1,409
Views
0
CrossRef citations to date
0
Altmetric
Review

Receptor–mediated transcytosis of macromolecules across the blood–brain barrier

Pages 1699-1711 | Received 12 Jul 2023, Accepted 31 Aug 2023, Published online: 15 Sep 2023

References

  • Schlageter KE, Molnar P, Lapin GD, et al. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res. 1999 Nov;58(3):312–328. doi: 10.1038/sj.jcbfm.960002
  • Mabuchi T, Lucero J, Feng A, et al. Focal cerebral ischemia preferentially affects neurons distant from their neighboring microvessels. J Cereb Blood Flow Metab. 2005;25(2):257–266. doi: 10.1038/sj.jcbfm.9600027
  • Kutuzov N, Flyvbjerg H, Lauritzen M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood–brain barrier. Proc Nat Acad Sci. 2018;115(40):E9429–E9438. doi: 10.1073/pnas.1802155115
  • Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111–147ra111. doi: 10.1126/scitranslmed.3003748
  • Kucharz K, Kristensen K, Johnsen KB, et al. Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nat Commun. 2021 Jul 5;12(1):4121. doi: 10.1038/s41467-021-24323-1
  • Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A. 2006;103(14):5567–5572. doi: 10.1073/pnas.0509425103
  • Nance EA, Woodworth GF, Sailor KA, et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med. 2012;4(149):149ra119–149ra119. doi: 10.1126/scitranslmed.3003594
  • Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55(1):613–631. doi: 10.1146/annurev-pharmtox-010814-124852
  • Terstappen GC, Meyer AH, Bell RD, et al. Strategies for delivering therapeutics across the blood–brain barrier. Nat Rev Drug Discov. 2021 May 01;20(5):362–383. doi: 10.1038/s41573-021-00139-y
  • Pardridge WM. A historical review of brain drug delivery. Pharmaceutics. 2022;14(6):1283. doi: 10.3390/pharmaceutics14061283
  • Jefferies WA, Brandon MR, Hunt SV, et al. Transferrin receptor on endothelium of brain capillaries. Nature. 1984 Nov 01;312(5990):162–163 doi: 10.1038/312162a0
  • Fishman JB, Rubin JB, Handrahan JV, et al. Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J Neurosci Res. 1987;18(2):299–304. doi: 10.1002/jnr.490180206
  • Gatter KC, Brown G, Trowbridge IS, et al. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol. 1983;36(5):539–545. doi: 10.1136/jcp.36.5.539
  • Banerjee D, Flanagan PR, Cluett J, et al. Transferrin receptors in the human gastrointestinal tract: relationship to body iron stores. Gastroenterology. 1986;91(4):861–869. doi: 10.1016/0016-5085(86)90687-6
  • Sugo T, Terada M, Oikawa T, et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control Release. 2016 Sept 10;237:1–13. doi: 10.1016/j.jconrel.2016.06.036
  • Malecova B, Burke RS, Cochran M, et al. Targeted tissue delivery of RNA therapeutics using antibody–oligonucleotide conjugates (AOCs). Nucleic Acids Res. 2023;51(12):5901–5910. doi: 10.1093/nar/gkad415
  • Couch JA, Yu YJ, Zhang Y, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci Transl Med. 2013 May 1;5(183):183ra57, 1–12. doi: 10.1126/scitranslmed.3005338
  • Faresjö R, Sehlin D, Syvänen S. Age, dose, and binding to TfR on blood cells influence brain delivery of a TfR-transported antibody. Fluids Barriers CNS. 2023 May 11;20(1):34. doi: 10.1186/s12987-023-00435-2
  • Johnsen KB, Bak M, Melander F, et al. Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J Control Release. 2019 Feb 10;295:237–249. doi: 10.1016/j.jconrel.2019.01.005
