306
Views
0
CrossRef citations to date
0
Altmetric
Review

Influence factors on and potential strategies to amplify receptor-mediated nanodrug delivery across the blood–brain barrier

, , &
Pages 1713-1730 | Received 18 May 2023, Accepted 03 Aug 2023, Published online: 10 Aug 2023

References

  • Gomes MJ, Martins S, Sarmento B. siRNA as a tool to improve the treatment of brain diseases: mechanism, targets and delivery. Ageing Res Rev. 2015;21:43–54. doi: 10.1016/j.arr.2015.03.001
  • Liang Y, Iqbal Z, Lu J, et al. Cell-derived nanovesicle-mediated drug delivery to the brain: principles and strategies for vesicle engineering. Mol Ther. 2023;31(5):1207–1224. doi: 10.1016/j.ymthe.2022.10.008
  • Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–665. doi: 10.1016/j.addr.2011.11.010
  • Liu HJ, Xu P. Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor. Adv Drug Deliv Rev. 2022;191:114619. doi: 10.1016/j.addr.2022.114619
  • Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 2016;6(4):268–286. doi: 10.1016/j.apsb.2016.05.013
  • Yang X, Zhang F, Du Y, et al. Effect of tetrahedral DNA nanostructures on LPS‐induced neuroinflammation in mice. Chin Chem Lett. 2022;33(4):1901–1906. doi: 10.1016/j.cclet.2021.10.029
  • Gugleva V, Andonova V. Drug delivery to the brain – lipid nanoparticles-based approach. Pharmacia. 2023;70(1):113–120. doi: 10.3897/pharmacia.70.e98838
  • Han L. Modulation of the blood–brain barrier for drug delivery to brain. Pharmaceutics. 2021;13(12):2024. doi: 10.3390/pharmaceutics13122024
  • Padh H, Sakhrani N. Organelle targeting: third level of drug targeting. Drug Des Devel Ther. 2013;585:585. doi: 10.2147/DDDT.S45614
  • Li Y, Pan Y, Wang Y, et al. A D-peptide ligand of neuropeptide Y receptor Y1 serves as nanocarrier traversing of the blood brain barrier and targets glioma. Nano Today. 2022;44:101465. doi: 10.1016/j.nantod.2022.101465
  • Daneman R. The blood–brain barrier in health and disease. Ann Neurol. 2012;72(5):648–672. doi: 10.1002/ana.23648
  • Fang F, Zou D, Wang W, et al. Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport. Mater Sci Eng C Mater Biol Appl. 2017;76:1316–1327. doi: 10.1016/j.msec.2017.02.056
  • Banks WA. Drug delivery to the brain in Alzheimer’s disease: consideration of the blood–brain barrier. Adv Drug Deliv Revi. 2012;64(7):629–639. doi: 10.1016/j.addr.2011.12.005
  • Moura RP, Martins C, Pinto S, et al. Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opin Drug Deliv. 2019;16(3):271–285. doi: 10.1080/17425247.2019.1583205
  • Han L, Jiang C. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharmaceutica Sinica B. 2021;11(8):2306–2325. doi: 10.1016/j.apsb.2020.11.023
  • Anthony DP, Hegde M, Shetty SS, et al. Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases. Life Sci. 2021;274:119326. doi: 10.1016/j.lfs.2021.119326
  • Jones AR, Shusta EV. Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res. 2007;24(9):1759–1771. doi: 10.1007/s11095-007-9379-0
  • Markowicz-Piasecka M, Markiewicz A, Darłak P, et al. Current chemical, biological, and physiological views in the development of successful brain-targeted pharmaceutics. Neurotherapeutics. 2022;19(3):942–976. doi: 10.1007/s13311-022-01228-5
  • Dong X. Current strategies for brain drug delivery. Theranostics. 2018;8(6):1481–1493. doi: 10.7150/thno.21254
  • Zhao Y, Yue P, Peng Y, et al. Recent advances in drug delivery systems for targeting brain tumors. Drug Deliv. 2023;30(1):1–18. doi: 10.1080/10717544.2022.2154409
  • Xie J, Shen Z, Anraku Y, et al. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials. 2019;224:119491. doi: 10.1016/j.biomaterials.2019.119491
  • Saraiva C, Praça C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47. doi: 10.1016/j.jconrel.2016.05.044
  • Ghosh S, Lalani R, Patel V, et al. Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opin Drug Deliv. 2019;16(12):1287–1311. doi: 10.1080/17425247.2019.1676721
  • Song Y, Hu C, Fu Y, et al. Modulating the blood–brain tumor barrier for improving drug delivery efficiency and efficacy. VIEW. 2022;3(1):20200129. doi: 10.1002/VIW.20200129
  • Langen UH, Ayloo S, Gu C. Development and cell biology of the blood-brain barrier. Annu Rev Cell Dev Biol. 2019;35(1):591–613. doi: 10.1146/annurev-cellbio-100617-062608
  • Duro-Castano A, Moreira Leite D, Forth J, et al. Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev. 2020;160:52–77. doi: 10.1016/j.addr.2020.10.001
