381
Views
0
CrossRef citations to date
0
Altmetric
Review

Synthetic engineered bacteria for cancer therapy

&
Pages 993-1013 | Received 16 Jan 2023, Accepted 24 Jul 2023, Published online: 29 Jul 2023

References

  • Bhatt AP, Redinbo MR, Bultman SJ. The Role of the Microbiome in Cancer Development and Therapy. CA Cancer J Clin. 2017;67(4):326–344. doi: 10.3322/caac.21398
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. Ca A Cancer J Clinicians. 2022;72(1):7–33. doi: 10.3322/caac.21708
  • André N, Carré M, Pasquier E. Metronomics: towards personalized chemotherapy? Nat Rev Clin Oncol. 2014;11(7):413–431. doi: 10.1038/nrclinonc.2014.89
  • Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015;12(9):527–540. doi: 10.1038/nrclinonc.2015.120
  • Citrin DE, Longo DL. Recent Developments in Radiotherapy. N Engl J Med. 2017;377(11):1065–1075. doi: 10.1056/NEJMra1608986
  • Petroni G, Cantley LC, Santambrogio L, et al. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol. 2022;19(2):114–131. doi: 10.1038/s41571-021-00579-w
  • Chabner BA, Roberts TG. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65–72. doi: 10.1038/nrc1529
  • Behranvand N, Nasri F, Zolfaghari Emameh R, et al. Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother. 2022;71(3):507–526. doi: 10.1007/s00262-021-03013-3
  • Davis AJ, Tannock IF. Tumor physiology and resistance to chemotherapy: repopulation and drug penetration. Cancer Treat Res. 2002;112:1–26.
  • Bashor CJ, Hilton IB, Bandukwala H, et al. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov. 2022;21(9):655–675. doi: 10.1038/s41573-022-00476-6
  • Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nature Medicine [Internet]. 2022 Sep [cited 2022 Nov 30];28(9):1848–59. https://www.nature.com/articles/s41591-022-01959-0
  • Next-Generation CAR T-cell Therapies | Cancer Discovery | American Association for Cancer Research [Internet]. [cited 2022 Nov 30]. Available from: https://aacrjournals.org/cancerdiscovery/article-abstract/12/7/1625/705228/Next-Generation-CAR-T-cell-Therapies?redirectedFrom=fulltext
  • Amini L, Silbert SK, Maude SL, et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat Rev Clin Oncol. 2022;19(5):342–355. doi: 10.1038/s41571-022-00607-3
  • Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):1–11. doi: 10.1038/s41408-021-00459-7
  • Outlook for New CAR-Based Therapies with a Focus on CAR NK Cells: What Lies Beyond CAR-Engineered T Cells in the Race against Cancer | Cancer Discovery | American Association for Cancer Research [Internet]. [cited 2022 Nov 30]. Available from: https://aacrjournals.org/cancerdiscovery/article/11/1/45/2895/Outlook-for-New-CAR-Based-Therapies-with-a-Focus
  • Laskowski TJ, Biederstädt A, Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat Rev Cancer. 2022;22(10):557–575. doi: 10.1038/s41568-022-00491-0
  • Baghery Saghchy Khorasani A, Yousefi A-M, Bashash D. CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. Int Immunopharmacol. 2022;110:109041. doi: 10.1016/j.intimp.2022.109041
  • Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. Nat Med [Internet]. 2022 Sep [cited 2022 Nov 30];28(9):1860–71. https://www.nature.com/articles/s41591-022-01960-7
  • Fritsche E, Volk H-D, Reinke P, et al. Toward an Optimized Process for Clinical Manufacturing of CAR-Treg Cell Therapy. Trends Biotechnol. 2020;38(10):1099–1112. doi: 10.1016/j.tibtech.2019.12.009
  • Oh S, O’Connor K, Payne A. MuSK Chimeric Autoantibody Receptor (CAAR) T Cells for Antigen-specific Cellular Immunotherapy of Myasthenia Gravis (2769). Neurology. 2020 [cited 2022 Nov 30].;94(15 Supplement). Available from. https://n.neurology.org/content/94/15_Supplement/2769
  • Raffin C, Vo LT, Bluestone JA. Treg cell-based therapies: challenges and perspectives. Nat Rev Immunol. 2020;20(3):158–172. doi: 10.1038/s41577-019-0232-6
  • Ando M, Kinoshita S, Furukawa Y. Chapter 3 - Improving the safety of Ipsc-derived T cell therapy. In: Birbrair A, Eds. Molecular Players in iPSC Technology. Academic Press; 2022. p. 95–115. 10.1016/B978-0-323-90059-1.00010-5.
  • Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Natu Med [Internet]. 2021 Aug [cited 2022 Nov 30];27(8):1410–8. https://www.nature.com/articles/s41591-021-01462-y
  • Zhao Y, Deng J, Rao S, et al. Tumor Infiltrating Lymphocyte (TIL) Therapy for Solid Tumor Treatment: Progressions and Challenges. Cancers. 2022;14(17):4160. doi: 10.3390/cancers14174160
  • Rakaee M, Adib E, Ricciuti B, et al. Association of Machine Learning–Based Assessment of Tumor-Infiltrating Lymphocytes on Standard Histologic Images with Outcomes of Immunotherapy in Patients with NSCLC. JAMA Oncol. 2022;9:51. doi: 10.1001/jamaoncol.2022.4933
  • Rosenberg SA, Packard BS, Aebersold PM, et al. Use of Tumor-Infiltrating Lymphocytes and Interleukin-2 in the Immunotherapy of Patients with Metastatic Melanoma. 2010;Internet. doi: 10.1056/NEJM198812223192527
  • Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 1994;86(15):1159–1166. doi: 10.1093/jnci/86.15.1159
  • Irvine DJ, Maus MV, Mooney DJ, et al. The future of engineered immune cell therapies. Science. 2022;378(6622):853–858. doi: 10.1126/science.abq6990
  • Weber EW, Maus MV, Mackall CL. The Emerging Landscape of Immune Cell Therapies. Cell. 2020;181(1):46–62. doi: 10.1016/j.cell.2020.03.001
  • Mount CW, Majzner RG, Sundaresh S, et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat Med. 2018;24(5):572–579. doi: 10.1038/s41591-018-0006-x
  • Halliwell E, Vitali A, Muller H, et al. Targeting of low ALK antigen density neuroblastoma using and logic-gate engineered CAR-T cells. Cytotherapy. 2022;25:46–58. doi: 10.1016/j.jcyt.2022.10.007
  • Hou AJ, Chen LC, Chen YY. Navigating CAR-T cells through the solid-tumour microenvironment. Nat Rev Drug Discov. 2021;20(7):531–550. doi: 10.1038/s41573-021-00189-2
  • Vitanza NA, Wilson AL, Huang W, et al. Intraventricular B7-H3 CAR T cells for diffuse intrinsic pontine glioma: preliminary first-in-human bioactivity and safety. Cancer Discovery. 2023;13(1) :141–131.
  • Nagarsheth NB, Norberg SM, Sinkoe AL, et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat Med. 2021;27(3):419–425. doi: 10.1038/s41591-020-01225-1
  • Tzannou I, Papadopoulou A, Naik S, et al. Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation. JCO. 2017;35(31):3547–3557. doi: 10.1200/JCO.2017.73.0655
  • McLaughlin LP, Rouce R, Gottschalk S, et al. EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood. 2018;132(22):2351–2361. doi: 10.1182/blood-2018-07-863654
  • Retroviral and Lentiviral Safety Analysis of Gene-Modified T Cell Products and Infused HIV and Oncology Patients - ScienceDirect [Internet]. [cited 2022 Nov 30]. Available from: https://www.sciencedirect.com/science/article/pii/S1525001617305282
  • CXCR5-Dependent Entry of CD8 T Cells into Rhesus Macaque B-Cell Follicles Achieved through T-Cell Engineering. J Virol. [cited 2022 Nov 30]. Internet. https://journals.asm.org/doi/full/10.1128/JVI.02507-16
  • Larson SM, Walthers CM, Ji B, et al. CD19/CD20 Bispecific Chimeric Antigen Receptor (CAR) in Naïve/Memory T Cells for the Treatment of Relapsed or Refractory Non-Hodgkin Lymphoma. Cancer Discovery. 2023;13(3) :580–597.
  • Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–28. doi: 10.1038/nm.4441
  • Van Oekelen O, Aleman A, Upadhyaya B, et al. Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapy. Nat Med. 2021;27(12):2099–2103. doi: 10.1038/s41591-021-01564-7
  • Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell. 2017;31(3):311–325. doi: 10.1016/j.ccell.2017.02.008
  • Guppy M. The hypoxic core: a possible answer to the cancer paradox. Biochem Biophys Res Commun. 2002;299(4):676–680. doi: 10.1016/S0006-291X(02)02710-9
  • The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell International Internet. 2021 Dec;21(1):1–26. [cited 2022 Nov 30]. https://cancerci.biomedcentral.com/articles/10.1186/s12935-020-01719-5
  • Zhou S, Gravekamp C, Bermudes D, et al. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2018;18(12):727–743. doi: 10.1038/s41568-018-0070-z
  • Engineering the perfect (bacterial) cancer therapy. Natu Reviews Cancer. 2010 Nov [Internet]. [cited 2022 Nov 29];10(11):785–94. https://www.nature.com/articles/nrc2934
  • Jiang S-N, Phan TX, Nam T-K, et al. Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy. Mol Ther. 2010;18(3):635–642. doi: 10.1038/mt.2009.295