  • Castellanos DM, Sun J, Yang J, et al. Acute and chronic dosing of a high-affinity rat/mouse chimeric transferrin receptor antibody in mice. Pharmaceutics. 2020;12(9):852. doi: 10.3390/pharmaceutics12090852
  • Moos T, Morgan EH. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood-brain barrier in the rat. J Neurochem. 2001 Oct;79(1):119–129. doi: 10.1046/j.1471-4159.2001.00541.x
  • Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011 May 25;3(84):84ra44. doi: 10.1126/scitranslmed.3002230
  • Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014 Jan 8;81(1):49–60. doi: 10.1016/j.neuron.2013.10.06
  • Hultqvist G, Syvänen S, Fang XT, et al. Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics. 2017;7(2):308–318. doi: 10.7150/thno.17155
  • Sade H, Baumgartner C, Hugenmatter A, et al., A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS One. 2014. 9(4): e96340. doi: 10.1371/journal.pone.0096340
  • Edavettal S, Cejudo-Martin P, Dasgupta B, et al. Enhanced delivery of antibodies across the blood-brain barrier via TEMs with inherent receptor-mediated phagocytosis. Med. 2022 Dec 9;3(12):860–882 e15. doi: 10.1016/j.medj.2022.09.007
  • Esparza TJ, Su S, Francescutti CM, et al. Enhanced in vivo blood brain barrier transcytosis of macromolecular cargo using an engineered ph-sensitive mouse transferrin receptor binding nanobody. Fluids and Barriers of the CNS. 2023;20(1). doi: 10.1186/s12987-023-00462-z
  • Stocki P, Szary J, Rasmussen CLM, et al. Blood-brain barrier transport using a high affinity, brain-selective VNAR antibody targeting transferrin receptor 1. FASEB J. 2021 Feb;35(2):e21172. doi: 10.1096/fj.202001787R
  • Wouters Y, Jaspers T, De Strooper B, et al. Identification and in vivo characterization of a brain-penetrating nanobody. Fluids Barriers CNS. 2020 Oct 14;17(1):62. doi: 10.1186/s12987-020-00226-z
  • Wouters Y, Jaspers T, Rué L, et al. VHHs as tools for therapeutic protein delivery to the central nervous system. Fluids Barriers CNS. 2022 Oct 03;19(1):79. doi: 10.1186/s12987-022-00374-4
  • Rué L, Jaspers T, Degors IMS, et al. Novel human/non-human primate cross-reactive anti-transferrin receptor nanobodies for brain delivery of biologics. Pharmaceutics. 2023;15(6):1748. doi: 10.3390/pharmaceutics15061748
  • Ullman JC, Arguello A, Getz JA, et al. Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci Transl Med. 2020 May 27;12(545). doi: 10.1126/scitranslmed.aay1163
  • Kariolis MS, Wells RC, Getz JA, et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med. 2020 May 27;12(545). doi: 10.1126/scitranslmed.aay1359
  • Arguello A, Mahon CS, Calvert MEK, et al. Molecular architecture determines brain delivery of a transferrin receptor–targeted lysosomal enzyme. J Exp Med. 2022;219(3). doi: 10.1084/jem.20211057
  • van Lengerich B, Zhan L, Xia D, et al. A TREM2-activating antibody with a blood–brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models. Nat Neurosci. 2023 Mar 01;26(3):416–429. doi: 10.1038/s41593-022-01240-0
  • Zuchero YJ, Chen X, Bien-Ly N, et al. Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016 Jan 6;89(1):70–82. doi: 10.1016/j.neuron.2015.11.024
  • Pornnoppadol G, Bond LG, Lucas MJ, et al. Bispecific antibody shuttles targeting CD98hc mediate efficient and long-lived brain delivery of IgGs. bioRxiv. 2023:2023.04.29.538811.