  • Pérez-López A, Torres-Suárez AI, Martín-Sabroso C, et al. An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Adv Drug Deliv Rev. 2023 May;196:114816. doi: 10.1016/j.addr.2023.114816
  • Wu D, Chen Q, Chen X, et al. The blood–brain barrier: structure, regulation, and drug delivery. Sig Transduct Target Ther. 2023;8(1):1–27. doi: 10.1038/s41392-023-01481-w
  • Aazmi A, Zhou H, Lv W, et al. Vascularizing the brain in vitro. iScience. 2022;25(4):104110. doi: 10.1016/j.isci.2022.104110
  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53. doi: 10.1038/nrn1824
  • Pandit R, Chen L, Götz J. The blood-brain barrier: physiology and strategies for drug delivery. Adv Drug Deliv Rev. 2020;165–166:1–14. doi: 10.1016/j.addr
  • Sweeney MD, Zhao Z, Montagne A, et al. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):21–78. doi: 10.1152/physrev.00050.2017
  • Sweeney MD, Kisler K, Montagne A, et al. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci. 2018;21(10):1318–1331. doi: 10.1038/s41593-018-0234-x
  • Abbott NJ, Patabendige AAK, Dolman DEM, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25. doi: 10.1016/j.nbd.2009.07.030
  • Chow BW, Gu C. The molecular constituents of the blood–brain barrier. Trends Neurosci. 2015;38(10):598–608. doi: 10.1016/j.tins.2015.08.003
  • Jefferies WA, Brandon MR, Hunt SV, et al. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312(5990):162–163. doi: 10.1038/312162a0
  • Rhea E, Banks WA. Regulation of insulin transport across the blood-brain barrier by CNS insulin receptor signaling. Alzheimer’s Dementia. 2020;16(S3):e039508. doi: 10.1002/alz.039508
  • Banks WA. Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des. 2001;7(2):125–133. doi: 10.2174/1381612013398310
  • Candela P, Gosselet F, Saint-Pol J, et al. Apical-to-basolateral transport of amyloid-β peptides through blood-brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-Glycoprotein. J Alzheimer’s Dis. 2010;22(3):849–859. doi: 10.3233/JAD-2010-100462
  • Versele R, Corsi M, Fuso A, et al. Ketone bodies promote amyloid-β1–40 clearance in a human in vitro blood–brain barrier model. Int J Mol Sci. 2020;21(3):934. doi: 10.3390/ijms21030934
  • Sheridan E, Vercellino S, Cursi L, et al. Understanding intracellular nanoparticle trafficking fates through spatiotemporally resolved magnetic nanoparticle recovery. Nanoscale Adv. 2021;3(9):2397–2410. doi: 10.1039/D0NA01035A
  • Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi: 10.1038/s41573-020-0090-8
  • Luo M, Lee LKC, Peng B, et al. Delivering the promise of gene therapy with nanomedicines in treating central nervous system diseases. Adv Sci. 2022;9(26):2201740. doi: 10.1002/advs.202201740
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10–29. doi: 10.1002/btm2.10003
  • Hu J, Yuan X, Wang F, et al. The progress and perspective of strategies to improve tumor penetration of nanomedicines. Chin Chem Lett. 2021;32(4):1341–1347. doi: 10.1016/j.cclet.2020.11.006
  • Fullstone G, Nyberg S, Tian X, et al. From the blood to the central nervous system: a nanoparticle’s journey through the blood-brain barrier by transcytosis. Int Rev Neurobiol. 2016;130:41–72. doi: 10.1016/bs.irn.2016.06.001
  • Haqqani AS, Thom G, Burrell M, et al. Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood-brain barrier in vitro is dependent on its binding affinity. J Neurochem. 2018;146(6):735–752. doi: 10.1111/jnc.14482
  • Ruano-Salguero JS, Lee KH. Antibody transcytosis across brain endothelial-like cells occurs nonspecifically and independent of FcRn. Sci Rep. 2020;10(1):3685. doi: 10.1038/s41598-020-60438-z
  • Hervé F, Ghinea N, Scherrmann J-M. CNS delivery via adsorptive transcytosis. Aaps J. 2008;10(3):455–472. doi: 10.1208/s12248-008-9055-2
  • Patel S, Kim J, Herrera M, et al. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev. 2019;144:90–111. doi: 10.1016/j.addr.2019.08.004
  • Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748–758. doi: 10.1016/j.addr.2007.06.008
  • Haqqani EC, Stanimirovic DB. Brain delivery of therapeutics via transcytosis: types and mechanisms of vesicle-mediated transport across the BBB. In: de Lange ECM, Hammarlund-Udenaes M Thorne RG, editors. Drug delivery to the brain. AAPS Advances in the Pharmaceutical Sciences Series. Vol. 33. Cham: Springer; 2022. p. 71–91. doi: 10.1007/978-3-030-88773-5_3
  • Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009;78(1):857–902. doi: 10.1146/annurev.biochem.78.081307.110540
