773
Views
0
CrossRef citations to date
0
Altmetric
Review

Strategies for overcoming the biological barriers associated with the administration of inhaled monoclonal antibodies for lung diseases

, , , ORCID Icon & ORCID Icon
Pages 1085-1095 | Received 04 Jul 2023, Accepted 14 Sep 2023, Published online: 18 Sep 2023

References

  • Rogliani P, Calzetta L, Matera MG, et al. Severe asthma and biological therapy: when, which, and for whom. Pulm Ther. 2020;6(1):47–66. doi: 10.1007/s41030-019-00109-1
  • Matera MG, Calzetta L, Cazzola M, et al. Biologic therapies for chronic obstructive pulmonary disease. Expert Opin Biol Ther. 2023;23(2):163–173. doi: 10.1080/14712598.2022.2160238
  • Esposito S, Amirthalingam G, Bassetti M, et al. Monoclonal antibodies for prophylaxis and therapy of respiratory syncytial virus, SARS-CoV-2, human immunodeficiency virus, rabies and bacterial infections: an update from the world association of infectious diseases and immunological disorders and the Italian society of antinfective therapy. Front Immunol. 2023;14:1162342.
  • Tamimi A, Tamimi A, Sorkheh F, et al. Monoclonal antibodies for the treatment of squamous cell carcinoma: a literature review. Cancer Rep (Hoboken). 2023;6(5):e1802. doi: 10.1002/cnr2.1802
  • Rocco D, Della Gravara L, Battiloro C, et al. Recently approved and emerging monoclonal antibody immune checkpoint inhibitors for treating advanced non-small cell lung cancer. Expert Opin Biol Ther. 2023;23(3):261–268. doi: 10.1080/14712598.2023.2183116
  • Matera MG, Calzetta L, Rogliani P, et al. Monoclonal antibodies for severe asthma: pharmacokinetic profiles. Respir med. 2019;153:3–13. doi: 10.1016/j.rmed.2019.05.005
  • Cruz-Teran C, Tiruthani K, McSweeney M, et al. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev. 2021;169:100–117. doi: 10.1016/j.addr.2020.12.004
  • Hansel TT, Kropshofer H, Singer T, et al. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9(4):325–338. doi: 10.1038/nrd3003
  • Maillet A, Guilleminault L, Lemarié E, et al. The airways, a novel route for delivering monoclonal antibodies to treat lung tumors. Pharm Res. 2011;28(9):2147–2156. doi: 10.1007/s11095-011-0442-5
  • Guilleminault L, Azzopardi N, Arnoult C, et al. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. J Control Release. 2014;196:344–354. doi: 10.1016/j.jconrel.2014.10.003
  • Tomkinson A, Tepper J, Morton M, et al. Inhaled vs subcutaneous effects of a dual IL-4/IL-13 antagonist in a monkey model of asthma. Allergy. 2010;65(1):69–77. doi: 10.1111/j.1398-9995.2009.02156.x
  • Borghardt JM, Kloft C, Sharma A. Inhaled therapy in respiratory disease: the complex interplay of pulmonary kinetic processes. Can Respir J. 2018;2018:2732017. doi: 10.1155/2018/2732017
  • Desoubeaux G, Reichert JM, Sleeman M, et al. Therapeutic monoclonal antibodies for respiratory diseases: current challenges and perspectives, March 31 - April 1, 2016, tours, France. MAbs. 2016;8(6):999–1009. doi: 10.1080/19420862.2016.1196521
  • Matera MG, Page C, Rogliani P, et al. Therapeutic monoclonal antibodies for the treatment of chronic obstructive pulmonary disease. Drugs. 2016;76(13):1257–1270. doi: 10.1007/s40265-016-0625-9
  • Osman N, Kaneko K, Carini V, et al. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv. 2018;15(8):821–834. doi: 10.1080/17425247.2018.1502267
  • Liang W, Pan HW, Vllasaliu D, et al. Pulmonary delivery of biological drugs. Pharmaceutics. 2020; 12(11):E1025. doi: 10.3390/pharmaceutics12111025
  • Plaunt AJ, Nguyen TL, Corboz MR, et al. Strategies to overcome biological barriers associated with pulmonary drug delivery. Pharmaceutics. 2022; 14(2):302. doi: 10.3390/pharmaceutics14020302
