506
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Utilization of endogenous albumin trafficking pathways in the lungs has potential to modestly increase the lung interstitial access and absorption of drug delivery systems after inhaled administration

, , , , , , ORCID Icon & show all
Pages 1145-1155 | Received 01 May 2023, Accepted 26 Jul 2023, Published online: 08 Aug 2023

References

  • Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007 Jan;6(1):67–74. doi: 10.1038/nrd2153
  • Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1(4):338–344. doi: 10.1513/pats.200409-049TA
  • Reed MD. Optimal antibiotic dosing. The pharmacokinetic-pharmacodynamic interface. Postgrad Med. 2000 Dec;108(7 Suppl Contemporaty):17–24. doi: 10.3810/pgm.12.2000.suppl10.52
  • Haque S, Whittaker MR, McIntosh MP, et al. Disposition and safety of inhaled biodegradable nanomedicines: opportunities and challenges. Nanomedicine. 2016 Aug;12(6):1703–1724. doi: 10.1016/j.nano.2016.03.002
  • Sakai N, Tager AM. Fibrosis of two: epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochim Biophys Acta. 2013 Jul;1832(7):911–921. doi: 10.1016/j.bbadis.2013.03.001
  • Kumar A, Mantri SN. Lymphangitic Carcinomatosis. [Updated 2022 Sep 19]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK560921/
  • Tiruppathi C, Song W, Bergenfeldt M, et al. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem. 1997 Oct 10;272(41):25968–25975. doi: 10.1074/jbc.272.41.25968
  • van der Deen M, de Vries EG, Timens W, et al. ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir Res. 2005 Jun 20;6(1):59.
  • Neves J, Haider T, Gassmann M, et al. Iron homeostasis in the lungs-A balance between health and disease. Pharmaceuticals (Basel). 2019 Jan 1;12(1). doi: 10.3390/ph12010005
  • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008 Dec 18;132(3):171–183. doi: 10.1016/j.jconrel.2008.05.010
  • Berthiaume Y, Albertine KH, Grady M, et al. Protein clearance from the air spaces and lungs of unanesthetized sheep over 144 h. J Appl Physiol (1985). 1989 Nov;67(5):1887–1897. doi: 10.1152/jappl.1989.67.5.1887
  • Kim KJ, Malik AB. Protein transport across the lung epithelial barrier. Am J Physiol Lung Cell Mol Physiol. 2003 Feb;284(2):L247–59. doi: 10.1152/ajplung.00235.2002
  • Karami E, Behdani M, Kazemi-Lomedasht F. Albumin nanoparticles as nanocarriers for drug delivery: Focusing on antibody and nanobody delivery and albumin-based drugs. J Drug Deliv Sci Tec. 2020 Feb 55;55:101471. doi: 10.1016/j.jddst.2019.101471
  • Joshi M, Nagarsenkar M, Prabhakar B. Albumin nanocarriers for pulmonary drug delivery: an attractive approach. J Drug Deliv Sci Tec. 2020 Apr 56;56:101529. doi: 10.1016/j.jddst.2020.101529
  • Huang YF, Upton RN, Runciman WB, et al. Insight into interstitial drug disposition: lymph concentrations of lidocaine, procainamide and meperidine in the hindquarters of unanesthetized and anesthetized sheep. J Pharmacol Exp Ther. 1991 Jan;256(1):69–75.
  • Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. 2012 Jul;92(3):1005–1060. doi: 10.1152/physrev.00037.2011
  • Rutili G, Arfors KE. Protein concentration in interstitial and lymphatic fluids from the subcutaneous tissue. Acta Physiol Scand. 1977 Jan;99(1):1–8. doi: 10.1111/j.1748-1716.1977.tb10345.x
  • Ryan GM, Bischof RJ, Enkhbaatar P, et al. A comparison of the pharmacokinetics and pulmonary lymphatic exposure of a generation 4 Pegylated dendrimer following intravenous and aerosol administration to rats and sheep. Pharm Res. 2016 Feb;33(2):510–525. doi: 10.1007/s11095-015-1806-z
  • Driscoll KE, Costa DL, Hatch G, et al. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 2000 May;55(1):24–35. doi: 10.1093/toxsci/55.1.24
  • Kuehn A, Kletting S, de Souza Carvalho-Wodarz C, et al. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier. ALTEX. 2016;33(3):251–260. doi: 10.14573/altex.1511131
  • Ibrahim JP, Haque S, Bischof RJ, et al. Liposomes are poorly absorbed via lung lymph after inhaled administration in sheep. Front Pharmacol. 2022;13:880448. doi: 10.3389/fphar.2022.880448
  • Bujacz A, Talaj JA, Zielinski K, et al. Crystal structures of serum albumins from domesticated ruminants and their complexes with 3,5-diiodosalicylic acid. Acta Crystallogr D Struct Biol. 2017 Nov;73(11):896–909. doi: 10.1107/S205979831701470X
  • Kaminskas LM, Landersdorfer CB, Bischof RJ, et al. Aerosol pirfenidone pharmacokinetics after inhaled delivery in sheep: a viable approach to treating idiopathic pulmonary fibrosis. Pharm Res. 2019 Dec 10;37(1):3.