  • Iversen T-G, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today. 2011;6(2):176–185. doi: 10.1016/j.nantod.2011.02.003
  • Leite DM, Matias D, Battaglia G. The role of BAR proteins and the glycocalyx in brain endothelium transcytosis. Cells. 2020;9(12):2685. doi: 10.3390/cells9122685
  • Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol. 2004;5(2):121–132. doi: 10.1038/nrm1315
  • Elkin SR, Lakoduk AM, Schmid SL. Endocytic pathways and endosomal trafficking: a primer. Wien Med Wochenschr. 2016;166(7–8):196–204. doi: 10.1007/s10354-016-0432-7
  • Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci. 2019 Jan 11;12:1019. doi: 10.3389/fnins.2018.01019
  • Shajahan AN, Timblin BK, Sandoval R, et al. Role of src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem. 2004;279(19):20392–20400. doi: 10.1074/jbc.M308710200
  • Villaseñor R, Lampe J, Schwaninger M, et al. Intracellular transport and regulation of transcytosis across the blood–brain barrier. Cell Mol Life Sci. 2019;76(6):1081–1092. doi: 10.1007/s00018-018-2982-x
  • Goulatis LI, Shusta EV. Protein engineering approaches for regulating blood–brain barrier transcytosis. Curr Opin Struct Biol. 2017;45:109–115. doi: 10.1016/j.sbi.2016.12.005
  • Zuchero YJY, Chen X, Bien-Ly N, et al. Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016;89(1):70–82. doi: 10.1016/j.neuron.2015.11.024
  • Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev. 2022;181:114041. doi: 10.1016/j.addr.2021.114041
  • Tashima T. Smart strategies for therapeutic agent delivery into brain across the blood–brain barrier using receptor-mediated transcytosis. Chem Pharm Bull (Tokyo). 2020;68:316–325. doi: 10.1248/cpb.c19-00854
  • Cullen PJ, Steinberg F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol. 2018;19(11):679–696. doi: 10.1038/s41580-018-0053-7
  • Puthenveedu MA, Lauffer B, Temkin P, et al. Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains. Cell. 2010;143(5):761–773. doi: 10.1016/j.cell.2010.10.003
  • Lakadamyali M, Rust MJ, Zhuang X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell. 2006;124(5):997–1009. doi: 10.1016/j.cell.2005.12.038
  • Villaseñor R, Schilling M, Sundaresan J, et al. Sorting tubules regulate blood-brain barrier transcytosis. Cell Rep. 2017;21(11):3256–3270. doi: 10.1016/j.celrep.2017.11.055
  • Tian X, Leite DM, Scarpa E, et al. On the shuttling across the blood-brain barrier via tubule formation: mechanism and cargo avidity bias. Sci Adv. 2020;6(48):eabc4397. doi: 10.1126/sciadv.abc4397
  • Johnsen KB, Moos T. Revisiting nanoparticle technology for blood–brain barrier transport: unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release. 2016;222:32–46. doi: 10.1016/j.jconrel.2015.11.032
  • Deng H, Dutta P, Liu J. Stochastic modeling of nanoparticle internalization and expulsion through receptor-mediated transcytosis. Nanoscale. 2019;11(23):11227–11235. doi: 10.1039/C9NR02710F
  • Kim J, Park J, Kim H, et al. Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-Pdna. Biomaterials. 2013;34(29):7168–7180. doi: 10.1016/j.biomaterials.2013.05.072
  • Broadwell RD. Transcytosis of macromolecules through the blood-brain barrier: a cell biological perspective and critical appraisal. Acta Neuropathol. 1989;79(2):117–128. doi: 10.1007/BF00294368
  • Lawrence CM, Ray S, Babyonyshev M, et al. Crystal structure of the ectodomain of human transferrin receptor. Science. 1999;286(5440):779–782. doi: 10.1126/science.286.5440.779
  • Wessling-Resnick M. Crossing the iron gate: why and how transferrin receptors mediate viral entry. Annu Rev Nutr. 2018;38(1):431–458. doi: 10.1146/annurev-nutr-082117-051749
  • Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55(1):613–631. doi: 10.1146/annurev-pharmtox-010814-124852
  • Chen H, Zhou M, Zeng Y, et al. Biomimetic lipopolysaccharide-free bacterial outer membrane-functionalized nanoparticles for brain-targeted drug delivery. Adv Sci. 2022;9(16):2105854. doi: 10.1002/advs.202105854
  • Srinivasarao M, Low PS. Ligand-targeted drug delivery. Chem Rev. 2017;117(19):12133–12164. doi: 10.1021/acs.chemrev.7b00013
  • Wei X, Gao J, Zhan C, et al. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. J Control Release. 2015;218:13–21. doi: 10.1016/j.jconrel.2015.09.059
  • Wang G, Jiang Y, Xu J, et al. Unraveling the plasma protein corona by ultrasonic cavitation augments active-transporting of liposome in solid tumor. Adv Mater. 2023;35(9):2207271. doi: 10.1002/adma.202207271
