-pharmtox-010611-134532
  • Paez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis [Article]. Cancer Cell. 2009 Mar 3;15(3):220–231. doi: 10.1016/j.ccr.2009.01.027
  • Almeida L, Thode H, Eslambolchi Y, et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology [Review]. Pharmacol Rev. 2022 Jul;74(3):712–768. doi:10.1124/pharmrev.121.000349
  • Ashihara E, Kawata E, Maekawa T. Future prospect of RNA interference for cancer therapies [Review]. Curr Drug Targets. 2010 Mar;11(3):345–360. doi: 10.2174/138945010790711897
  • He Q, Guo S, Qian Z, et al. Development of individualized anti-metastasis strategies by engineering nanomedicines [Review]. Chem Soc Rev. 2015;44(17):6258–6286. doi: 10.1039/C4CS00511B
  • Kara G, Calin GA, Ozpolat B. Rnai-based therapeutics and tumor targeted delivery in cancer [Review]. Adv Drug Delivery Rev. 2022;182:114113–114113. doi: 10.1016/j.addr.2022.114113
  • Guo C, Yuan H, Zhang Y, et al. Asymmetric polymersomes, from the formation of asymmetric membranes to the application on drug delivery [Article]. J Controlled Release. 2021 Oct 10;338:422–445. doi: 10.1016/j.jconrel.2021.09.003
  • Li H, Sun J, Zhu H, et al. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis [Review]. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Mar;13(2). doi: 10.1002/wnan.1670
  • Gu X, Gao Y, Wang P, et al. Nano-delivery systems focused on tumor microenvironment regulation and biomimetic strategies for treatment of breast cancer metastasis [Review]. J Controlled Release. 2021 May 10;333:374–390. doi: 10.1016/j.jconrel.2021.03.039
  • Anchordoquy TJ, Barenholz Y, Boraschi D, et al. Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions [Article]. ACS Nano. 2017 Jan;11(1):12–18. doi:10.1021/acsnano.6b08244
  • Kashkooli FM, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: static and dynamic targeting strategies [Review]. J Controlled Release. 2020 Nov 10;327:316–349. doi:10.1016/j.jconrel.2020.08.012
  • Wang R, Xu X, Li D, et al. Smart Ph-responsive polyhydralazine/bortezomib nanoparticles for remodeling tumor microenvironment and enhancing chemotherapy [Article]. Biomaterials. 2022 Sep;288. doi:10.1016/j.biomaterials.2022.121737.
  • Cheng R, Jiang L, Gao H, et al. A Ph-responsive cluster metal–organic framework nanoparticle for enhanced tumor accumulation and antitumor effect [Article]. Adv Mater. 2022 Oct;34(42):2203915. doi:10.1002/adma.202203915
  • Ding H, Tan P, Fu S, et al. Preparation and application of Ph-responsive drug delivery systems [Review]. J Controlled Release. 2022 Aug;348:206–238. doi:10.1016/j.jconrel.2022.05.056
  • Liu F, Wang D, Zhang M, et al. Synthesis of enzyme-responsive theranostic amphiphilic conjugated bottlebrush copolymers for enhanced anticancer drug delivery [Article]. Acta Biomaterialia. 2022 May;144:15–31. doi: 10.1016/j.actbio.2022.03.028
  • He H, Sun L, Ye J, et al. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents [Article]. J Controlled Release. 2016 Oct 28;240:67–76. doi: 10.1016/j.jconrel.2015.10.040
  • Lin Y, Chen X, Yu C, et al. Radiotherapy-mediated redox homeostasis-controllable nanomedicine for enhanced ferroptosis sensitivity in tumor therapy [Article]. Acta Biomaterialia. 2023 Mar 15;159:300–311. doi: 10.1016/j.actbio.2023.01.022
  • Yang Y, Sun B, Zuo S, et al. Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity [Article]. Sci Adv. 2020 Nov;6(45). doi: 10.1126/sciadv.abc1725
  • Zhang M, Qin X, Zhao Z, et al. A self-amplifying nanodrug to manipulate the Janus-faced nature of ferroptosis for tumor therapy [Article]. Nanoscale Horiz. 2022 Jan 31;7(2):198–210. doi: 10.1039/D1NH00506E
  • Zhang J, Lin Y, Lin Z, et al. Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy [Review]. Adv Sci. 2022 Feb;9(5):2103444. doi: 10.1002/advs.202103444
  • He G, He M, Wang R, et al. Near-infrared light-activated ruthenium complex-based photocage for cancer phototherapy [Article]. Angew Chem Int Ed. 2023 Mar 8;62(24):e202218768–e202218768. doi:10.1002/anie.202218768
  • Jia L, Li X, Liu H, et al. Ultrasound-enhanced precision tumor theranostics using cell membrane-coated and Ph-responsive nanoclusters assembled from ultrasmall iron oxide nanoparticles [Article]. Nano Today. 2021 Feb;36:101022. doi: 10.1016/j.nantod.2020.101022
  • Hu Y, Gao S, Khan AR, et al. Tumor microenvironment-responsive size-switchable drug delivery nanosystems [Review]. Expert Opin Drug Delivery. 2022 Mar 4;19(3):221–234. doi: 10.1080/17425247.2022.2042512
  • McMahon A, Chen W, Li F. Old wine in new bottles: advanced drug delivery systems for disulfiram-based cancer therapy [Review]. J Controlled Release. 2020 Mar 10;319:352–359. doi: 10.1016/j.jconrel.2020.01.001
  • Ekinci E, Rohondia S, Khan R, et al. Repurposing disulfiram as an anti-cancer agent: updated review on literature and patents [Review]. Recent Patents Anti-Cancer Drug Disc. 2019;14(2):113–132. doi: 10.2174/1574892814666190514104035
  • Lu Y, Pan Q, Gao W, et al. Leveraging disulfiram to treat cancer: mechanisms of action, delivery strategies, and treatment regimens [Article]. Biomaterials. 2022 Feb;281. doi:10.1016/j.biomaterials.2021.121335.