  • Chew KS, Wells RC, Moshkforoush A, et al. CD98hc is a target for brain delivery of biotherapeutics. Nat Commun. 2023 Aug 19;14(1):5053. doi: 10.1038/s41467-023-40681-4
  • Al Feteisi H, Al-Majdoub ZM, Achour B, et al. Identification and quantification of blood–brain barrier transporters in isolated rat brain microvessels. J Neurochem. 2018;146(6):670–685. doi: 10.1111/jnc.14446
  • Al-Majdoub ZM, Al Feteisi H, Achour B, et al. Proteomic quantification of human blood–brain barrier SLC and ABC transporters in healthy individuals and dementia patients. Mol Pharm. 2019 Mar 04;16(3):1220–1233. doi: 10.1021/acs.molpharmaceut.8b01189
  • Pardridge WM, Boado RJ, Farrell CR. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem. 1990;265(29):18035–18040. doi: 10.1016/S0021-9258(18)38267-X
  • Cegarra C, Chaves C, Déon C, et al. Exploring ITM2A as a new potential target for brain delivery. Fluids Barriers CNS. 2022 Mar 21;19(1):25. doi: 10.1186/s12987-022-00321-3
  • Argiriadi MA, Deng K, Egan D, et al. The use of cyclic peptide antigens to generate LRP8 specific antibodies. Front Drug Discov. 2023 January 12;2. doi: 10.3389/fddsv.2022.1093153
  • Shay TF, Sullivan EE, Ding X, et al. Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors. Sci Adv. 2023;9(16):eadg6618. doi: 10.1126/sciadv.adg6618
  • Castro Dias M, Coisne C, Lazarevic I, et al. Claudin-3-deficient C57BL/6J mice display intact brain barriers. Sci Rep. 2019 Jan 18;9(1):203. doi: 10.1038/s41598-018-36731-3
  • Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014 Sep 3;34(36):11929–11947. doi: 10.1523/JNEUROSCI.1860-14.2014
  • Munji RN, Soung AL, Weiner GA, et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nat Neurosci. 2019 Dec 01;22(11):1892–1902. doi: 10.1038/s41593-019-0497-x
  • Chen MB, Yang AC, Yousef H, et al. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep. 2020 Mar 31;30(13):4418–4432.e4. doi: 10.1016/j.celrep.2020.03.012
  • Yang AC, Vest RT, Kern F, et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature. 2022 Mar 01;603(7903):885–892. doi: 10.1038/s41586-021-04369-3
  • Villaseñor R, Schilling M, Sundaresan J, et al. Sorting tubules regulate blood-brain barrier transcytosis. Cell Rep. 2017;21(11):3256–3270. doi: 10.1016/j.celrep.2017.11.055
  • Moody PR, Sayers EJ, Magnusson JP, et al. Receptor crosslinking: a general method to trigger internalization and lysosomal targeting of therapeutic receptor:ligand complexes. Mol Ther. 2015 Dec;23(12):1888–1898. doi: 10.1038/mt.2015.178
  • Kaup M, Dassler K, Weise C, et al. Shedding of the transferrin receptor is mediated constitutively by an integral membrane metalloprotease sensitive to tumor necrosis factor α protease inhibitor-2. J Biol Chem. 2002;277(41):38494–38502. doi: 10.1074/jbc.M203461200
  • Haqqani AS, Delaney CE, Brunette E, et al. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier. J Cereb Blood Flow Metab. 2018;38(4):727–740. doi: 10.1177/0271678X17740031
  • Van Gelder W, Huijskes-Heins MIE, Van Dijk JP, et al. Quantification of different transferrin receptor pools in primary cultures of porcine blood-brain barrier endothelial cells. J Neurochem. 1995;64(6):2708–2715. doi: 10.1046/j.1471-4159.1995.64062708.x
  • Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther. 1991;259(1):66.