  • Ray A, Mandal A, Mitra AK. Recent patents in pulmonary delivery of macromolecules. Recent Pat Drug Deliv Formul. 2015;9(3):225–236. doi: 10.2174/1872211309666150729122231
  • Gopallawa I, Dehinwal R, Bhatia V, et al. A four-part guide to lung immunology: invasion, inflammation, immunity, and intervention. Front Immunol. 2023;14:1119564. doi: 10.3389/fimmu.2023.1119564
  • Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res. 2001;2(1):33–46. doi: 10.1186/rr36
  • Hou F, Xiao K, Tang L, et al. Diversity of macrophages in lung homeostasis and diseases. Front Immunol. 2021;12:753940. doi: 10.3389/fimmu.2021.753940
  • Shi T, Denney L, An H, et al. Alveolar and lung interstitial macrophages: definitions, functions, and roles in lung fibrosis. J Leukocyte Biol. 2021;110(1):107–114. doi: 10.1002/JLB.3RU0720-418R
  • Lombry C, Edwards DA, Préat V, et al. Alveolar macrophages are a primary barrier to pulmonary absorption of macromolecules. Am J Physiol Lung Cell Mol Physiol. 2004;286(5):L1002–L1008. doi: 10.1152/ajplung.00260.2003
  • Sécher T, Mayor A, Heuzé-Vourc’h N. Inhalation of immuno-therapeutics/-prophylactics to fight respiratory tract infections: an appropriate drug at the right place! Front Immunol. 2019;10:2760. doi: 10.3389/fimmu.2019.02760
  • Respaud R, Marchand D, Parent C, et al. Effect of formulation on the stability and aerosol performance of a nebulized antibody. MAbs. 2014;6(5):1347–1355. doi: 10.4161/mabs.29938
  • Newman SP. Drug delivery to the lungs: challenges and opportunities. Ther Deliv. 2017;8(8):647–661. doi: 10.4155/tde-2017-0037
  • Spiekermann GM, Finn PW, Ward ES, et al. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med. 2002;196(3):303–310. doi: 10.1084/jem.20020400
  • Bitonti AJ, Dumont JA, Low SC, et al. Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway. Proc Natl Acad Sci U S A. 2004;101(26):9763–9768. doi: 10.1073/pnas.0403235101
  • Patton JS, Brain JD, Davies LA, et al. The particle has landed—characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulm Drug Deliv. 2010;23 Suppl 2(S2):S71–S87. doi: 10.1089/jamp.2010.0836
  • Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. Lancet Respir Med. 2013;1(5):402–413. doi: 10.1016/S2213-2600(13)70072-9
  • Ghadiri M, Young PM, Traini D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics. 2019;11(3):113. doi: 10.3390/pharmaceutics11030113
  • Man F, Tang J, Swedrowska M, et al. Imaging drug delivery to the lungs: methods and applications in oncology. Adv Drug Deliv Rev. 2023;192:114641. doi: 10.1016/j.addr.2022.114641
  • Matthews AA, Ee PLR, Ge R. Developing inhaled protein therapeutics for lung diseases. Mol Biomed. 2020;1(1):11. doi: 10.1186/s43556-020-00014-z
  • Ferrati S, Wu T, Kanapuram SR, et al. Dosing considerations for inhaled biologics. Int J Pharm. 2018;549(1–2):58–66. doi: 10.1016/j.ijpharm.2018.07.054
  • Kim KJ, Malik AB. Protein transport across the lung epithelial barrier. Am J Physiol Lung Cell Mol Physiol. 2003;284(2):L247–L259. doi: 10.1152/ajplung.00235.2002
  • Vonarburg C, Loetscher M, Spycher MO, et al. Topical application of nebulized human IgG, IgA and IgAM in the lungs of rats and non-human primates. Respir Res. 2019;20(1):99. doi: 10.1186/s12931-019-1057-3
  • Ruge CA, Schaefer UF, Herrmann J, et al. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLoS One. 2012;7(7):e40775. doi: 10.1371/journal.pone.0040775
  • Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1(4):338–344. doi: 10.1513/pats.200409-049TA
  • Zheng J, Zheng Y, Chen J, et al. Enhanced pulmonary absorption of recombinant human insulin by pulmonary surfactant and phospholipid hexadecanol tyloxapol through calu-3 monolayers. Pharmazie. 2012;67(5):448–451.