  • Kita Y, Hamada A, Saito R, et al. Systematic chemical screening identifies disulfiram as a repurposed drug that enhances sensitivity to cisplatin in bladder cancer: a summary of preclinical studies [Article]. Br J Cancer. 2019 Dec 10;121(12):1027–1038. doi: 10.1038/s41416-019-0609-0
  • Duan X, Xiao J, Yin Q, et al. Smart Ph-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram [Article]. ACS Nano. 2013 Jul;7(7):5858–5869. doi: 10.1021/nn4010796
  • Liu C, Qiang J, Deng Q, et al. ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression [Article]. Cancer Res. 2021 Dec 1;81(23):5919–5934. doi: 10.1158/0008-5472.CAN-21-1337
  • Paranjpe A, Zhang R, Ali-Osman F, et al. Disulfiram is a direct and potent inhibitor of human O-6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage [Article]. Carcinogenesis. 2014 Mar;35(3):692–702. doi: 10.1093/carcin/bgt366
  • Tao X, Gou J, Zhang Q, et al. Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles [Article]. Biomater Sci. 2018 Jul;6(7):1869–1881. doi: 10.1039/c8bm00271a
  • Heyder RS, Sunbul FS, Almuqbil RM, et al. Poly(anhydride-ester) gemcitabine: synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy [Article]. J Controlled Release. 2021 Feb 10;330:1178–1190. doi: 10.1016/j.jconrel.2020.11.025
  • Li Y, Wu Y, Chen J, et al. A simple glutathione-responsive turn-on theranostic nanoparticle for dual-modal imaging and chemo-photothermal combination therapy [Article]. Nano Lett. 2019 Aug;19(8):5806–5817. doi: 10.1021/acs.nanolett.9b02769
  • Wen H, Guo J, Chang B, et al. Ph-responsive composite microspheres based on magnetic mesoporous silica nanoparticle for drug delivery [Article]. Eur J Pharm Biopharm. 2013 May;84(1):91–98. doi: 10.1016/j.ejpb.2012.11.019
  • Wang N, Zhang Y, Liu H, et al. Toxicity reduction and efficacy promotion of doxorubicin in the treatment of breast tumors assisted by enhanced oral absorption of curcumin-loaded lipid-polyester mixed nanoparticles [Article]. Mol Pharmaceut. 2020 Dec 7;17(12):4533–4547. doi: 10.1021/acs.molpharmaceut.0c00718
  • Haick H, Tang N. Artificial intelligence in medical sensors for clinical decisions [Article]. ACS Nano. 2021 Mar 23;15(3):3557–3567. doi: 10.1021/acsnano.1c00085
  • Tan P, Chen X, Zhang H, et al. Artificial intelligence aids in development of nanomedicines for cancer management [Article]. Semin Cancer Biol. 2023 Feb;89:61–75. doi: 10.1016/j.semcancer.2023.01.005
  • Hahn L, Zorn T, Kehrein J, et al. Unraveling an alternative mechanism in polymer self-assemblies: an order–order transition with unusual molecular interactions between hydrophilic and hydrophobic polymer blocks. ACS Nano. 2023;17(7):6932–6942. doi: 10.1021/acsnano.3c00722
  • Wang B, Dai Y, Kong Y, et al. Tumor Microenvironment-responsive fe(iii)-porphyrin nanotheranostics for tumor imaging and targeted chemodynamic-photodynamic therapy [Article]. ACS Appl Mater Inter. 2020 Dec 2;12(48):53634–53645. doi: 10.1021/acsami.0c14046
  • Yin S, Huai J, Chen X, et al. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid [Article]. Acta Biomaterialia. 2015 Oct 15;26:274–285. doi: 10.1016/j.actbio.2015.08.029
  • Fritze A, Hens F, Kimpfler A, et al. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient [Article]. Biochim Biophys Acta, Biomembr. 2006 Oct;1758(10):1633–1640. doi: 10.1016/j.bbamem.2006.05.028
  • Rehman AU, Omran Z, Anton H, et al. Development of doxorubicin hydrochloride loaded Ph-sensitive liposomes: investigation on the impact of chemical nature of lipids and liposome composition on Ph-sensitivity [Article]. Eur J Pharm Biopharm. 2018 Dec;133:331–338. doi: 10.1016/j.ejpb.2018.11.001
  • Liu JB, Zeng FQ, Allen C. Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent [Article]. J Controlled Release. 2005 Mar 21;103(2):481–497. doi: 10.1016/j.jconrel.2004.12.013