  • Gurbatri CR, Arpaia N, Danino T. Engineering bacteria as interactive cancer therapies. Science. 2022;378(6622):858–864. doi: 10.1126/science.add9667
  • Duong M-Q, Qin Y, You S-H, et al. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019;51(12):152. doi: 10.1038/s12276-019-0297-0
  • Felgner S, Pawar V, Kocijancic D, et al. Tumour-targeting bacteria-based cancer therapies for increased specificity and improved outcome. Microbiol Biotechnol. 2017;10(5):1074–1078. doi: 10.1111/1751-7915.12787
  • Multiplexed biosensors for precision bacteria tropism in vivo | bioRxiv Internet. [cited 2022 Nov 30]. Available from. https://www.biorxiv.org/content/10.1101/851311v1
  • Clairmont C, Lee KC, Pike J, et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis. 2000;181(6):1996–2002. doi: 10.1086/315497
  • Park S-H, Zheng JH, Nguyen VH, et al. RGD Peptide Cell-Surface Display Enhances the Targeting and Therapeutic Efficacy of Attenuated Salmonella-mediated Cancer Therapy. Theranostics. 2016;6(10):1672–1682. doi: 10.7150/thno.16135
  • Massa PE, Paniccia A, Monegal A, et al. Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood. 2013;122(5):705–714. doi: 10.1182/blood-2012-12-474098
  • Riglar DT, Silver PA. Engineering bacteria for diagnostic and therapeutic applications. Nat Rev Microbiol. 2018;16(4):214–225. doi: 10.1038/nrmicro.2017.172
  • Dang LH, Bettegowda C, Huso DL, et al. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci, USA. 2001;98(26):15155–15160. doi: 10.1073/pnas.251543698
  • Gupta KH, Nowicki C, Giurini EF, et al. Bacterial-Based Cancer Therapy (BBCT): Recent Advances, Current Challenges, and Future Prospects for Cancer Immunotherapy. Vaccines (Basel). 2021;9(12):1497. doi: 10.3390/vaccines9121497
  • Wang W, Xu H, Ye Q, et al. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria. Nat Biomed Eng. 2022;6(1):44–53. doi: 10.1038/s41551-021-00834-6
  • Du Y, Lin L, Zhang Z, et al. Drug-loaded nanoparticles conjugated with genetically engineered bacteria for cancer therapy. Biochem Biophys Res Commun. 2022;606:29–34. doi: 10.1016/j.bbrc.2022.03.049
  • Hu Q, Wu M, Fang C, et al. Engineering Nanoparticle-Coated Bacteria as Oral DNA Vaccines for Cancer Immunotherapy. Nano Lett. 2015;15(4):2732–2739. doi: 10.1021/acs.nanolett.5b00570
  • Feng J, Liu Y, Pan X, et al. Acid-Directed Electrostatic Self-Assembly Generates Charge-Reversible Bacteria for Enhanced Tumor Targeting and Low Tissue Trapping. ACS Appl Mater Interfaces. 2022;14(32):36411–36424. doi: 10.1021/acsami.2c08684
  • Chen Q, Li Q, Cao M, et al. Hierarchy‐Assembled Dual Probiotics System Ameliorates Cholestatic Drug‐Induced Liver Injury via Gut‐Liver Axis Modulation. Adv Sci. 2022;9(17):2200986. doi: 10.1002/advs.202200986
  • Anselmo AC, McHugh KJ, Webster J, et al. Layer-by-Layer Encapsulation of Probiotics for Delivery to the Microbiome. Adv Mater. 2016;28(43):9486–9490. doi: 10.1002/adma.201603270
  • Zhu D, Zhang J, Luo G, et al. Bright Bacterium for Hypoxia‐Tolerant Photodynamic Therapy Against Orthotopic Colon Tumors by an Interventional Method. Adv Sci. 2021;8(15):2004769. doi: 10.1002/advs.202004769
  • Wei B, Pan J, Yuan R, et al. Polarization of Tumor-Associated Macrophages by Nanoparticle-Loaded Escherichia coli Combined with Immunogenic Cell Death for Cancer Immunotherapy. Nano Lett. 2021;21(10):4231–4240. doi: 10.1021/acs.nanolett.1c00209
  • Tian Q, Bagheri Y, Keshri P, et al. Efficient and selective DNA modification on bacterial membranes. Chem Sci. 2021;12(7):2629–2634. doi: 10.1039/D0SC06630C
  • Zhao W-B, Wang R-T, Liu K-K, et al. Near-infrared carbon nanodots for effective identification and inactivation of Gram-positive bacteria. Nano Res. 2022;15(3):1699–1708. doi: 10.1007/s12274-021-3818-9
  • Jia H-R, Zhu Y-X, Chen Z, et al. Cholesterol-Assisted Bacterial Cell Surface Engineering for Photodynamic Inactivation of Gram-Positive and Gram-Negative Bacteria. ACS Appl Mater Interfaces. 2017;9(19):15943–15951. doi: 10.1021/acsami.7b02562
  • Yang X, Yang J, Ye Z, et al. Physiologically Inspired Mucin Coated Escherichia coli Nissle 1917 Enhances Biotherapy by Regulating the Pathological Microenvironment to Improve Intestinal Colonization. ACS Nano. 2022;16(3):4041–4058. doi: 10.1021/acsnano.1c09681