  • Zhang Y, Huo M, Zhou J, et al. Pksolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in microsoft excel. Comput Methods Programs Biomed. 2010 Sep;99(3):306–314. doi: 10.1016/j.cmpb.2010.01.007
  • Taylor AE, Gaar KA. Estimation of equivalent pore radii of pulmonary capillary and alveolar membranes. Am J Physiol. 1970;218(4):1133–&. doi: 10.1152/ajplegacy.1970.218.4.1133
  • Meyer EC, Ottaviano R, Higgins JJ. Albumin clearance from alveoli: tissue permeation vs. airway displacement. J Appl Physiol Respir Environ Exerc Physiol. 1977 Sep;43(3):487–497. doi: 10.1152/jappl.1977.43.3.487
  • Buchackert Y, Rummel S, Vohwinkel CU, et al. Megalin mediates transepithelial albumin clearance from the alveolar space of intact rabbit lungs. J Physiol. 2012 Oct 15;590(20):5167–5181.
  • Kim KJ, Matsukawa Y, Yamahara H, et al. Absorption of intact albumin across rat alveolar epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol. 2003 Mar;284(3):L458–65. doi: 10.1152/ajplung.00237.2002
  • Schnitzer JE. Gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol. 1992 Jan;262(1 Pt 2):H246–54. doi: 10.1152/ajpheart.1992.262.1.H246
  • Tiruppathi C, Finnegan A, Malik AB. Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):250–254.
  • Li HH, Li J, Wasserloos KJ, et al. Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells. Plos One. 2013;8(11):e81903. doi: 10.1371/journal.pone.0081903
  • Vogel SM, Minshall RD, Pilipovic M, et al. Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. Am J Physiol Lung Cell Mol Physiol. 2001 Dec;281(6):L1512–22. doi: 10.1152/ajplung.2001.281.6.L1512
  • John TA, Vogel SM, Minshall RD, et al. Evidence for the role of alveolar epithelial gp60 in active transalveolar albumin transport in the rat lung. J Physiol. 2001 Jun 1;533(Pt 2):547–559.
  • John TA, Vogel SM, Minshall RD, et al. Evidence for the role of alveolar epithelial gp60 in active transalveolar albumin transport in the rat lung. J Physiol-London. 2001 Jun 1;533(2):547–559.
  • Rennard SI, Basset G, Lecossier D, et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol (1R985). 1986 Feb;60(2):532–538.
  • Mackie WS, Fell BF. The half-life of serum albumin in relation to liver hypertrophy in the lactating ewe. Res Vet Sci. 1971 Jan;12(1):54–58. doi: 10.1016/S0034-5288(18)34238-3
  • Chaudhury C, Mehnaz S, Robinson JM, et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med. 2003 Feb 3;197(3):315–322. doi: 10.1084/jem.20021829
  • Andersen JT, Dalhus B, Cameron J, et al. Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor. Nat Commun. 2012 Jan 3;3(1):610.
  • Walker KW, Salimi-Moosavi H, Arnold GE, et al. Pharmacokinetic comparison of a diverse panel of non-targeting human antibodies as matched IgG1 and IgG2 isotypes in rodents and non-human primates. Plos One. 2019;14(5):e0217061. doi: 10.1371/journal.pone.0217061
  • Abdiche YN, Yeung YA, Chaparro-Riggers J, et al. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs. 2015;7(2):331–343. doi: 10.1080/19420862.2015.1008353
  • Andersen JT, Daba MB, Berntzen G, et al. Cross-species binding analyses of mouse and human neonatal Fc receptor show dramatic differences in immunoglobulin G and albumin binding. J Biol Chem. 2010 Feb 12;285(7):4826–4836.
  • Kuilamu E, Subasic C, Cowin GJ, et al. Cetuximab exhibits sex differences in lymphatic exposure after intravenous administration in rats in the absence of differences in plasma exposure. Pharm Res. 2020 Oct 19;37(11):224.
  • Li C, Marton I, Harari D, et al. Gelatin stabilizes nebulized proteins in pulmonary drug delivery against COVID-19. ACS Biomater Sci Eng. 2022 Jun 13;8(6):2553–2563.
  • Schultz AL, Grismer JT, Wada S, et al. Absorption of albumin from alveoli of perfused dog lung. Am J Physiol. 1964 Dec;207(6):1300–1304. doi: 10.1152/ajplegacy.1964.207.6.1300
  • Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015 Nov;14(11):781–803. doi: 10.1038/nrd4608
  • Furuyama A, Kanno S, Kobayashi T, et al. Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch Toxicol. 2009 May;83(5):429–437. doi: 10.1007/s00204-008-0371-1
  • Choi HS, Ashitate Y, Lee JH, et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol. 2010 Dec;28(12):1300–1303. doi: 10.1038/nbt.1696
  • Wang YB, Watts AB, Peters JI, et al. The impact of pulmonary diseases on the fate of inhaled medicines–a review. Int J Pharm. 2014 Jan 30;461(1–2):112–128.
  • Haque S, Feeney O, Meeusen E, et al. Local inflammation alters the lung disposition of a drug loaded pegylated liposome after pulmonary dosing to rats. J Control Release. 2019 Aug 10;307:32–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.