  • Pardridge WM, Chou T. Mathematical models of blood-brain barrier transport of monoclonal antibodies targeting the transferrin receptor and the insulin receptor. Pharmaceuticals. 2021;14(6):535. doi: 10.3390/ph14060535
  • Farrington GK, Caram-Salas N, Haqqani AS, et al. A novel platform for engineering blood-brain barrier-crossing bispecific biologics. FASEB J. 2014;28(11):4764–4778. doi: 10.1096/fj.14-253369
  • Simpson IA, Ponnuru P, Klinger ME, et al. A novel model for brain iron uptake: introducing the concept of regulation. J Cereb Blood Flow Metab. 2015;35(1):48–57. doi: 10.1038/jcbfm.2014.168
  • Bien-Ly N, Yu YJ, Bumbaca D, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med. 2014 Feb 10;211(2):233–244. doi: 10.1084/jem.20131660
  • Pardridge WM. Kinetics of blood-brain barrier transport of monoclonal antibodies targeting the insulin receptor and the transferrin receptor. Pharmaceuticals (Basel). 2021 Dec 21;15(1). doi: 10.3390/ph15010003
  • Skjørringe T, Burkhart A, Johnsen KB, et al. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 2015 June 08;8:8. doi: 10.3389/fnmol.2015.00019
  • Duck KA, Connor JR. Iron uptake and transport across physiological barriers. BioMetals. 2016 Aug 01;29(4):573–591. doi: 10.1007/s10534-016-9952-2
  • Chua G-L, Tan BC, Loke RYJ, et al. Mfsd2a utilizes a flippase mechanism to mediate omega-3 fatty acid lysolipid transport. Proc Nat Acad Sci. 2023;120(10):e2215290120. doi: 10.1073/pnas.2215290120
  • Gadkar K, Yadav DB, Zuchero JY, et al. Mathematical PKPD and safety model of bispecific TfR/BACE1 antibodies for the optimization of antibody uptake in brain. Eur J Pharm Biopharm. 2016 Apr 01;101:53–61. doi: 10.1016/j.ejpb.2016.01.009
  • Chang H-Y, Wu S, Chowdhury EA, et al. Towards a translational physiologically-based pharmacokinetic (PBPK) model for receptor-mediated transcytosis of anti-transferrin receptor monoclonal antibodies in the central nervous system. J Pharmacokinet Pharmacodyn. 2022 Jun 01;49(3):337–362. doi: 10.1007/s10928-021-09800-w
  • Sato S, Liu S, Goto A, et al. Advanced translational PBPK model for transferrin receptor-mediated drug delivery to the brain. J Control Release. 2023 May 01;357:379–393. doi: 10.1016/j.jconrel.2023.04.012
  • Maginnis MS. Virus–receptor interactions: the key to cellular invasion. J Mol Biol. 2018;430(17):2590–2611. doi: 10.1016/j.jmb.2018.06.024
  • Zhang X, He T, Chai Z, et al. Blood-brain barrier shuttle peptides enhance AAV transduction in the brain after systemic administration. Biomaterials. 2018;176:71–83. doi: 10.1016/j.biomaterials.2018.05.041
  • Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016 Feb;34(2):204–209. doi: 10.1038/nbt.3440
  • Chan KY, Jang MJ, Yoo BB, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017 Aug;20(8):1172–1179. doi: 10.1038/nn.4593
  • Hanlon KS, Meltzer JC, Buzhdygan T, et al. Selection of an efficient AAV vector for robust CNS transgene expression. Mol Ther Methods Clin Dev. 2019 Dec 13;15:320–332. doi: 10.1016/j.omtm.2019.10.007
  • Ravindra Kumar S, Miles TF, Chen X, et al. Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nat Methods. 2020 May 01;17(5):541–550. doi: 10.1038/s41592-020-0799-7
  • Nonnenmacher M, Wang W, Child MA, et al. Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol Ther Methods Clin Dev. 2021 Mar 12;20:366–378. doi: 10.1016/j.omtm.2020.12.006
  • Chuapoco MR, Flytzanis NC, Goeden N, et al. Intravenous gene transfer throughout the brain of infant Old World primates using AAV. bioRxiv. 2022:2022.01.08.475342.