  • Liu R, Cao Z, Wang L, et al. Multimodal oncolytic bacteria by coating with tumor cell derived nanoshells. Nano Today. 2022;45:101537. doi: 10.1016/j.nantod.2022.101537
  • Yang J, Zhang G, Yang X, et al. An oral “Super probiotics” with versatile self-assembly adventitia for enhanced intestinal colonization by autonomous regulating the pathological microenvironment. Chem Eng J. 2022;446:137204. doi: 10.1016/j.cej.2022.137204
  • Liu Y, Lu Y, Ning B, et al. Intravenous Delivery of Living Listeria monocytogenes Elicits Gasdmermin-Dependent Tumor Pyroptosis and Motivates Anti-Tumor Immune Response. ACS Nano. 2022;16(3):4102–4115. doi: 10.1021/acsnano.1c09818
  • Encapsulation of Commensal Skin Bacteria within Membrane‐in‐Gel Patches - Xu - 2022 - Advanced Materials Interfaces - Wiley Online Library Internet. [cited 2022 Nov 26]. Available from. https://onlinelibrary.wiley.com/doi/10.1002/admi.202102261
  • Mucosal immunity–mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches [Internet]. doi: 10.1126/sciadv.abf0677
  • Cao Z, Cheng S, Wang X, et al. Camouflaging bacteria by wrapping with cell membranes. Nat Commun. 2019;10(1):3452. doi: 10.1038/s41467-019-11390-8
  • Bioinspired oral delivery of gut microbiota by self-coating with biofilms [Internet]. DOI: 10.1126/sciadv.abb1952
  • Garcés V, González A, Gálvez N, et al. Magneto-optical hyperthermia agents based on probiotic bacteria loaded with magnetic and gold nanoparticles. Nanoscale. 2022;14(15):5716–5724. doi: 10.1039/D1NR08513A
  • Aubry M, Wang W-A, Guyodo Y, et al. Engineering E. coli for Magnetic Control and the Spatial Localization of Functions. ACS Synth Biol. 2020;9(11):3030–3041. doi: 10.1021/acssynbio.0c00286
  • Garcés V, Rodríguez-Nogales A, González A, et al. Bacteria-Carried Iron Oxide Nanoparticles for Treatment of Anemia. Bioconjugate Chem. 2018;29(5):1785–1791. doi: 10.1021/acs.bioconjchem.8b00245
  • Wang P, Chen C, Wang Q, et al. Tumor inhibition via magneto-mechanical oscillation by magnetotactic bacteria under a swing MF. J Control Release. 2022;351:941–953. doi: 10.1016/j.jconrel.2022.09.059
  • Chen C, Wang P, Chen H, et al. Smart Magnetotactic Bacteria Enable the Inhibition of Neuroblastoma under an Alternating Magnetic Field. ACS Appl Mater Interfaces. 2022;14(12):14049–14058. doi: 10.1021/acsami.1c24154
  • Wilson WW, Wade MM, Holman SC, et al. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods. 2001;43(3):153–164. doi: 10.1016/S0167-7012(00)00224-4
  • Beveridge TJ, Graham LL. Surface layers of bacteria. Microbiol Rev. 1991;55(4):684–705. doi: 10.1128/mr.55.4.684-705.1991
  • Gao Z, Zhang E, Zhao H, et al. Bacteria-Mediated Intracellular Click Reaction for Drug Enrichment and Selective Apoptosis of Drug-Resistant Tumor Cells. ACS Appl Mater Interfaces. 2022;14(10):12106–12115. doi: 10.1021/acsami.2c01493
  • Kapoor N, Uchiyama S, Pill L, et al. Non-Native Amino Acid Click Chemistry-Based Technology for Site-Specific Polysaccharide Conjugation to a Bacterial Protein Serving as Both Carrier and Vaccine Antigen. ACS Omega. 2022;7(28):24111–24120. doi: 10.1021/acsomega.1c07360
  • Welling MM, Duszenko N, van Willigen DM, et al. Interventional nuclear medicine: “click” chemistry as an in vivo targeting strategy for imaging microspheres and bacteria. Biomater Sci. 2021;9(5):1683–1690. doi: 10.1039/D0BM01823F
  • Dumont A, Malleron A, Awwad M, et al. Click-Mediated Labeling of Bacterial Membranes through Metabolic Modification of the Lipopolysaccharide Inner Core. Angewandte Chemie. 2012;51(13):3143–3146. doi: 10.1002/anie.201108127
  • Song W-F, Yao W-Q, Chen Q-W, et al. In Situ Bioorthogonal Conjugation of Delivered Bacteria with Gut Inhabitants for Enhancing Probiotics Colonization. ACS Cent Sci. 2022;8(9):1306–1317. doi: 10.1021/acscentsci.2c00533
  • Fan X-M, Shen J-J, Xu Y-Y, et al. Metabolic integration of azide functionalized glycan on Escherichia coli cell surface for specific covalent immobilization onto magnetic nanoparticles with click chemistry. Biores Technol. 2021;324:124689. doi: 10.1016/j.biortech.2021.124689
  • Pan P, Dong X, Chen Y, et al. Engineered Bacteria for Enhanced Radiotherapy against Breast Carcinoma. ACS Nano. 2022;16(1):801–812. doi: 10.1021/acsnano.1c08350
  • Pei P, Zhang Y, Jiang Y, et al. Pleiotropic Immunomodulatory Functions of Radioactive Inactivated Bacterial Vectors for Enhanced Cancer Radio-immunotherapy. ACS Nano. 2022;16(7):11325–11337. doi: 10.1021/acsnano.2c04982