  • Farshbaf M, Valizadeh H, Panahi Y, et al. The impact of protein corona on the biological behavior of targeting nanomedicines. Int J Pharm. 2022;614:121458. doi: 10.1016/j.ijpharm.2022.121458
  • Xiao W, Wang Y, Zhang H, et al. The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood–brain barrier and attenuates their targeting ability to brain tumor. Biomaterials. 2021;274:120888. doi: 10.1016/j.biomaterials.2021.120888
  • Walkey CD, Olsen JB, Guo H, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134(4):2139–2147. doi: 10.1021/ja2084338
  • Kutuzov N, Flyvbjerg H, Lauritzen M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood–brain barrier. Proc Natl Acad Sci U S A. 2018;115(40):E9429–E9438. doi: 10.1073/pnas.1802155115
  • Reitsma S, Slaaf DW, Vink H, et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch - Eur J Physiol. 2007;454(3):345–359. doi: 10.1007/s00424-007-0212-8
  • Johnsen KB, Burkhart A, Thomsen LB, et al. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol. 2019;181:101665. doi: 10.1016/j.pneurobio.2019.101665
  • Tuma PL, Hubbard AL. Transcytosis: crossing cellular barriers. Physiol Rev. 2003;83(3):871–932. doi: 10.1152/physrev.00001.2003
  • Zhu J, Li Z, Ji Z, et al. Glycocalyx is critical for blood-brain barrier integrity by suppressing caveolin1-dependent endothelial transcytosis following ischemic stroke. Brain Pathol. 2022;32(1):e13006. doi: 10.1111/bpa.13006
  • dos Santos Rodrigues B, Oue H, Banerjee A, et al. Dual functionalized liposome-mediated gene delivery across triple coculture blood brain barrier model and specific in vivo neuronal transfection. J Control Release. 2018;286:264–278. doi: 10.1016/j.jconrel.2018.07.043
  • Gu Z, Chen H, Zhao H, et al. New insight into brain disease therapy: nanomedicines-crossing blood–brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv. 2022;19(12):1618–1635. doi: 10.1080/17425247.2022.2139369
  • Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood–brain barrier. Adv Drug Deliv Rev. 2001;46(1–3):247–279. doi: 10.1016/S0169-409X(00)00139-3
  • Verma A, Stellacci F. Effect of surface properties on nanoparticles-cell interactions. Small. 2010;6(1):12–21. doi: 10.1002/smll.200901158
  • Ding H, Ma Y. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials. 2012;33(23):5798–5802. doi: 10.1016/j.biomaterials.2012.04.055
  • Ben-Zvi A, Lacoste B, Kur E, et al. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature. 2014;509(7501):507–511. doi: 10.1038/nature13324
  • Zhu Y, Jiang Y, Meng F, et al. Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell penetrating peptides. J Control Release. 2018;278:1–8. doi: 10.1016/j.jconrel.2018.03.025
  • Tylawsky DE, Kiguchi H, Vaynshteyn J, et al. P-selectin-targeted nanocarriers induce active crossing of the blood–brain barrier via caveolin-1-dependent transcytosis. Nat Mater. 2023;22(3):391–399. doi: 10.1038/s41563-023-01481-9
  • Ruan S, Zhou Y, Jiang X, et al. Rethinking CRITID procedure of brain targeting drug delivery: circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv Sci. 2021;8(9):2004025. doi: 10.1002/advs.202004025
  • Haqqani AS, Delaney CE, Brunette E, et al. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier. J Cereb Blood Flow Metab. 2018;38(4):727–740. doi: 10.1177/0271678X17740031
  • Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3(84):ra8444–ra8444. doi: 10.1126/scitranslmed.3002230
  • Wiley DT, Webster P, Gale A, et al. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci U S A. 2013;110(21):8662–8667. doi: 10.1073/pnas.1307152110
  • Karaoglu Hanzatian D, Schwartz A, Gizatullin F, et al. Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration. MAbs. 2018;10(5):765–777. doi: 10.1080/19420862.2018.1465159
  • Farrington GK, Caram-Salas N, Haqqani AS, et al. A novel platform for engineering blood-brain barrier-crossing bispecific biologics. FASEB J. 2014;28(11):4764–4778. doi: 10.1096/fj.14-253369
  • Khan NU, Ni J, Ju X, et al. Escape from abluminal LRP1-mediated clearance for boosted nanoparticle brain delivery and brain metastasis treatment. Acta Pharm Sin B. 2021;11(5):1341–1354. doi: 10.1016/j.apsb.2020.10.015
  • Muldoon LL, Pagel MA, Kroll RA, et al. A physiological barrier distal to the anatomic blood-brain barrier in a model of transvascular delivery. AJNR Am J Neuroradiol. 1999;20(2):217–22.
