1,611
Views
0
CrossRef citations to date
0
Altmetric
Review

Inhalation delivery of nucleic acid gene therapies in preclinical drug development

, , , , , & ORCID Icon show all
Pages 1097-1113 | Received 21 Jul 2023, Accepted 18 Sep 2023, Published online: 24 Sep 2023

References

  • High KA. Turning genes into medicines—what have we learned from gene therapy drug development in the past decade? Nat Commun. 2020;11(1):5821. doi: 10.1038/s41467-020-19507-0
  • Gottlieb S. Statement from FDA commissioner Scott Gottlieb, M.D. and Peter Marks, M.D., Ph.D., director of the center for biologics Evaluation and research on new policies to advance development of safe and effective cell and gene therapies [Internet]. FDA; 2019 [cited 2023 Apr 25]. Available from: https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-peter-marks-md-phd-director-center-biologics
  • FDA Office of Tissues and Advanced Therapies (OTAT). Approved cellular and gene therapy products [Internet]. FDA. FDA; 2023 [cited 2023 Apr 25]. Available from: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products
  • Becerra X. Food and Drug administration: statement of organization, functions, and delegations of authority. Fed Regist. 2022;87:58806–58807.
  • Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs). Guidance for industry. Docket Number 2008-D-0205. [Internet]. U.S. Departent of Health and Human Services, Food and Drug Adminstration. Center for Biologics Evaluation and Research; 2020 [cited 2023 Apr 18]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/chemistry-manufacturing-and-control-cmc-information-human-gene-therapy-investigational-new-drug
  • Zogg H, Singh R, Ro S. Current advances in RNA therapeutics for human diseases. Int J Mol Sci. 2022;23(5):2736. doi: 10.3390/ijms23052736
  • Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23:265–280.
  • Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. Drug Deliv Res Eur. 2012;161:554–565. doi: 10.1016/j.jconrel.2011.11.014
  • Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–694. doi: 10.1038/s41573-020-0075-7
  • Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):101. doi: 10.1038/s41392-020-0207-x
  • Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202. doi: 10.1038/nrd.2016.199
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–222. doi: 10.1038/nrd.2016.246
  • Chow MYT, Qiu Y, Lam JKW. Inhaled RNA therapy: from promise to reality. Trends Pharmacol Sci. 2020;41:715–729.
  • Bulcha JT, Wang Y, Ma H, et al. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6(1):53. doi: 10.1038/s41392-021-00487-6
  • McCarron A, Cmielewski P, Drysdale V, et al. Effective viral-mediated lung gene therapy: is airway surface preparation necessary? Gene Ther. 2023;30(6):469–477. doi: 10.1038/s41434-022-00332-7
  • Srivastava A, Mallela KMG, Deorkar N, et al. Manufacturing challenges and rational formulation development for AAV viral vectors. J Pharm Sci. 2021;110(7):2609–2624. doi: 10.1016/j.xphs.2021.03.024
  • Wang H, Qin L, Zhang X, et al. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Controlled Release. 2022;352:970–993. doi: 10.1016/j.jconrel.2022.10.061
  • Huang T, Gao J, Cai L, et al. Treating pulmonary fibrosis with non-viral gene therapy: from bench to bedside. Pharmaceutics. 2022;14(4):813. doi: 10.3390/pharmaceutics14040813
  • Chuan D, Jin T, Fan R, et al. Chitosan for gene delivery: methods for improvement and applications. Adv Colloid Interface Sci. 2019;268:25–38. doi: 10.1016/j.cis.2019.03.007
  • Hopkins C, Javius-Jones K, Wang Y, et al. Combinations of chemo-, immuno-, and gene therapies using nanocarriers as a multifunctional drug platform. Expert Opin Drug Deliv. 2022;19(10):1337–1349. doi: 10.1080/17425247.2022.2112569
  • Burdett T, Nuseibeh S. Changing trends in the development of AAV-based gene therapies: a meta-analysis of past and present therapies. Gene Ther. 2023;30(3–4):323–335. doi: 10.1038/s41434-022-00363-0
  • Gautam A, Waldrep JC, Densmore CL. Aerosol gene therapy. Mol Biotechnol. 2003;23:51–60. doi: 10.1385/MB:23:1:51
  • Sui H, Xu X, Su Y, et al. Gene therapy for cystic fibrosis: challenges and prospects. Front Pharmacol. 2022;13:1015926. doi: 10.3389/fphar.2022.1015926