  • Reghu S, Miyako E. Nanoengineered Bifidobacterium bifidum with Optical Activity for Photothermal Cancer Immunotheranostics. Nano Lett. 2022;22(5):1880–1888. doi: 10.1021/acs.nanolett.1c04037
  • Li J, Xia Q, Guo H, et al. Decorating Bacteria with Triple Immune Nanoactivators Generates Tumor-Resident Living Immunotherapeutics. Angewandte Chemie. 2022;61(27):e202202409. doi: 10.1002/anie.202202409
  • Xiao S, Shi H, Zhang Y, et al. Bacteria-driven hypoxia targeting delivery of chemotherapeutic drug proving outcome of breast cancer. J Nanobiotechnology. 2022;20(1):178. doi: 10.1186/s12951-022-01373-1
  • Chen W, Wang Y, Qin M, et al. Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS Nano. 2018;12(6):5995–6005. doi: 10.1021/acsnano.8b02235
  • Li Y, Tang S, Cong Z, et al. Biohybrid bacterial microswimmers with metal-organic framework exoskeletons enable cytoprotection and active drug delivery in a harsh environment. Mater Today Chem. 2022;23:100609. doi: 10.1016/j.mtchem.2021.100609
  • Chen Q-W, Wang J-W, Wang X-N, et al. Inhibition of Tumor Progression through the Coupling of Bacterial Respiration with Tumor Metabolism. Angewandte Chemie. 2020;59(48):21562–21570. doi: 10.1002/anie.202002649
  • Wang X-N, Niu M-T, Fan J-X, et al. Photoelectric Bacteria Enhance the In Situ Production of Tetrodotoxin for Antitumor Therapy. Nano Lett. 2021;21(10):4270–4279. doi: 10.1021/acs.nanolett.1c00408
  • Wang L, Qin W, Xu W, et al. Bacteria-Mediated Tumor Therapy via Photothermally-Programmed Cytolysin a Expression. Small. 2021;17(40):2102932. doi: 10.1002/smll.202102932
  • Wang J-W, Chen Q-W, Luo G-F, et al. A self-driven bioreactor based on bacterium–metal–organic framework biohybrids for boosting chemotherapy via Cyclic Lactate Catabolism. ACS Nano. 2021;15(11):17870–17884. doi: 10.1021/acsnano.1c06123
  • Wasuwanich P, Fan G, Burke B, et al. Metal-phenolic networks as tuneable spore coat mimetics. J Mater Chem B. 2022;10(37):7600–7606. doi: 10.1039/D2TB00717G
  • Pan J, Gong G, Wang Q, et al. A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea. Nat Commun. 2022;13(1):2117. doi: 10.1038/s41467-022-29672-z
  • Centurion F, Merhebi S, Baharfar M, et al. Cell-mediated biointerfacial phenolic assembly for probiotic nano encapsulation. Adv Funct Mater. 2022;32(26):2200775. doi: 10.1002/adfm.202200775
  • Wang X, Zhang J, Li K, et al. Photocatalyst-mineralized biofilms as living bio-abiotic interfaces for single enzyme to whole-cell photocatalytic applications. Sci Adv. 2022;8(18):eabm7665. doi: 10.1126/sciadv.abm7665
  • Yao Y, Li J, Li P, et al. Bacterially synthesized tellurium nanorods for elimination of advanced malignant tumor by photothermal immunotherapy. Small. 2022;18(8):2105716. doi: 10.1002/smll.202105716
  • Yan S, Zeng X, Wang Y, et al. Biomineralization of bacteria by a metal–organic framework for therapeutic delivery. Adv Healthcare Mater. 2020;9(12):2000046. doi: 10.1002/adhm.202000046
  • Li J, Hou W, Lin S, et al. Polydopamine nanoparticle‐mediated dopaminergic immunoregulation in colitis. Adv Sci. 2021;9(1):2104006. doi: 10.1002/advs.202104006
  • Liu J, Wang Y, Heelan WJ, et al. Mucoadhesive probiotic backpacks with ROS nanoscavengers enhance the bacteriotherapy for inflammatory bowel diseases. Sci Adv. 2022;8(45):eabp8798. doi: 10.1126/sciadv.abp8798
  • Chen W, He C, Qiao N, et al. Dual drugs decorated bacteria irradiate deep hypoxic tumor and arouse strong immune responses. Biomaterials. 2022;286:121582. doi: 10.1016/j.biomaterials.2022.121582
  • Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery [Internet] DOI: 10.1126/sciadv.abo6163
  • Alapan Y, Yasa O, Schauer O, et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci Rob. 2018;3(17):eaar4423. doi: 10.1126/scirobotics.aar4423
  • Chen F, Zang Z, Chen Z, et al. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials. 2019;214:119226. doi: 10.1016/j.biomaterials.2019.119226
  • Bian J, Bao L, Gao X, et al. Bacteria-engineered porous sponge for hemostasis and vascularization. J Nanobiotechnology. 2022;20(1):47. doi: 10.1186/s12951-022-01254-7
  • Liu L, He H, Luo Z, et al. In Situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple‐negative breast cancer. Adv Funct Mater. 2020;30(10):1910176. doi: 10.1002/adfm.201910176