  • Lichota J, Skjørringe T, Thomsen LB, et al. Macromolecular drug transport into the brain using targeted therapy. J Neurochem. 2010;113(1):1–13. doi: 10.1111/j.1471-4159.2009.06544.x
  • Hynynen K. Macromolecular delivery across the blood-brain barrier. Methods Mol Biol. 2009;480:175–85. doi: 10.1007/978-1-59745-429-2_13
  • Löscher W, Gericke B. Novel intrinsic mechanisms of active drug extrusion at the blood-brain barrier: potential targets for enhancing drug delivery to the brain? Pharmaceutics. 2020;12(10):966. doi: 10.3390/pharmaceutics12100966
  • Potschka H. Targeting regulation of ABC efflux transporters in brain diseases: a novel therapeutic approach. Pharmacol Ther. 2010;125(1):118–127. doi: 10.1016/j.pharmthera.2009.10.004
  • Zheng X, Pang X, Yang P, et al. A hybrid siRNA delivery complex for enhanced brain penetration and precise amyloid plaque targeting in Alzheimer’s disease mice. Acta Biomater. 2017;49:388–401. doi: 10.1016/j.actbio.2016.11.029
  • Han B, Xie W, Zhang Y, et al. The influx/efflux mechanisms of d-peptide ligand of nAchrs across the blood–brain barrier and its therapeutic value in treating glioma. J Control Release. 2020;327:384–396. doi: 10.1016/j.jconrel.2020.08.010
  • Wang H, Wang X, Xie C, et al. Nanodisk-based glioma-targeted drug delivery enabled by a stable glycopeptide. J Control Release. 2018;284:26–38. doi: 10.1016/j.jconrel.2018.06.006
  • Wei X, Zhan C, Shen Q, et al. A D-Peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery. Angew Chem Int Ed Engl. 2015;54:3023–3027. doi: 10.1002/anie.201411226
  • Ying M, Shen Q, Zhan C, et al. A stabilized peptide ligand for multifunctional glioma targeted drug delivery. J Control Release. 2016;243:86–98. doi: 10.1016/j.jconrel.2016.09.035
  • Yu M, Su D, Yang Y, et al. D-T7 peptide modified PEGylated bilirubin nanoparticles loaded with cediranib and paclitaxel for antiangiogenesis and chemotherapy of glioma. ACS Appl Mater Interfaces. 2019;11(1):176–186. doi: 10.1021/acsami.8b16219
  • Gao H, He Q. The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opin Drug Deliv. 2014;11(3):409–420. doi: 10.1517/17425247.2014.877442
  • Owensiii D, Peppas N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102. doi: 10.1016/j.ijpharm.2005.10.010
  • Chen W-A, Chang D-Y, Chen B-M, et al. Antibodies against poly(ethylene glycol) activate innate immune cells and induce hypersensitivity reactions to PEGylated nanomedicines. ACS Nano. 2023;17(6):5757–5772. doi: 10.1021/acsnano.2c12193
  • Rabanel J-M, Faivre J, Zaouter C, et al. Nanoparticle shell structural cues drive in vitro transport properties, tissue distribution and brain accessibility in zebrafish. Biomaterials. 2021;277:121085. doi: 10.1016/j.biomaterials.2021.121085
  • Peng S, Ouyang B, Men Y, et al. Biodegradable zwitterionic polymer membrane coating endowing nanoparticles with ultra-long circulation and enhanced tumor photothermal therapy. Biomaterials. 2020;231:119680. doi: 10.1016/j.biomaterials.2019.119680
  • Liu R, Luo C, Pang Z, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett. 2023;34(2):107518. doi: 10.1016/j.cclet.2022.05.032
  • He W, Mei Q, Li J, et al. Preferential targeting cerebral ischemic lesions with cancer cell-inspired nanovehicle for ischemic stroke treatment. Nano Lett. 2021;21(7):3033–3043. doi: 10.1021/acs.nanolett.1c00231
  • He W, Li X, Morsch M, et al. Brain-targeted codelivery of Bcl-2/Bcl-xl and Mcl‑1 inhibitors by biomimetic nanoparticles for orthotopic glioblastoma therapy. ACS Nano. 2022;16(4):6293–6308. doi: 10.1021/acsnano.2c00320
  • Liu Y, Zou Y, Feng C, et al. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 2020;20(3):1637–1646. doi: 10.1021/acs.nanolett.9b04683
  • Zou Y, Liu Y, Yang Z, et al. Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv Mater. 2018;30(51):1803717. doi: 10.1002/adma.201803717
  • Yin T, Fan Q, Hu F, et al. Engineered macrophage-membrane-coated nanoparticles with enhanced PD‑1 expression induce immunomodulation for a synergistic and targeted antiglioblastoma activity. Nano Lett. 2022;22(16):6606–6614. doi: 10.1021/acs.nanolett.2c01863
  • Sun Y, Kong J, Ge X, et al. An antisense oligonucleotide-loaded blood−brain barrier penetrable nanoparticle mediating recruitment of endogenous neural stem cells for the treatment of Parkinson’s disease. ACS Nano. 2023 Mar 14;17(5):4414–4432. doi: 10.1021/acsnano.2c09752