  • Goertsen D, Flytzanis NC, Goeden N, et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat Neurosci. 2022 Jan;25(1):106–115. doi: 10.1038/s41593-021-00969-4
  • Chen X, Wolfe DA, Bindu DS, et al. Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates. Nat Commun. 2023 Jun 08;14(1):3345. doi: 10.1038/s41467-023-38582-7
  • Stanton AC, Lagerborg KA, Tellez L, et al. Systemic administration of novel engineered AAV capsids facilitates enhanced transgene expression in the macaque CNS. Med. 2023;4(1):31–50. e8. doi: 10.1016/j.medj.2022.11.002
  • Huang Q, Chan KY, Tobey IG, et al. Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS One. 2019;14(11):e0225206. doi: 10.1371/journal.pone.0225206
  • Hordeaux J, Wang Q, Katz N, et al. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol Ther. 2018 Mar 7;26(3):664–668. doi: 10.1016/j.ymthe.2018.01.018
  • Mathiesen SN, Lock JL, Schoderboeck L, et al. CNS transduction benefits of AAV-PHP.eB over AAV9 are dependent on administration route and mouse strain. Mol Ther Methods Clin Dev. 2020;19:447–458. doi: 10.1016/j.omtm.2020.10.011
  • Shen S, Bryant KD, Brown SM, et al. Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem. 2011;286(15):13532–13540. doi: 10.1074/jbc.M110.210922
  • Akache B, Grimm D, Pandey K, et al. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol. 2006;80(19):9831–9836. doi: 10.1128/JVI.00878-06
  • Pillay S, Zou W, Cheng F, et al. Adeno-associated Virus (AAV) serotypes have distinctive interactions with domains of the cellular AAV receptor. J Virol. 2017 Sep 15;91(18). doi: 10.1128/JVI.00391-17
  • Hudák A, Roach M, Pusztai D, et al. Syndecan-4 mediates the cellular entry of adeno-associated virus 9. Int J Mol Sci. 2023;24(4):3141. doi: 10.3390/ijms24043141
  • Ogden PJ, Kelsic ED, Sinai S, et al. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science. 2019 Nov 29;366(6469):1139–1143. doi: 10.1126/science.aaw2900
  • Bryant DH, Bashir A, Sinai S, et al. Deep diversification of an AAV capsid protein by machine learning. Nat Biotechnol. 2021 Jun;39(6):691–696. doi: 10.1038/s41587-020-00793-4
  • Foust KD, Nurre E, Montgomery CL, et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 2009 Jan 01;27(1):59–65. doi: 10.1038/nbt.1515
  • Martino RA, Wang Q, Xu H, et al. Vector affinity and receptor distribution define tissue-specific targeting in an engineered AAV capsid. J Virol. 2023;97(6):e00174–23. doi: 10.1128/jvi.00174-23
  • Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002 Jun;10(4):317–325. doi: 10.1080/10611860290031877
  • Akinc A, Querbes W, De S, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010 Jul;18(7):1357–1364. doi: 10.1038/mt.2010.85
  • Dilliard SA, Cheng Q, Siegwart DJ. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci U S A. 2021 Dec 28;118(52). doi: 10.1073/pnas.2109256118
  • Zhang Z, Guan J, Jiang Z, et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat Commun. 2019 Aug 08;10(1):3561. doi: 10.1038/s41467-019-11593-z
  • Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule Corona adsorbs on the surface. Nat Nanotechnol. 2013 Feb;8(2):137–143. doi: 10.1038/nnano.2012.237
  • Xiao W, Wang Y, Zhang H, et al. The protein Corona hampers the transcytosis of transferrin-modified nanoparticles through blood-brain barrier and attenuates their targeting ability to brain tumor. Biomaterials. 2021 Jul;274:120888. doi: 10.1016/j.biomaterials.2021.120888
  • Kaleta L, Meyer A, Ried C, et al. Albumin-modified nanoparticles carrying a targeting ligand. U.S. Patent Application. 2020:16/645,216.