  • Fan J, Peng M, Wang H, et al. Engineered bacterial bioreactor for tumor therapy via Fenton‐like reaction with localized H 2 O 2 generation. Adv Mater. 2019;31(16):1808278. doi: 10.1002/adma.201808278
  • Suh S, Jo A, Traore MA, et al. Nanoscale Bacteria‐Enabled Autonomous Drug Delivery System (NanoBEADS) Enhances Intratumoral Transport of Nanomedicine. Adv Sci. 2018;6(3):1801309. doi: 10.1002/advs.201801309
  • Wu W, Pu Y, Yao H, et al. Microbiotic nanomedicine for tumor-specific chemotherapy-synergized innate/adaptive antitumor immunity. Nano Today. 2022;42:101377. doi: 10.1016/j.nantod.2022.101377
  • Gwisai T, Mirkhani N, Christiansen M, et al. Magnetic torque-driven living microrobots for enhanced tumor infiltration; 2022. doi: 10.1101/2022.01.03.473989
  • Li Z, Mo F, Wang Y, et al. Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response. Nat Commun. 2022;13(1):6321. doi: 10.1038/s41467-022-34036-8
  • Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Reviews [Internet]. 2013 Jul 10 [cited 2023 Jan 1];113(7):4905–79. https://pubs.acs.org/doi/10.1021/cr200409f
  • Grzybowski BA, Wilmer CE, Kim J, et al. Self-assembly: from crystals to cells. Soft Matter. 2009;5(6):1110–1128. doi: 10.1039/b819321p
  • Grzelczak M, Vermant J, Furst EM, et al. Directed Self-Assembly of Nanoparticles. ACS Nano. 2010;4(7):3591–3605. doi: 10.1021/nn100869j
  • Liu Y, Zhang M, Wang X, et al. Dressing bacteria with a hybrid immunoactive nanosurface to elicit dual anticancer and antiviral immunity. Adv Mater 2023;35(11) :2210949.
  • Shi L, Liu X, Li Y, et al. Living bacteria-based immuno-photodynamic therapy: metabolic labeling of clostridium butyricum for eradicating malignant melanoma. Adv Sci. 2022;9(14):2105807. doi: 10.1002/advs.202105807
  • Pan P, Fan J, Wang X, et al. Bio‐orthogonal bacterial reactor for remission of heavy metal poisoning and ROS Elimination. Adv Sci. 2019;6(24):1902500. doi: 10.1002/advs.201902500
  • Geva-Zatorsky N, Alvarez D, Hudak JE, et al. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nat Med. 2015;21(9):1091–1100. doi: 10.1038/nm.3929
  • Hudak JE, Alvarez D, Skelly A, et al. Illuminating vital surface molecules of symbionts in health and disease. Nat Microbiol. 2017;2(9):17099. doi: 10.1038/nmicrobiol.2017.99
  • Wang W, Yang Q, Du Y, et al. Metabolic labeling of peptidoglycan with NIR-II dye enables in vivo imaging of gut microbiota. Angew Chem Int Ed Engl. 2020;59(7):2628–2633. doi: 10.1002/anie.201910555
  • Hu F, Qi G, Null K, et al. Visualization and in situ ablation of intracellular bacterial pathogens through metabolic labeling. Angew Chem Int Ed Engl. 2020;59(24):9288–9292. doi: 10.1002/anie.201910187
  • Liu X, Wu M, Wang M, et al. Metabolically engineered bacteria as light-controlled living therapeutics for anti-angiogenesis tumor therapy. Mater Horiz. 2021;8(5):1454–1460. doi: 10.1039/D0MH01582B
  • Liu X, Wu M, Wang M, et al. Direct synthesis of photosensitizable bacterial cellulose as engineered living material for skin wound repair. Adv Mater. 2022;34(13):2109010. doi: 10.1002/adma.202109010
  • Hong S, Zheng D-W, Zhang Q-L, et al. An RGB-emitting molecular cocktail for the detection of bacterial fingerprints. Chem Sci. 2020;11(17):4403–4409. doi: 10.1039/D0SC01704C
  • Beauchemin ET, Hunter C, Maurice CF. Actively replicating gut bacteria identified by 5-ethynyl-2’-deoxyuridine (EdU) click chemistry and cell sorting. Microbiology. 2022. doi: 10.1101/2022.07.20.500840
  • Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy. Nat Commun. 2022 Sep 1 [[cited 2022 Dec 30];13(1):5127. Internet: https://www.nature.com/articles/s41467-022-32837-5
  • Canale FP, Basso C, Antonini G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature. 2021;598(7882):662–666. doi: 10.1038/s41586-021-04003-2
  • Kurtz CB, Millet YA, Puurunen MK, et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 2019;11(475):eaau7975. doi: 10.1126/scitranslmed.aau7975
  • Yue Y, Xu J, Li Y, et al. Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria. Nat Biomed Eng. 2022;6(7):898–909. doi: 10.1038/s41551-022-00886-2
  • Enhanced Stability and Function of Probiotic Streptococcus thermophilus with Self-Encapsulation by Increasing the Biosynthesis of Hyaluronan. ACS Appl Mater Interfaces. 2022 Sep 16 [cited 2022 Dec 30];14(38):42963–75. https://pubs.acs.org/doi/pdf/10.1021/acsami.2c11591
  • Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy. Nat Commun [Internet]. 2022 Aug 2 [cited 2022 Dec 30];13(1):4468. https://www.nature.com/articles/s41467-022-31932-x
  • Zhou J, Li M, Chen Q, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat Commun. 2022;13(1):3432. doi: 10.1038/s41467-022-31171-0
  • Chen H, Li Y, Wang Y, et al. An engineered bacteria-hybrid microrobot with the magnetothermal bioswitch for remotely collective perception and imaging-guided cancer treatment. ACS Nano. 2022;16(4):6118–6133. doi: 10.1021/acsnano.1c11601
  • Qin W, Xu W, Wang L, et al. Bacteria-elicited specific thrombosis utilizing acid-induced cytolysin a expression to enable potent tumor therapy. Adv Sci. 2022;9(15):e2105086. doi: 10.1002/advs.202105086
  • Precise Thermal Regulation of Engineered Bacteria Secretion for Breast Cancer Treatment In Vivo | ACS Synthetic Biology Internet [cited 2022 Dec 30]. Available from. https://pubs.acs.org/doi/abs/10.1021/acssynbio.1c00452
  • Abedi MH, Yao MS, Mittelstein DR, et al. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nat Commun. 2022;13(1):1585. doi: 10.1038/s41467-022-29065-2
  • Harimoto T, Hahn J, Chen Y-Y, et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat Biotechnol. 2022;40(8):1259–1269. doi: 10.1038/s41587-022-01244-y
  • He L, Yang H, Liu F, et al. Escherichia coli Nissle 1917 engineered to express Tum-5 can restrain murine melanoma growth. Oncotarget. 2017;8(49):85772–85782. doi: 10.18632/oncotarget.20486
  • He L, Yang H, Tang J, et al. Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy. J Biol Eng. 2019;13(1):58. doi: 10.1186/s13036-019-0189-9
  • Cooper RM, Wright JA, Ng JQ, et al. Engineered bacteria detect tumor DNA. Synthetic Biology. 2021; doi: 10.1101/2021.09.10.459858
  • Zhang Y, Xue X, Fang M, et al. Upconversion optogenetic engineered bacteria system for time-resolved imaging diagnosis and light-controlled cancer therapy. ACS Appl Mater Interfaces. 2022;14(41):46351–46361. doi: 10.1021/acsami.2c14633
  • Selvanesan BC, Chandra D, Quispe-Tintaya W, et al. Listeria delivers tetanus toxoid protein to pancreatic tumors and induces cancer cell death in mice. Sci, Trans Med. 2022;14(637):eabc1600. doi: 10.1126/scitranslmed.abc1600
  • Vincent RL, Gurbatri CR, Redenti A, et al. Probiotic-guided CAR-T cells for universal solid tumor targeting. 2021; 2021.10.10.463366.
  • Savage TM, Vincent RL, Rae SS, et al. Engineered bacteria recruit and orchestrate anti-tumor immunity. 2022; 2022.06.16.496462.
  • Leventhal DS, Sokolovska A, Li N, et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat Commun. 2020;11(1):2739. doi: 10.1038/s41467-020-16602-0
  • Chowdhury S, Castro S, Coker C, et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med. 2019;25(7):1057–1063. doi: 10.1038/s41591-019-0498-z
  • Ho CL, Tan HQ, Chua KJ, et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat Biomed Eng. 2018;2(1):27–37. doi: 10.1038/s41551-017-0181-y
  • Gao T, Chen T, Feng C, et al. Design and fabrication of flexible DNA polymer cocoons to encapsulate live cells. Nat Commun. 2019;10(1):1–10. doi: 10.1038/s41467-019-10845-2
  • Mela I, Vallejo‐Ramirez PP, Makarchuk S, et al. DNA nanostructures for targeted antimicrobial delivery. Angew Chem Int Ed Engl. 2020;59(31):12698–12702. doi: 10.1002/anie.202002740
  • Lahav-Mankovski N, Prasad PK, Oppenheimer-Low N, et al. Decorating bacteria with self-assembled synthetic receptors. Nat Commun. 2020;11(1):1299. doi: 10.1038/s41467-020-14336-7
  • Bacteria as Nanoparticles Carrier for Enhancing Penetration in a Tumoral Matrix Model - Moreno - 2020 - Advanced Materials Interfaces - Wiley Online Library Internet. [cited 2022 Dec 30]. Available from. https://onlinelibrary.wiley.com/doi/abs/10.1002/admi.201901942
  • Macrophage-mediated tumor-targeted delivery of engineered Salmonella typhimurium VNP20009 in anti-PD1 therapy against melanoma - ScienceDirect [Internet]. [cited 2022 Dec 30]. Available from: https://www.sciencedirect.com/science/article/pii/S221138352200212X
  • Aldaye FA, Palmer AL, Sleiman HF. Assembling Materials with DNA as the Guide. Science. 2008;321(5897):1795–1799. doi: 10.1126/science.1154533
  • McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–158.