  • Huang D, Wang Q, Cao Y, et al. Multiscale NIR-II imaging-guided brain-targeted drug delivery using engineered cell membrane nanoformulation for alzheimer’s disease therapy. ACS Nano. 2023;17(5):5033–5046. doi: 10.1021/acsnano.2c12840
  • Zhang L, Liu X, Liu D, et al. A conditionally releasable “Do not Eat Me” CD47 signal facilitates microglia-targeted drug delivery for the treatment of alzheimer’s disease. Adv Funct Mater. 2020;30(24):1910691. doi: 10.1002/adfm.201910691
  • Yang Z, Du Y, Lei L, et al. Co-delivery of ibrutinib and hydroxychloroquine by albumin nanoparticles for enhanced chemotherapy of glioma. Int J Pharm. 2023;630:122436. doi: 10.1016/j.ijpharm.2022.122436
  • Lin T, Zhao P, Jiang Y, et al. Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano. 2016;10(11):9999–10012. doi: 10.1021/acsnano.6b04268
  • Zhang Z, Guan J, Jiang Z, et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat Commun. 2019;10(1):3561. doi: 10.1038/s41467-019-11593-z
  • Huo T, Yang Y, Qian M, et al. Versatile hollow COF nanospheres via manipulating transferrin corona for precise glioma-targeted drug delivery. Biomaterials. 2020;260:120305. doi: 10.1016/j.biomaterials.2020.120305
  • Chen T, Pan F, Luo G, et al. Morphology-driven protein corona manipulation for preferential delivery of lipid nanodiscs. Nano Today. 2022;46:101609. doi: 10.1016/j.nantod.2022.101609
  • Tang Y, Gao J, Wang T, et al. The effect of drug loading and multiple administration on the protein corona formation and brain delivery property of PEG-PLA nanoparticles. Acta Pharm Sin B. 2022;12(4):2043–2056. doi: 10.1016/j.apsb.2021.09.029
  • He X, Wang X, Yang L, et al. Intelligent lesion blood–brain barrier targeting nano-missiles for Alzheimer’s disease treatment by anti-neuroinflammation and neuroprotection. Acta Pharmaceutica Sinica B. 2022;12(4):1987–1999. doi: 10.1016/j.apsb.2022.02.001
  • Lei T, Yang Z, Xia X, et al. A nanocleaner specifically penetrates the blood‒brain barrier at lesions to clean toxic proteins and regulate inflammation in Alzheimer’s disease. Acta Pharmaceutica Sinica B. 2021;11(12):4032–4044. doi: 10.1016/j.apsb.2021.04.022
  • Ni J, Miao T, Su M, et al. PSMA-targeted nanoparticles for specific penetration of blood-brain tumor barrier and combined therapy of brain metastases. J Control Release. 2021;329:934–947. doi: 10.1016/j.jconrel.2020.10.023
  • Agrawal M, Ajazuddin, Tripathi DK, et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release. 2017;260:61–77. doi: 10.1016/j.jconrel.2017.05.019
  • Jiang Y, Zhang J, Meng F, et al. Apolipoprotein E peptide-directed chimeric polymersomes mediate an ultrahigh-efficiency targeted protein therapy for glioblastoma. ACS Nano. 2018;12(11):11070–11079. doi: 10.1021/acsnano.8b05265
  • Guo Q, Zhu Q, Miao T, et al. LRP1-upregulated nanoparticles for efficiently conquering the blood-brain barrier and targetedly suppressing multifocal and infiltrative brain metastases. J Control Release. 2019;303:117–129. doi: 10.1016/j.jconrel.2019.04.031
  • Liu W, Lin Q, Fu Y, et al. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment. J Control Release. 2020;323:191–202. doi: 10.1016/j.jconrel.2019.12.010
  • Yue P, He L, Qiu S, et al. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol Cancer. 2014;13(1):191. doi: 10.1186/1476-4598-13-191
  • Liu Y, Hu Y, Guo Y, et al. Targeted imaging of activated caspase-3 in the central nervous system by a dual functional nano-device. J Control Release. 2012;163(2):203–210. doi: 10.1016/j.jconrel.2012.09.001
  • Zhang X, Chai Z, Lee Dobbins A, et al. Customized blood-brain barrier shuttle peptide to increase AAV9 vector crossing the BBB and augment transduction in the brain. Biomaterials. 2022;281:121340. doi: 10.1016/j.biomaterials.2021.121340
  • Singh S, Drude N, Blank L, et al. Protease responsive nanogels for transcytosis across the blood−brain barrier and intracellular delivery of radiopharmaceuticals to brain tumor cells. Adv Healthc Mater. 2021;10(20):2100812. doi: 10.1002/adhm.202100812
  • Yang Q, Pu W, Hu K, et al. Reactive oxygen species-responsive transformable and triple-targeting butylphthalide nanotherapy for precision treatment of ischemic stroke by normalizing the pathological microenvironment. ACS Nano. 2023;17(5):4813–4833. doi: 10.1021/acsnano.2c11363