  • Zhang R, Qin X, Kong F, et al. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv. 2019;26(1):328–342. doi: 10.1080/10717544.2019.1582730
  • Bodier-Montagutelli E, Mayor A, Vecellio L, et al. Designing inhaled protein therapeutics for topical lung delivery: what are the next steps? Expert Opin Drug Deliv. 2018;15(8):729–736. doi: 10.1080/17425247.2018.1503251
  • Siekmeier R, Scheuch G. Systemic treatment by inhalation of macromolecules–principles, problems, and examples. J Physiol Pharmacol. 2008;59(Suppl 6):53–79.
  • Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588–599. doi: 10.1046/j.1365-2125.2003.01892.x
  • Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74. doi: 10.1038/nrd2153
  • Andrade F, Videira M, Ferreira D, et al. Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine (Lond). 2011;6(1):123–141. doi: 10.2217/nnm.10.143
  • Fröhlich E, Salar-Behzadi S. Oral inhalation for delivery of proteins and peptides to the lungs. Eur J Pharm Biopharm. 2021;163:198–211.
  • Kastelik JA, Thompson RH, Aziz I, et al. Sex-related differences in cough reflex sensitivity in patients with chronic cough. Am J Respir Crit Care Med. 2002;166(7):961–964. doi: 10.1164/rccm.2109061
  • Geller DE, Nasr SZ, Piggott S, et al. Tobramycin inhalation powder in cystic fibrosis patients: response by age group. Respir Care. 2014;59(3):388–398. doi: 10.4187/respcare.02264
  • Ebihara S, Ebihara T, Kohzuki M. Effect of aging on cough and swallowing reflexes: implications for preventing aspiration pneumonia. Lung. 2012;190(1):29–33. doi: 10.1007/s00408-011-9334-z
  • Respaud R, Vecellio L, Diot P, et al. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin Drug Deliv. 2015;12(6):1027–1039. doi: 10.1517/17425247.2015.999039
  • Bodier-Montagutelli E, Respaud R, Perret G, et al. Protein stability during nebulization: mind the collection step! Eur J Pharm Biopharm. 2020;152:23–34. doi: 10.1016/j.ejpb.2020.04.006
  • Narang A, Krause M, Pizzarro S, et al. Biologic drug substance and drug product manufacture. In: Hickey A Rocha S, editors. Pharmaceutical inhalation aerosol technology. Boca Raton (FL): CRC Press; 2019. p. 206–232. doi: 10.1201/9780429055201-8
  • Niven RW, Prestrelski SJ, Treuheit MJ, et al. Protein nebulization.2. Stabilization of G-CSF to air-jet nebulization and the role of protectants. International Journal Of Pharmaceutics. 1996;127(2):191–201. doi: 10.1016/0378-5173(95)04209-1
  • Niven RW, Ip AY, Mittelman SD, et al. Protein nebulization: I. stability of lactate dehydrogenase and recombinant granulocyte-colony stimulating factor to air-jet nebulization. Int J Pharm. 1994;109(1):17–26. doi: 10.1016/0378-5173(94)90117-1
  • Parray HA, Shukla S, Perween R, et al. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Appl Microbiol Biotechnol. 2021;105(16–17):6315–6332. doi: 10.1007/s00253-021-11488-4
  • Pritchard JN, Hatley RH, Denyer J, et al. Mesh nebulizers have become the first choice for new nebulized pharmaceutical drug developments. Ther Deliv. 2018;9(2):121–136. doi: 10.4155/tde-2017-0102
  • Pleasants RA, Hess DR. Aerosol delivery devices for obstructive lung diseases. Respir Care. 2018;63(6):708–733. doi: 10.4187/respcare.06290
  • Arı A. Jet, ultrasonic, and mesh nebulisers: an evaluation of nebulizers for better clinical outcomes. Eurasian J Pulmonol. 2014;16(1):1–7. doi: 10.5152/ejp.2014.00087
  • Rangaraj N, Pailla SR, Sampathi S. Insight into pulmonary drug delivery: mechanism of drug deposition to device characterization and regulatory requirements. Pulm Pharmacol Ther. 2019;54:1–21. doi: 10.1016/j.pupt.2018.11.004
  • Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005;50(9):1209–1227.
  • Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022. doi: 10.1007/s11095-007-9475-1
  • Brunaugh AD, Ding L, Wu T, et al. Identification of stability constraints in the particle engineering of an inhaled monoclonal antibody dried powder. J Pharm Sci. 2022;111(2):403–416. doi: 10.1016/j.xphs.2021.08.022
  • Faghihi H, Najafabadi AR, Vatanara A. Optimization and characterization of spray-dried IgG formulations: a design of experiment approach. DARU, J Pharm Sci. 2017;25(1):22. doi: 10.1186/s40199-017-0187-8
  • Morgan BA, Manser M, Jeyanathan M, et al. Effect of shear stresses on adenovirus activity and aggregation during atomization to produce thermally stable vaccines by spray drying. ACS Biomater Sci Eng. 2020;6(7):4304–4313. doi: 10.1021/acsbiomaterials.0c00317
  • Dao HM, Sahakijpijarn S, Chrostowski RR, et al. Aggregation of lactoferrin caused by droplet atomization process via a two-fluid nozzle: the detrimental effect of air-water interfaces. Mol Pharm. 2022;19(7):2662–2675. doi: 10.1021/acs.molpharmaceut.2c00358
  • Perodeau J, Arbogast LW, Nieuwkoop AJ. Solid-state NMR characterization of lyophilized formulations of monoclonal antibody therapeutics. Mol Pharm. 2023; 20(3):1480–1489. doi: 10.1021/acs.molpharmaceut.2c00676
  • Hickey AJ, Stewart IE. Inhaled antibodies: quality and performance considerations. Hum Vaccin Immunother. 2022; 18(2):1940650. doi: 10.1080/21645515.2021.1940650
  • Hickey A. Complexity in pharmaceutical powders for inhalation: a perspective. Kona. 2018;35:3–13. doi: 10.14356/kona.2018007
  • Chow MYT, Pan HW, Seow HC, et al. Inhalable neutralizing antibodies - promising approach to combating respiratory viral infections. Trends Pharmacol Sci. 2023; 44(2):85–97. doi: 10.1016/j.tips.2022.11.006
  • Fathe K, Ferrati S, Moraga-Espinoza D, et al. Inhaled biologics: from preclinical to product approval. Curr Pharm Des. 2016;22(17):2501–2521. doi: 10.2174/1381612822666160210142910
  • Liao YH, Brown MB, Jones SA, et al. The effects of polyvinyl alcohol on the in vitro stability and delivery of spray-dried protein particles from surfactant-free HFA 134a-based pressurised metered dose inhalers. Int J Pharm. 2005;304(1–2):29–39. doi: 10.1016/j.ijpharm.2005.07.013
  • Li HY, Seville PC. Novel pMDI formulations for pulmonary delivery of proteins. Int J Pharm. 2010;385(1–2):73–78. doi: 10.1016/j.ijpharm.2009.10.032
  • Wang W, Singh S, Zeng DL, et al. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96(1):1–26. doi: 10.1002/jps.20727
  • Le Basle Y, Chennell P, Tokhadze N, et al. Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci. 2020; 109(1):169–190. doi: 10.1016/j.xphs.2019.08.009
  • Chennamsetty N, Voynov V, Kayser V, et al. Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A. 2009;106(29):11937–11942. doi: 10.1073/pnas.0904191106
  • Mayor A, Thibert B, Huille S, et al. Inhaled IgG1 antibodies: the buffering system is an important driver of stability during mesh-nebulization. Eur J Pharm Biopharm. 2022;181:173–182. doi: 10.1016/j.ejpb.2022.11.006
  • Deuschle FC, Ilyukhina E, Skerra A. Anticalin® proteins: from bench to bedside. Expert Opin Biol Ther. 2021; 21(4):509–518. doi: 10.1080/14712598.2021.1839046
  • Nelson AL. Antibody fragments: hope and hype. MAbs. 2010;2(1):77–83. doi: 10.4161/mabs.2.1.10786
  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82(1):775–797. doi: 10.1146/annurev-biochem-063011-092449
  • Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today. 2016;21(7):1076–1113. doi: 10.1016/j.drudis.2016.04.003
  • Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014;75:81–91. doi: 10.1016/j.addr.2014.05.017
  • Patil HP, Freches D, Karmani L, et al. Fate of PEGylated antibody fragments following delivery to the lungs: influence of delivery site, PEG size and lung inflammation. J Control Release. 2018;272:62–71. doi: 10.1016/j.jconrel.2017.12.009