  • Cooney A, McCray P, Sinn P. Cystic fibrosis gene therapy: looking back, looking forward. Genes. 2018;9(11):538. doi: 10.3390/genes9110538
  • Rowe SM, Zuckerman JB, Dorgan D, et al. Inhaled mRNA therapy for treatment of cystic fibrosis: interim results of a randomized, double-blind, placebo-controlled phase 1/2 clinical study. J Cyst Fibros Off J Eur Cyst Fibros Soc. 2023;22(4):656–664. S1569-1993(23)00112-1. doi: 10.1016/j.jcf.2023.04.008
  • Tepper JS, Kuehl PJ, Cracknell S, et al. Symposium summary: “breathe in, breathe out, its easy: what you need to know about developing inhaled drugs. Int J Toxicol. 2016;35(4):376–392. doi: 10.1177/1091581815624080
  • Preclinical Assessment of Investigational Cellular and Gene Therapy Products. Docket number FDA-2012-D-1038. [Internet]. U.S. Departent of Health and Human Services, Food and Drug Adminstration. Center for Biologics Evaluation and Research; 2019 [cited 2023 May 1]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/preclinical-assessment-investigational-cellular-and-gene-therapy-products
  • Ehrmann S, Schmid O, Darquenne C, et al. Innovative preclinical models for pulmonary drug delivery research. Expert Opin Drug Deliv. 2020;17(4):463–478. doi: 10.1080/17425247.2020.1730807
  • Selo MA, Sake JA, Kim KJ, et al. In vitro and ex vivo models in inhalation biopharmaceutical research — advances, challenges and future perspectives. Adv Drug Deliv Rev. 2021;177:113862. doi: 10.1016/j.addr.2021.113862
  • Ramamurthy RM, Atala A, Porada CD, et al. Organoids and microphysiological systems: promising models for accelerating AAV gene therapy studies. Front Immunol. 2022;13:1011143. doi: 10.3389/fimmu.2022.1011143
  • Stein SW, Thiel CG. The history of therapeutic aerosols: a chronological review. J Aerosol Med Pulm Drug Deliv. 2016;30:20–41. doi: 10.1089/jamp.2016.1297
  • Pires Ferreira D, Gruntman AM, Flotte TR. Gene therapy for alpha-1 antitrypsin deficiency: an update. Expert Opin Biol Ther. 2023;23(3):283–291. doi: 10.1080/14712598.2023.2183771
  • El-Husseini ZW, Gosens R, Dekker F, et al. The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir Med. 2020;8(10):1045–1056. doi: 10.1016/S2213-2600(20)30363-5
  • Lee WH, Loo CY, Ghadiri M, et al. The potential to treat lung cancer via inhalation of repurposed drugs. Adv Drug Deliv Rev. 2018;133:107–130. doi: 10.1016/j.addr.2018.08.012
  • Martin AR, Moore CP, Finlay WH. Models of deposition, pharmacokinetics, and intersubject variability in respiratory drug delivery. Expert Opin Drug Deliv. 2018;15(12):1175–1188. doi: 10.1080/17425247.2018.1544616
  • Ruge CC, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. Lancet Respir Med. 2013;1:402–413. doi: 10.1016/S2213-2600(13)70072-9
  • Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014;75:81–91. doi: 10.1016/j.addr.2014.05.017
  • Hastedt JE, Bäckman P, Clark AR, et al. Scope and relevance of a pulmonary biopharmaceutical classification system AAPS/FDA/USP workshop March 16-17th, 2015 in Baltimore, MD. Am Assoc Pharm Sci Open. 2016;2:1. doi: 10.1186/s41120-016-0005-2
  • Kubczak M, Michlewska S, Bryszewska M, et al. Nanoparticles for local delivery of siRNA in lung therapy. Adv Drug Deliv Rev. 2021;179:114038. doi: 10.1016/j.addr.2021.114038
  • Chow MYT, Chang RYK, Chan H-K. Inhalation delivery technology for genome-editing of respiratory diseases. Adv Drug Deliv Rev. 2021;168:217–228. doi: 10.1016/j.addr.2020.06.001
  • Gomes Dos Reis L, Svolos M, Hartwig B, et al. Inhaled gene delivery: a formulation and delivery approach. Expert Opin Drug Deliv. 2017;14:319–330. doi: 10.1080/17425247.2016.1214569
  • Finlay WH. The mechanics of inhaled pharmaceutical aerosols : an introduction. San Diego: Academic Press; 2019. doi: 10.1016/B978-0-08-102749-3.00001-4
  • International Commission on Radiological Protection. Human respiratory tract model for radiological protection: a report of a task group of the International Commission on Radiological protection. Oxford, Eng : Tarrytown (N.Y): published for the International Commission on Radiological Protection by Pergamon; 1994.