  • Ju X, Miao T, Chen H, et al. Overcoming Mfsd2a-mediated low transcytosis to boost nanoparticle delivery to brain for chemotherapy of brain metastases. Adv Healthc Mater. 2021;10(9):2001997. doi: 10.1002/adhm.202001997
  • Guo P, Si M, Wu D, et al. Incorporation of docosahexaenoic acid (DHA) enhances nanodelivery of antiretroviral across the blood-brain barrier for treatment of HIV reservoir in brain. J Control Release. 2020;328:696–709. doi: 10.1016/j.jconrel.2020.09.050
  • Xie Y, He L, Zhang Y, et al. Wnt signaling regulates MFSD2A-dependent drug delivery through endothelial transcytosis in glioma. Neuro Oncol. 2023;25(6):1073–1084. noac288. doi: 10.1093/neuonc/noac288
  • Pandit R, Koh WK, Sullivan RKP, et al. Role for caveolin-mediated transcytosis in facilitating transport of large cargoes into the brain via ultrasound. J Control Release. 2020;327:667–675. doi: 10.1016/j.jconrel.2020.09.015
  • Park T-E, Singh B, Li H, et al. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials. 2015;38:61–71. doi: 10.1016/j.biomaterials.2014.10.068
  • Miao T, Ju X, Zhu Q, et al. Nanoparticles surmounting blood–brain tumor barrier through both transcellular and paracellular pathways to target brain metastases. Adv Funct Mater. 2019;29:1900259. doi: 10.1002/adfm.201900259
  • Pandit S, Dutta D, Nie S. Active transcytosis and new opportunities for cancer nanomedicine. Nat Mater. 2020;19(5):478–480. doi: 10.1038/s41563-020-0672-1
  • Park T-E, Kang B, Kim Y-K, et al. Selective stimulation of caveolae-mediated endocytosis by an osmotic polymannitol-based gene transporter. Biomaterials. 2012;33(29):7272–7281. doi: 10.1016/j.biomaterials.2012.06.037
  • Moscariello P, DYW N, Jansen M, et al. Brain delivery of multifunctional dendrimer protein bioconjugates. Adv Sci. 2018;5(5):1700897. doi: 10.1002/advs.201700897
  • Jiang Y, Yang W, Zhang J, et al. Protein toxin chaperoned by LRP-1-targeted virus-mimicking vesicles induces high-efficiency glioblastoma therapy in vivo. Adv Mater. 2018;30(30):1800316. doi: 10.1002/adma.201800316
  • Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci U S A. 2015;112(40):12486–12491. doi: 10.1073/pnas.1517048112
  • Cai L, Yang C, Jia W, et al. Endo/lysosome-escapable delivery depot for improving BBB transcytosis and neuron targeted therapy of Alzheimer’s disease. Adv Funct Mater. 2020;30(27):1909999. doi: 10.1002/adfm.201909999
  • Martins C, Araújo M, Malfanti A, et al. Stimuli-responsive multifunctional nanomedicine for enhanced glioblastoma chemotherapy augments multistage blood-to-brain trafficking and tumor targeting. Small. 2023 Jun;19(22):e2300029. doi: 10.1002/smll.202300029
  • He X, Xie J, Zhang J, et al. Acid-responsive dual-targeted nanoparticles encapsulated aspirin rescue the immune activation and phenotype in autism spectrum disorder. Adv Sci. 2022;9(14):2104286. doi: 10.1002/advs.202104286
  • Ding L, Zhu X, Wang Y, et al. Intracellular fate of nanoparticles with polydopamine surface engineering and a novel strategy for exocytosis-inhibiting, lysosome impairment-based cancer therapy. Nano Lett. 2017;17(11):6790–6801. doi: 10.1021/acs.nanolett.7b03021
  • Wang X, Yin S, Li M, et al. Autophagy inhibition changes the disposition of non-viral gene carriers during blood-brain barrier penetration and enhances TRAIL-induced apoptosis in brain metastatic tumor. J Control Release. 2020;321:497–508. doi: 10.1016/j.jconrel.2020.02.042
  • Ruan S, Qin L, Xiao W, et al. Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood–brain barrier transcytosis and programmed glioma targeting delivery. Adv Funct Mater. 2018;28(30):1802227. doi: 10.1002/adfm.201802227
  • Anraku Y, Kuwahara H, Fukusato Y, et al. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat Commun. 2017;8(1):1001. doi: 10.1038/s41467-017-00952-3
  • Yang T, Ferrill L, Gallant L, et al. Verapamil and riluzole cocktail liposomes overcome pharmacoresistance by inhibiting P-glycoprotein in brain endothelial and astrocyte cells: a potent approach to treat amyotrophic lateral sclerosis. Eur J Pharm Sci. 2018;120:30–39. doi: 10.1016/j.ejps.2018.04.026
  • Gomes MJ, Kennedy PJ, Martins S, et al. Delivery of siRNA silencing P-gp in peptide-functionalized nanoparticles causes efflux modulation at the blood–brain barrier. Nanomedicine (Lond). 2017;12(12):1385–1399. doi: 10.2217/nnm-2017-0023