  • Wiley DT, Webster P, Gale A, et al. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Nat Acad Sci. 2013;110(21):8662–8667. doi: 10.1073/pnas.1307152110
  • Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Nat Acad Sci. 2015;112(40):12486–12491. doi: 10.1073/pnas.1517048112
  • Ruan S, Qin L, Xiao W, et al. Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood–brain barrier transcytosis and programmed glioma targeting delivery. Adv Funct Mater. 2018;28(30):1802227. doi: 10.1002/adfm.201802227
  • Cai L, Yang C, Jia W, et al. Endo/Lysosome-escapable delivery depot for improving BBB transcytosis and neuron targeted therapy of Alzheimer’s disease. Adv Funct Mater. 2020;30(27):1909999. doi: 10.1002/adfm.201909999
  • Johnsen KB, Bak M, Kempen PJ, et al. Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles. Theranostics. 2018;8(12):3416–3436. doi: 10.7150/thno.25228
  • Webster CI, Hatcher J, Burrell M, et al. Enhanced delivery of IL-1 receptor antagonist to the central nervous system as a novel anti–transferrin receptor-IL-1RA fusion reverses neuropathic mechanical hypersensitivity. PAIN. 2017;158(4):660–668. doi: 10.1097/j.pain.0000000000000810
  • Yu YJ, Atwal JK, Zhang Y, et al. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci Transl Med. 2014 Nov 5;6(261):261ra154. doi: 10.1126/scitranslmed.3009835
  • Thom G, Burrell M, Haqqani AS, et al. Enhanced delivery of galanin conjugates to the brain through bioengineering of the anti-transferrin receptor antibody OX26. Mol Pharm. 2018 Apr 02;15(4):1420–1431. doi: 10.1021/acs.molpharmaceut.7b00937
  • Chang HY, Wu S, Li Y, et al. Brain pharmacokinetics of anti-transferrin receptor antibody affinity variants in rats determined using microdialysis. MAbs. 2021 Jan-Dec;13(1):1874121. doi: 10.1080/19420862.2021.1874121
  • Hede E, Christiansen CB, Heegaard CW, et al. Gene therapy to the blood–brain barrier with resulting protein secretion as a strategy for treatment of Niemann Picks type C2 disease. J Neurochem. 2021;156(3):290–308. doi: 10.1111/jnc.14982
  • Sakurai Y, Watanabe H, Nishio K, et al. pH-responsive lipid nanoparticles achieve efficient mRNA transfection in brain capillary endothelial cells. Pharmaceutics. 2022 Jul 27;14(8):1560. doi: 10.3390/pharmaceutics14081560
  • Mészáros M, Porkoláb G, Kiss L, et al. Niosomes decorated with dual ligands targeting brain endothelial transporters increase cargo penetration across the blood-brain barrier. Eur J Pharm Sci. 2018 Oct 15;123:228–240. doi: 10.1016/j.ejps.2018.07.042
  • Veszelka S, Meszaros M, Porkolab G, et al. A triple combination of targeting ligands increases the penetration of nanoparticles across a blood-brain barrier culture model. Pharmaceutics. 2021 Dec 30;14(1):86. doi: 10.3390/pharmaceutics14010086
  • Christensen SC, Hudecz D, Jensen A, et al. Basigin antibodies with capacity for drug delivery across brain endothelial cells. Mol Neurobiol. 2021 Sep;58(9):4392–4403. doi: 10.1007/s12035-021-02421-x
  • Yang AC, Stevens MY, Chen MB, et al. Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature. 2020 July 01;583(7816):425–430. doi: 10.1038/s41586-020-2453-z
  • Garcia FJ, Sun N, Lee H, et al. Single-cell dissection of the human brain vasculature. Nature. 2022 Mar 01;603(7903):893–899. doi: 10.1038/s41586-022-04521-7
  • Sun N, Akay LA, Murdock MH, et al. Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease. Nat Neurosci. 2023 Jun 01;26(6):970–982. doi: 10.1038/s41593-023-01334-3
  • Boado RJ, Pardridge WM. Glucose deprivation causes posttranscriptional enhancement of brain capillary endothelial glucose transporter gene expression via GLUT1 mRNA stabilization. J Neurochem. 1993;60(6):2290–2296. doi: 10.1111/j.1471-4159.1993.tb03516.x
  • Anraku Y, Kuwahara H, Fukusato Y, et al. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat Commun. 2017 Nov 17;8(1):1001. doi: 10.1038/s41467-017-00952-3
  • Min HS, Kim HJ, Naito M, et al. Systemic brain delivery of antisense oligonucleotides across the blood–brain barrier with a glucose-coated polymeric nanocarrier. Angew Chem. 2020;59(21):8173–8180. doi: 10.1002/anie.201914751
  • Tabebordbar M, Lagerborg KA, Stanton A, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell. 2021;184(19):4919–4938. e22. doi: 10.1016/j.cell.2021.08.028
  • Yaari Z, Da Silva D, Zinger A, et al. Theranostic barcoded nanoparticles for personalized cancer medicine. Nat Commun. 2016;7(1):13325. doi: 10.1038/ncomms13325
  • Dahlman JE, Kauffman KJ, Xing Y, et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):2060–2065. doi: 10.1073/pnas.1620874114
  • Guimaraes PP, Zhang R, Spektor R, et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J Control Release. 2019;316:404–417. doi: 10.1016/j.jconrel.2019.10.028
  • Rhym LH, Manan RS, Koller A, et al. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat Biomed Eng. 2023 May 01;7(7):901–910. doi: 10.1038/s41551-023-01030-4
  • Huang Q, Chen AT, Chan KY, et al. Targeting AAV vectors to the CNS via de novo engineered capsid-receptor interactions. bioRxiv. 2022;10:31.514553.
