121
Views
0
CrossRef citations to date
0
Altmetric
Review

Extrusion-based systems for topical and transdermal drug delivery

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 979-992 | Received 10 Apr 2023, Accepted 24 Jul 2023, Published online: 31 Jul 2023

References

  • Hao J, Ghosh P, Kevin Li S, et al. Heat effects on drug delivery across human skin. Expert opin drug deliv. 2016. p. 755–768. doi: 10.1517/17425247.2016.1136286
  • Ita K, Ukaoma M. Progress in the transdermal delivery of antimigraine drugs. J Drug Deliv Sci Technol Editions de Sante. 2022;68:103064. doi: 10.1016/j.jddst.2021.103064
  • Marwah H, Garg T, Goyal AK, et al. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2016. p. 564–578. doi: 10.3109/10717544.2014.935532
  • Escobar-Chavez J, Diaz-Torres R, Rodriguez-Cruz IM, et al. Nanocarriers for transdermal drug delivery. RRTD. 2012;3–17. doi: 10.2147/RRTD.S32621
  • Parmar PK, Wadhawan J, Bansal AK. Pharmaceutical nanocrystals: A promising approach for improved topical drug delivery. Drug Discov Today Elsevier Ltd. 2021;26(10):2329–2349. doi: 10.1016/j.drudis.2021.07.010
  • Matos APS, Viçosa AL, Ré MI, et al. A review of current treatments strategies based on paromomycin for leishmaniasis. J Drug Deliv Sci Technol Editions de Sante. 2020;57:101664. doi: 10.1016/j.jddst.2020.101664
  • Nasr M, Karandikar H, Abdel-Aziz RTA, et al. Novel nicotinamide skin-adhesive hot melt extrudates for treatment of acne. Expert Opin Drug Deliv. 2018;15(12):1165–1173. doi: 10.1080/17425247.2018.1546287
  • Musazzi UM, Ortenzi MA, Gennari CGM, et al. Design of pressure-sensitive adhesive suitable for the preparation of transdermal patches by hot-melt printing. Int J Pharm. 2020;586:586. doi: 10.1016/j.ijpharm.2020.119607
  • Chatterjee B, Reddy A, Santra M, et al. Amorphization of drugs for transdermal delivery-a recent update. Pharmaceutics MDPI. 2022;14(5):983. doi: 10.3390/pharmaceutics14050983
  • Pinho LAG, Gratieri T, Gelfuso GM, et al. Three-dimensional printed personalized drug devices with anatomical fit: a review. J Pharm Pharmacol. 2022;74(10):1391–1405. doi: 10.1093/jpp/rgab146
  • Bhosle VK, Gabriel A, Julie A, et al. Basic Pharmacologic Principles. Fetal And Neonatal Physiology Elsevier. 2004;1:179–190. doi: 10.1016/B978-0-323-35214-7.00018-4
  • Lima AL, Pires FQ, Hilgert LA, et al. Oscillatory shear rheology as an in-process control tool for 3D printing medicines production by fused deposition modeling. J Manuf Process. 2022;76:850–862. doi: 10.1016/j.jmapro.2022.03.001
  • Hirakawa Y, Ueda H, Takata Y, et al. Co-amorphous formation of piroxicam-citric acid to generate supersaturation and improve skin permeation. Eur J Pharmaceut Sci. 2021;158:158. doi: 10.1016/j.ejps.2020.105667
  • Giri BR, Kwon J, Vo AQ, et al. Hot-melt extruded amorphous solid dispersion for solubility, stability, and bioavailability enhancement of telmisartan. Pharmaceuticals. 2021;14(1):1–18. doi: 10.3390/ph14010073
  • Repka MA, Mcginity JW. Influence of Vitamin E TPGS on the properties of hydrophilic films produced by hot-melt extrusion [Internet]. Int J Pharm. 2000;202(1–2):63–70. doi: 10.1016/s0378-5173(00)00418-x
  • Crowley MM, Fredersdorf A, Schroeder B, et al. The influence of guaifenesin and ketoprofen on the properties of hot-melt extruded polyethylene oxide films. Eur J Pharmaceut Sci. 2004;22(5):409–418. doi: 10.1016/j.ejps.2004.04.005
  • Albarahmieh E, Qi S, Craig DQM. Hot melt extruded transdermal films based on amorphous solid dispersions in Eudragit RS PO: the inclusion of hydrophilic additives to develop moisture-activated release systems. Int J Pharm. 2016;514(1):270–281. doi: 10.1016/j.ijpharm.2016.06.137
  • Pawar J, Narkhede R, Amin P, et al. Design and Evaluation of Topical Diclofenac Sodium Gel Using Hot Melt Extrusion Technology as a Continuous Manufacturing Process with Kolliphor® P407. AAPS Pharm Sci Tech. 2017;18(6):2303–2315. doi: 10.1208/s12249-017-0713-5
  • Marreto RN, Cardoso G, dos Santos Souza B, et al. Hot melt-extrusion improves the properties of cyclodextrin-based poly(pseudo)rotaxanes for transdermal formulation. Int J Pharm. 2020;586:586. doi: 10.1016/j.ijpharm.2020.119510