  • Matera MG, Calzetta L, Ora J, et al. Pharmacokinetic/Pharmacodynamic approaches to drug delivery design for inhalation drugs. Expert Opin Drug Deliv. 2021;18(7):891–906. doi: 10.1080/17425247.2021.1873271
  • Olsson B, Bondesson E, Borgström L. Pulmonary drug metabolism, clearance, and absorption. In: Smyth H Hickey A editors. Controlled pulmonary drug delivery. (NY): Springer; 2011. p. 21–50. doi: 10.1007/978-1-4419-9745-6_2
  • Guillon A, Sécher T, Dailey LA, et al. Insights on animal models to investigate inhalation therapy: relevance for biotherapeutics. Int J Pharm. 2018;536(1):116–126. doi: 10.1016/j.ijpharm.2017.11.049
  • Guillon A, Pardessus J, Lhommet P, et al. Exploring the fate of inhaled monoclonal antibody in the lung parenchyma by microdialysis. MAbs. 2019;11(2):297–304. doi: 10.1080/19420862.2018.1556081
  • Röhm M, Carle S, Maigler F, et al. A comprehensive screening platform for aerosolizable protein formulations for intranasal and pulmonary drug delivery. Int J Pharm. 2017;532(1):537–546. doi: 10.1016/j.ijpharm.2017.09.027
  • Benam KH, Novak R, Nawroth J, et al. Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst. 2016;3(5):456–466. doi: 10.1016/j.cels.2016.10.003
  • Food and Drug Administration. Guidance for industry–estimating the maximum safe dose in initial clinical trials for therapeutics in adult healthy volunteers. 2005. http://www.fda.gov/downloads/Drugs/Guidances/UCM078932.pdf
  • Tibbitts J, Cavagnaro JA, Haller CA, et al. Practical approaches to dose selection for first-in-human clinical trials with novel biopharmaceuticals. Regul Toxicol Pharmacol. 2010;58(2):243–251. doi: 10.1016/j.yrtph.2010.06.007
  • Benam KH, Novak R, Nawroth J, et al. Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing cung chip. Cell Syst. 2016;3(5):456–466.e4. doi: 10.1016/j.cels.2016.10.003
  • Sengupta A, Dorn A, Jamshidi M, et al. A multiplex inhalation platform to model in situ like aerosol delivery in a breathing lung-on-chip. Front Pharmacol. 2023;14:1114739. doi: 10.3389/fphar.2023.1114739
  • Wolff RK. Perspectives on lung dose and inhaled biomolecules. Toxicol Pathol. 2021;49(2):378–385. doi: 10.1177/0192623320946297
  • Laitano R, Calzetta L, Cavalli F, et al. Delivering monoclonal antibodies via inhalation: a systematic review of clinical trials in asthma and COPD. Expert Opin Drug Deliv. 2023; 1–14. doi: 10.1080/17425247.2023.2228681
  • Humbert M, Busse W, Hanania NA, et al. Omalizumab in asthma: an update on recent developments. J Allergy Clin Immunol Pract. 2014;2(5):525–536. doi: 10.1016/j.jaip.2014.03.010
  • Fahy JV, Cockcroft DW, Boulet LP, et al. Effect of aerosolized anti-IgE (E25) on airway responses to inhaled allergen in asthmatic subjects. Am J Respir Crit Care Med. 1999;160(3):1023–1027. doi: 10.1164/ajrccm.160.3.9810012
  • Hacha J, Tomlinson K, Maertens L, et al. Nebulized anti-IL-13 monoclonal antibody Fab’ fragment reduces allergen-induced asthma. Am J Respir Cell Mol Biol. 2012;47(5):709–717. doi: 10.1165/rcmb.2012-0031OC
  • Lightwood D, Tservistas M, Zehentleitner M, et al. Efficacy of an inhaled IL-13 antibody fragment in a model of chronic asthma. Am J Respir Crit Care Med. 2018;198(5):610–619. doi: 10.1164/rccm.201712-2382OC
  • Burgess G, Boyce M, Jones M, et al. Randomized study of the safety and pharmacodynamics of inhaled interleukin-13 monoclonal antibody fragment VR942. EBioMedicine. 2018;35:67–75. doi: 10.1016/j.ebiom.2018.07.035
  • Gauvreau GM, Hohlfeld JM, FitzGerald JM, et al. Inhaled anti-TSLP antibody fragment, ecleralimab, blocks responses to allergen in mild asthma. Eur Respir J. 2023;61(3):2201193. doi: 10.1183/13993003.01193-2022
  • Semlali A, Jacques E, Koussih L, et al. Thymic stromal lymphopoietin-induced human asthmatic airway epithelial cell proliferation through an IL-13-dependent pathway. J Allergy Clin Immunol. 2010;125(4):844–850. doi: 10.1016/j.jaci.2010.01.044

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.