  • Jain A, Jain A, Garg NK, et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin–methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater. 2015;24:140–151. doi: 10.1016/j.actbio.2015.06.027
  • Liu Y, Zhou X, Wang X, et al. C(rgdyk)-mediated Pluronic-PBCA nanoparticles through the blood-brain barrier to enhance the treatment of central organophosphorus intoxication. J Nanopart Res. 2020;22(11):330. doi: 10.1007/s11051-020-05039-7
  • Xie L, Lin H, Lv L, et al. Rhynchophylline-encapsulating core-shell nanoparticles to overcome blood-brain-barrier and inhibit drug efflux for efficient anti-Parkinson therapy. Appl Mater Today. 2023;30:101715. doi: 10.1016/j.apmt.2022.101715
  • Banks WA. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275–292. doi: 10.1038/nrd.2015.21
  • Johnsen KB, Bak M, Melander F, et al. Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J Control Release. 2019;295:237–249. doi: 10.1016/j.jconrel.2019.01.005
  • Butlen-Ducuing F, Pétavy F, Guizzaro L, et al. Challenges in drug development for central nervous system disorders: a European Medicines Agency perspective. Nat Rev Drug Discov. 2016;15(12):813–814. doi: 10.1038/nrd.2016.237
  • Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–150. doi: 10.1038/nrneurol.2017.188
  • Xu W, Xu M, Xiao Y, et al. Changes in target ability of nanoparticles due to protein corona composition and disease state. Asian J Pharm Sci. 2022;17(3):401–411. doi: 10.1016/j.ajps.2022.03.002
  • Yu L, Xu M, Xu W, et al. Enhanced cancer-targeted drug delivery using precoated nanoparticles. Nano Lett. 2020;20(12):8903–8911. doi: 10.1021/acs.nanolett.0c03982
  • Al-Ahmady ZS. Selective drug delivery approaches to lesioned brain through blood brain barrier disruption. Expert Opin Drug Deliv. 2018;15(4):335–349. doi: 10.1080/17425247.2018.1444601
  • Jang HL, Sengupta S. Transcellular transfer of nanomedicine. Nat Nanotech. 2019;14(8):731–732. doi: 10.1038/s41565-019-0494-y
  • Tsou Y-H, Zhang X-Q, Zhu H, et al. Drug delivery to the brain across the blood–brain barrier using nanomaterials. Small. 2017;13(43):1701921. doi: 10.1002/smll.201701921
  • Yin N, Wang Y, Cao Y, et al. A biodegradable nanocapsule for through-skull NIR-II fluorescence imaging/magnetic resonance imaging and selectively enhanced radiochemotherapy for orthotopic glioma. Nano Today. 2022;46:101619. doi: 10.1016/j.nantod.2022.101619
  • Tosi G, Musumeci T, Ruozi B, et al. The “fate” of polymeric and lipid nanoparticles for brain delivery and targeting: strategies and mechanism of blood–brain barrier crossing and trafficking into the central nervous system. J Drug Deliv Sci Technol. 2016;32:66–76. doi: 10.1016/j.jddst.2015.07.007
  • Zeng H, Qi Y, Zhang Z, et al. Nanomaterials toward the treatment of Alzheimer’s disease: recent advances and future trends. Chin Chem Lett. 2021;32(6):1857–1868. doi: 10.1016/j.cclet.2021.01.014
  • Li W, Qiu J, Li X-L, et al. BBB pathophysiology–independent delivery of siRNA in traumatic brain injury. Sci Adv. 2021;7(1):eabd6889. doi: 10.1126/sciadv.abd6889
  • Gao X, Tao W, Lu W, et al. Lectin-conjugated PEG–PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 2006;27(18):3482–3490. doi: 10.1016/j.biomaterials.2006.01.038
  • Song Q, Huang M, Yao L, et al. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano. 2014;8(3):2345–2359. doi: 10.1021/nn4058215
  • Liu R, Jia W, Wang Y, et al. Glymphatic system and subsidiary pathways drive nanoparticles away from the brain. Research (Wash D C). 2022 Mar 15:9847612. doi: 10.34133/2022/9847612
  • Shawahna R, Decleves X, Scherrmann J-M. Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes. Curr Drug Metab. 2012;14(1):120–136. doi: 10.2174/1389200211309010120
  • Boado RJ, Zhang Y, Zhang Y, et al. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnol Bioeng. 2007;96(2):381–391. doi: 10.1002/bit.21120
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: a review of FDA-Approved materials and clinical trials to date. Pharm Res. 2016 Oct;33(10):2373–[189]. doi: 10.1007/s11095-016-1958-5
  • Halwani AA. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics. 2022 Jan 3;14(1):106. doi: 10.3390/pharmaceutics14010106

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.