  • Zheng JH, Nguyen VH, Jiang S-N, et al. Two-step enhanced cancer immunotherapy with engineered salmonella typhimurium secreting heterologous flagellin. Sci, trans med. 2017;9(376):eaak9537. doi: 10.1126/scitranslmed.aak9537
  • Gurbatri CR, Lia I, Vincent R, et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci Transl Med. 2020;12(530):eaax0876. doi: 10.1126/scitranslmed.aax0876
  • Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discovery. 2022;12(1):31–46. doi: 10.1158/2159-8290.CD-21-1059
  • Wei C, Xun AY, Wei XX, et al. Bifidobacteria expressing tumstatin protein for antitumor therapy in tumor-bearing mice. Technol Cancer Res Treat. 2016;15(3):498–508. doi: 10.1177/1533034615581977
  • Wood LM, Pan Z-K, Guirnalda P, et al. Targeting tumor vasculature with novel Listeria-based vaccines directed against CD105. Cancer Immunol Immunother. 2011;60(7):931–942. doi: 10.1007/s00262-011-1002-x
  • Liang K, Liu Q, Li P, et al. Endostatin gene therapy delivered by attenuated salmonella typhimurium in murine tumor models. Cancer Gene Ther. 2018;25(7–8):167–183. doi: 10.1038/s41417-018-0021-6
  • Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med. 2002;8(12):1369–1375. doi: 10.1038/nm1202-794
  • King I, Bermudes D, Lin S, et al. Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum Gene Ther. 2002;13(10):1225–1233. doi: 10.1089/104303402320139005
  • Yin X, Yu B, Tang Z, et al. Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene therapy induces both extrinsic and intrinsic apoptosis in a rat model of bladder cancer. Cancer Gene Ther. 2013;20(2):77–81. doi: 10.1038/cgt.2012.86
  • T J, P O, D L, et al. Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. Br J Cancer. 2006;95(9):1212–1219. doi: 10.1038/sj.bjc.6603367
  • Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):785–794. doi: 10.1038/nrc2934
  • Chandra D, Selvanesan BC, Yuan Z, et al. 32-Phosphorus selectively delivered by listeria to pancreatic cancer demonstrates a strong therapeutic effect. Oncotarget. 2017;8(13):20729–20740. doi: 10.18632/oncotarget.15117
  • Drees JJ, Mertensotto MJ, Augustin LB, et al. Vasculature disruption enhances bacterial targeting of autochthonous tumors. J Cancer. 2015;6(9):843–848. doi: 10.7150/jca.12491
  • Low KB, Ittensohn M, Le T, et al. Lipid a mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol. 1999;17(1):37–41. doi: 10.1038/5205
  • Hoffman RM. Tumor-seeking Salmonella amino acid auxotrophs. Curr Opin Biotechnol. 2011;22(6):917–923. doi: 10.1016/j.copbio.2011.03.009
  • Din MO, Danino T, Prindle A, et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016;536(7614):81–85. doi: 10.1038/nature18930
  • Wang X, Cao Z, Zhang M, et al. Bioinspired oral delivery of gut microbiota by self-coating with biofilms. Sci Adv. 2020;6(26):eabb1952. doi: 10.1126/sciadv.abb1952
  • Sedighi M, Zahedi Bialvaei A, Hamblin MR, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 2019;8(6):3167–3181. doi: 10.1002/cam4.2148
  • Platt J, Sodi S, Kelley M, et al. Antitumour effects of genetically engineered Salmonella in combination with radiation. Eur J Cancer. 2000;36(18):2397–2402. doi: 10.1016/S0959-8049(00)00336-1
  • Bettegowda C, Dang LH, Abrams R, et al. Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proc Natl Acad Sci U S A. 2003;100(25):15083–15088. doi: 10.1073/pnas.2036598100
  • Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer. 2007;97(8):1028–1034. doi: 10.1038/sj.bjc.6603990
  • El-Atti S A, Wasicek K, Mark S, et al. Use of probiotics in the management of chemotherapy-induced diarrhea: a case study. JPEN J Parenter Enteral Nutr. 2009;33(5):569–570. doi: 10.1177/0148607109332004
  • Sharma A, Rath GK, Chaudhary SP, et al. Lactobacillus brevis CD2 lozenges reduce radiation- and chemotherapy-induced mucositis in patients with head and neck cancer: a randomized double-blind placebo-controlled study. Eur J Cancer. 2012;48(6):875–881. doi: 10.1016/j.ejca.2011.06.010
  • Magariyama Y, Sugiyama S, Muramoto K, et al. Very fast flagellar rotation. Nature. 1994;371(6500):752. doi: 10.1038/371752b0
  • Shunmugam R, Renukadevi Balusamy S, Kumar V, et al. Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. J King Saud Univ Sci. 2021;33(1):101260. doi: 10.1016/j.jksus.2020.101260
  • Singh AV, Hosseinidoust Z, Park B-W, et al. Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano. 2017;11(10):9759–9769. doi: 10.1021/acsnano.7b02082
  • Toso JF, Gill VJ, Hwu P, et al. Phase I study of the intravenous administration of attenuated salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002;20(1):142–152. doi: 10.1200/JCO.2002.20.1.142
  • Fu S, Zhang R, Gao Y, et al. Programming the lifestyles of engineered bacteria for cancer therapy. Natl Sci Rev. 2023;10(5):nwad031. doi: 10.1093/nsr/nwad031
  • Pan H, Li L, Pang G, et al. Engineered NIR light-responsive bacteria as anti-tumor agent for targeted and precise cancer therapy. Chem Eng J. 2021;426:130842. doi: 10.1016/j.cej.2021.130842

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.