  • Nagar P, Chauhan I, Yasir M. Insights into Polymers: Film Formers in Mouth Dissolving Films. Drug Invention Today. 2011;3:280–289. InternetAvailable from. www.afinitica.com/arnews/?q=node/94
  • Lee KL, Zhou Y. Quantitative Evaluation of Sonophoresis Efficiency and Its Dependence on Sonication Parameters and Particle Size. J Ultrasound Med. 2015;34(3):519–526. doi: 10.7863/ultra.34.3.519
  • Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol Elsevier Ltd. 2015;66(1):14–21. doi: 10.1016/j.molimm.2014.10.023
  • Bagde A, Kouagou E, Singh M. Formulation of Topical Flurbiprofen Solid Lipid Nanoparticle Gel Formulation Using Hot Melt Extrusion Technique. AAPS Pharm Sci Tech. 2022;23(7):23. doi: 10.1208/s12249-022-02410-w
  • Thakkar R, Ashour EA, Shukla A, et al. A comparison between lab-scale and hot-melt-extruder-based anti-inflammatory ointment manufacturing. aaps pharm sci tech. 2020;21(5):21. doi: 10.1208/s12249-020-01738-5
  • Mendonsa NS, Pradhan A, Sharma P, et al. A quality by design approach to develop topical creams via hot-melt extrusion technology. Eur J Pharmaceut Sci. 2019;136:104948. doi: 10.1016/j.ejps.2019.06.002
  • Bhagurkar AM, Repka MA, Murthy SN. A novel approach for the development of a nanostructured lipid carrier formulation by hot-melt extrusion technology. J Pharm Sci. 2017;106(4):1085–1091. doi: 10.1016/j.xphs.2016.12.015
  • Mendonsa NS, Murthy SN, Hashemnejad SM, et al. Development of poloxamer gel formulations via hot-melt extrusion technology. Int J Pharm. 2018;537(1–2):122–131. doi: 10.1016/j.ijpharm.2017.12.008
  • Bagde A, Patel K, Kutlehria S, et al. Formulation of topical ibuprofen solid lipid nanoparticle (SLN) gel using hot melt extrusion technique (HME) and determining its anti-inflammatory strength. Drug Deliv Transl Res. 2019;9(4):816–827. doi: 10.1007/s13346-019-00632-3
  • Lima SGB, Pinho LAG, Sa-Barreto LL, et al. Granules of finasteride and cyclodextrin obtained by hot-melt extrusion to target the hair follicles. Powder Technol. 2021;391:311–320. doi: 10.1016/j.powtec.2021.06.027
  • Braun S, Bhattacharyya S, Ducheyne P. Encapsulation of Cells (Cellular Delivery) Using Sol–Gel Silica. Comprehensive Biomaterials II Elsevier. 2017;5:175–186. doi: 10.1016/B978-0-12-803581-8.10249-8
  • Loyd VA Jr. The Art, Science, and Technology of Pharmaceutical Compounding. 2016; 1:339–361.
  • Rizwanullah M, Amin S, Ahmad J. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers. J Drug Target. 2017;25(1):58–74. doi: 10.1080/1061186X.2016.1191080
  • Salawi A, Nazzal S. The rheological and textural characterization of Soluplus®/Vitamin E composites. Int J Pharm. 2018;546(1–2):255–262. doi: 10.1016/j.ijpharm.2018.05.049
  • Salah I, Shamat MA, Cook MT. Soluplus solutions as thermothickening materials for topical drug delivery. J Appl Polym Sci. 2019;136(1):46915. doi: 10.1002/app.46915
  • Derakhshandeh H, Aghabaglou F, McCarthy A, et al. A Wirelessly Controlled Smart Bandage with 3D-Printed Miniaturized Needle Arrays. Adv Funct Mater. 2020;30(13):1905544. doi: 10.1002/adfm.201905544
  • Chaudhari VS, Malakar TK, Murty US, et al. Extruded filaments derived 3D printed medicated skin patch to mitigate destructive pulmonary tuberculosis: design to delivery. Expert Opin Drug Deliv. 2021;18(2):301–313. doi: 10.1080/17425247.2021.1845648
  • Azizoğlu E, Özer Ö. Fabrication of Montelukast sodium loaded filaments and 3D printing transdermal patches onto packaging material. Int J Pharm. 2020;587:587. doi: 10.1016/j.ijpharm.2020.119588
  • Luzuriaga MA, Berry DR, Reagan JC, et al. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip. 2018;18(8):1223–1230. doi: 10.1039/C8LC00098K
  • Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, et al. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv Transl Res. 2022;12(5):1195–1208. doi: 10.1007/s13346-021-01006-4
  • Yang S, Wu F, Liu J, et al. Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv Funct Mater. 2015;25(29):4633–4641. doi: 10.1002/adfm.201500554