  • Xu H, Yang D, Cai C, et al. Dual-responsive Mpeg-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation [Article]. Acta Biomaterialia. 2015 Apr 1;16:156–168. doi: 10.1016/j.actbio.2015.01.039
  • Hu F-Q, Zhang Y-Y, You J, et al. pH triggered doxorubicin delivery of PEGylated glycolipid conjugate micelles for tumor targeting therapy [Article]. Mol Pharmaceut. 2012 Sep;9(9):2469–2478. doi: 10.1021/mp300002v
  • Ashrafizadeh M, Delfi M, Zarrabi A, et al. Stimuli-responsive liposomal nanoformulations in cancer therapy: pre-clinical & clinical approaches [Review]. JControlled Release. 2022 Nov;351:50–80. doi: 10.1016/j.jconrel.2022.08.001
  • Gu X, Qiu M, Sun H, et al. Polytyrosine nanoparticles enable ultra-high loading of doxorubicin and rapid enzyme-responsive drug release [Article]. Biomater Sci. 2018 Jun 1;6(6):1526–1534. doi: 10.1039/C8BM00243F
  • Swetha KL, Paul M, Maravajjala KS, et al. Overcoming drug resistance with a docetaxel and disulfiram loaded Ph-sensitive nanoparticle [Article]. J Controlled Release. 2023 Apr;356:93–114. doi: 10.1016/j.jconrel.2023.02.023
  • Yao D, Wang Y, Bian K, et al. A self-cascaded unimolecular prodrug for Ph-responsive chemotherapy and tumor-detained photodynamic-immunotherapy of triple-negative breast cancer [Article]. Biomaterials. 2023 Jan;292. doi:10.1016/j.biomaterials.2022.121920.
  • Ma W, Yang Y, Zhu J, et al. Biomimetic nanoerythrosome-coated aptamer–DNA tetrahedron/maytansine conjugates: Ph-responsive and targeted cytotoxicity for HER2-positive breast cancer [Article]. Adv Mater. 2022 Nov 17;34(46):2109609. doi: 10.1002/adma.202109609
  • Ju Y, Wang Z, Ali Z, et al. A Ph-responsive biomimetic drug delivery nanosystem for targeted chemo-photothermal therapy of tumors [Article]. Nano Res. 2022 May;15(5):4274–4284. doi: 10.1007/s12274-022-4077-0
  • de Almeida MS, Susnik E, Drasler B, et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine [Review]. Chem Soc Rev. 2021 May 7;50(9):5397–5434. doi: 10.1039/D0CS01127D
  • Ma B, Wang S, Liu F, et al. Self-assembled copper amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy [Article]. J Am Chem Soc. 2019 Jan 16;141(2):849–857. doi: 10.1021/jacs.8b08714
  • Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics [Review]. Nature Nanotechnol. 2021 Mar;16(3):266–276. doi: 10.1038/s41565-021-00858-8
  • Oh N, Park J-H. Endocytosis and exocytosis of nanoparticles in mammalian cells [Review]. Int J Nanomed. 2014;9:51–63. doi: 10.2147/IJN.S26592
  • Li Y, Xiong J, Guo W, et al. Decomposable black phosphorus nano-assembly for controlled delivery of cisplatin and inhibition of breast cancer metastasis [Article]. J Controlled Release. 2021 Jul 10;335:59–74. doi: 10.1016/j.jconrel.2021.05.013
  • Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung [Article]. Nature. 2005 Jul 28;436(7050):518–524. doi: 10.1038/nature03799
  • Cho H-J, Lee T-S, Park J-B, et al. Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression [Article]. J Biochem Mol Biol. 2007 Nov 30;40(6):1069–1076. doi: 10.5483/BMBRep.2007.40.6.1069
  • Li Y, Fu S-Y, Wang L-H, et al. Copper improves the anti-angiogenic activity of disulfiram through the EGFR/Src/VEGF pathway in gliomas [Article]. Cancer Lett. 2015 Dec 1;369(1):86–96. doi: 10.1016/j.canlet.2015.07.029
  • Skrott Z, Mistrik M, Andersen KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4 [Article]. Nature. 2017 Dec 14;552(7684):194–199. doi: 10.1038/nature25016
  • Li Q, Yang J, Chen C, et al. A novel mitochondrial targeted hybrid peptide modified HPMA copolymers for breast cancer metastasis suppression [Article]. J Control Release. 2020 Sep 10;325:38–51. doi: 10.1016/j.jconrel.2020.06.010
  • Gou J, Liang Y, Miao L, et al. Improved tumor tissue penetration and tumor cell uptake achieved by delayed charge reversal nanoparticles [Article]. Acta Biomaterialia. 2017 Oct 15;62:157–166. doi: 10.1016/j.actbio.2017.08.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.