  • Dobrowolski C, Paunovska K, Schrader Echeverri E, et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat Nanotechnol. 2022;17(8):871–879. doi: 10.1038/s41565-022-01146-9
  • Sago CD, Lokugamage MP, Paunovska K, et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc Nat Acad Sci. 2018;115(42):E9944–E9952. doi: 10.1073/pnas.1811276115
  • Da Silva Sanchez AJ, Dobrowolski C, Cristian A, et al. Universal barcoding predicts in vivo apoe-independent lipid nanoparticle delivery. Nano Lett. 2022;22(12):4822–4830. doi: 10.1021/acs.nanolett.2c01133
  • Ertl HC. Immunogenicity and toxicity of AAV gene therapy. Front Immunol. 2022;13:975803. doi: 10.3389/fimmu.2022.975803
  • Qiu M, Tang Y, Chen J, et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc Nat Acad Sci. 2022;119(8):e2116271119. doi: 10.1073/pnas.2116271119
  • Wroblewska A, Dhainaut M, Ben-Zvi B, et al. Protein barcodes enable high-dimensional single-cell CRISPR screens. Cell. 2018;175(4):1141–1155.e16. doi: 10.1016/j.cell.2018.09.022
  • Vorbrodt AW. Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J Neurocytol. 1989 Jun;18(3):359–368. doi: 10.1007/BF01190839
  • Jiang C, Koyabu N, Yonemitsu Y, et al. In vivo delivery of glial cell-derived neurotrophic factor across the blood-brain barrier by gene transfer into brain capillary endothelial cells. Hum Gene Ther. 2003;14(12):1181–1191. doi: 10.1089/104303403322168019
  • Thomsen LB, Lichota J, Kim KS, et al. Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion. J Control Release. 2011 Apr 10;151(1):45–50. doi: 10.1016/j.jconrel.2011.01.002
  • Burkhart A, Andresen TL, Aigner A, et al. Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain. Cell Mol Life Sci. 2017 July 01;74(13):2467–2485. doi: 10.1007/s00018-017-2501-5
  • Chen YH, Chang M, Davidson BL. Molecular signatures of disease brain endothelia provide new sites for CNS-directed enzyme therapy. Nat Med. 2009;15(10):1215–1218. doi: 10.1038/nm.2025
  • Chen YH, Claflin K, Geoghegan JC, et al. Sialic acid deposition impairs the utility of AAV9, but not peptide-modified AAVs for brain gene therapy in a mouse model of lysosomal storage disease. Mol Ther. 2012;20(7):1393–1399. doi: 10.1038/mt.2012.100
  • Körbelin J, Dogbevia G, Michelfelder S, et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol Med. 2016;8(6):609–625. doi: 10.15252/emmm.201506078
  • Krolak T, Chan KY, Kaplan L, et al. A high-efficiency AAV for endothelial cell transduction throughout the central nervous system. Nature Cardiovasc Res. 2022;1(4):389–400. doi: 10.1038/s44161-022-00046-4
  • Atwal JK, Chen Y, Chiu C, et al. A therapeutic antibody targeting BACE1 inhibits amyloid-beta production in vivo. Sci Transl Med. 2011 May 25;3(84):84ra43. doi: 10.1126/scitranslmed.3002254
  • Boado RJ, Zhou Q-H, Lu JZ, et al. Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor. Mol Pharm. 2010;7(1):237–244. doi: 10.1021/mp900235k
  • Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000 Aug 01;6(8):916–919. doi: 10.1038/78682

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.