  • Camović M, Biščević A, Brčić I, et al. Coated 3d printed pla microneedles as transdermal drug delivery systems. In: IFMBE Proc. Springer Verlag; 2020. p. 735–742. doi:10.1007/978-3-030-17971-7_109
  • Wu L, Park J, Kamaki Y, et al. Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles. Microsyst Nanoeng. 2021;7(1): doi: 10.1038/s41378-021-00284-9
  • Economidou SN, Lamprou DA, Douroumis D. 3D printing applications for transdermal drug delivery. Int J Pharm. 2018;544(2):415–424. doi: 10.1016/j.ijpharm.2018.01.031
  • Olowe M, Parupelli SK, Desai S. A review of 3D-Printing of microneedles. Pharmaceutics MDPI. 2022;14(12):2693. doi: 10.3390/pharmaceutics14122693
  • Meng F, Hasan A, Mahdi Nejadi Babadaei M, et al. Polymeric-based microneedle arrays as potential platforms in the development of drugs delivery systems. J Adv Res Elsevier B V. 2020;26:137–147. doi:10.1016/j.jare.2020.07.017
  • Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomoterids. 1996;17(2):93–102. doi: 10.1016/0142-9612(96)85754-1
  • Pinho LAG, Lima AL, Sa-Barreto LL, et al. Preformulation studies to guide the production of medicines by fused deposition modeling 3D printing. AAPS Pharm Sci Tech. 2021;22(8):263. doi: 10.1208/s12249-021-02114-7
  • Patil-Gadhe A, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: part i oral bioavailability improvement. Eur J Pharm Biopharm. 2014;88(1):160–168. doi: 10.1016/j.ejpb.2014.05.019
  • Dabbagh SR, Sarabi MR, Rahbarghazi R, et al. 3D-printed microneedles in biomedical applications. iScience. 2013;24(1):102012. InternetAvailable from. doi: 10.1016/j.isci
  • Economidou SN, Douroumis D. 3D printing as a transformative tool for microneedle systems: recent advances, manufacturing considerations and market potential. Adv Drug Deliv Rev Elsevier B V. 2021;173:60–69. doi: 10.1016/j.addr.2021.03.007
  • Xenikakis I, Tsongas K, Tzimtzimis EK, et al. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int J Pharm. 2021;597:120303. doi:10.1016/j.ijpharm.2021.120303
  • MacDonald NP, Zhu F, Hall CJ, et al. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip. 2016;16(2):291–297. doi: 10.1039/C5LC01374G
  • Goyanes A, Det-Amornrat U, Wang J, et al. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. JControlled Release. 2016;234:41–48. doi: 10.1016/j.jconrel.2016.05.034
  • Muwaffak Z, Goyanes A, Clark V, et al. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527(1–2):161–170. doi: 10.1016/j.ijpharm.2017.04.077
  • Azadmanesh F, Pourmadadi M, Zavar Reza J, et al. Synthesis of a novel nanocomposite containing chitosan as a three-dimensional printed wound dressing technique: emphasis on gene expression. Biotechnol Prog. 2021;37. doi: 10.1002/btpr.3132
  • Intini C, Elviri L, Cabral J, et al. 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr Polym. 2018;199:593–602. doi: 10.1016/j.carbpol.2018.07.057
  • Singh M, Jonnalagadda S. Design and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound-healing applications. J Mater Sci Mater Med. 2021;32(4):32. doi: 10.1007/s10856-021-06509-7
  • Goyanes A, Buanz ABM, Hatton GB, et al. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–162. doi: 10.1016/j.ejpb.2014.12.003
  • Sadia M, Sośnicka A, Arafat B, et al. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm. 2016;513(1–2):659–668. doi: 10.1016/j.ijpharm.2016.09.050
  • Llanes LC, Clasen SH, Pires ATN, et al. Mechanical and thermal properties of poly(lactic acid) plasticized with dibutyl maleate and fumarate isomers: promising alternatives as biodegradable plasticizers. Eur Polym J. 2021;142:142. doi: 10.1016/j.eurpolymj.2020.110112
  • Musgrove HB, Catterton MA, Pompano RR. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing. Anal Chim Acta Elsevier B V. 2022:339842. doi: 10.1016/j.aca.2022.339842
  • Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: a review and prospective . Composites Part B: Engineering. 2017. p. 442–458. doi: 10.1016/j.compositesb.2016.11.034
  • Lima AL, Gratieri T, Cunha-Filho M, et al. Polymeric nanocapsules: A review on design and production methods for pharmaceutical purpose. Methods. 2022;199:54–66. doi: 10.1016/j.ymeth.2021.07.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.