  • Hofmann W. Regional deposition: deposition models. J Aerosol Med Pulm Drug Deliv. 2020;33(5):239–248. doi: 10.1089/jamp.2020.29031.wh
  • Miller FJ, Asgharian B, Schroeter JD, et al. Improvements and additions to the multiple path particle dosimetry model. J Aerosol Sci. 2016;99:14–26. doi: 10.1016/j.jaerosci.2016.01.018
  • Ruzycki CA, Pawluski D, Wong EYL, et al. Provocative dose determination for methacholine challenge test aerosols through in vitro – in silico methods. J Aerosol Sci. 2023;171:106184. doi: 10.1016/j.jaerosci.2023.106184
  • Kim N, Duncan GA, Hanes J, et al. Barriers to inhaled gene therapy of obstructive lung diseases: a review. J Controlled Release. 2016;240:465–488. doi: 10.1016/j.jconrel.2016.05.031
  • Griesenbach U, Alton EWFW. Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev. 2009;61:128–139. doi: 10.1016/j.addr.2008.09.010
  • Ari A, Fink JB. Recent advances in aerosol devices for the delivery of inhaled medications. Expert Opin Drug Deliv. 2020;17(2):133–144. doi: 10.1080/17425247.2020.1712356
  • Martin AR, Finlay WH. Nebulizers for drug delivery to the lungs. Expert Opin Drug Deliv. 2015;12(6):889–900. doi: 10.1517/17425247.2015.995087
  • Weers JG, Miller DP. Formulation design of dry powders for inhalation. J Pharm Sci. 2015;104(10):3259–3288. doi: 10.1002/jps.24574
  • Vehring R, Snyder H, Lechuga-Ballesteros D. Spray Drying. In: Ohtake S, Izutsu K-i, and Lechuga-Ballesteros D, editors. Drying Technologies for Biotechnology and Pharmaceutical Applicatoins. Weinheim, Germany: Wiley-VCH; 2020. p.179–216. doi: 10.1002/9783527802104.ch7
  • Myrdal PB, Sheth P, Stein SW. Advances in metered dose inhaler technology: formulation development. AAPS Pharm Sci Tech. 2014;15(2):434–455. doi: 10.1208/s12249-013-0063-x
  • Conti DS, Bharatwaj B, Brewer D, et al. Propellant-based inhalers for the non-invasive delivery of genes via oral inhalation. J Controlled Release. 2012;157(3):406–417. doi: 10.1016/j.jconrel.2011.09.089
  • Carrigy NB, Chang RY, Leung SSY, et al. Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, Jet nebulizer, and soft mist inhaler. Pharm Res. 2017;34(10):2084–2096. doi: 10.1007/s11095-017-2213-4
  • Lentz YK, Anchordoquy TJ, Lengsfeld CS. Rationale for the selection of an aerosol delivery system for gene delivery. J Aerosol Med. 2006; 19(3):372–384. doi: 10.1089/jam.2006.19.372
  • Deshpande D, Blanchard J, Srinivasan S, et al. Aerosolization of lipoplexes using AERx® pulmonary delivery system. AAPS PharmSci. 2002;4:12–21. doi: 10.1208/ps040313
  • Arulmuthu ER, Williams DJ, Baldascini H, et al. Studies on aerosol delivery of plasmid DNA using a mesh nebulizer. Biotechnol Bioeng. 2007;98(5):939–955. doi: 10.1002/bit.21493
  • Gomes Dos Reis L, Svolos M, Moir LM, et al. Delivery of pDNA Polyplexes to bronchial and alveolar epithelial cells using a mesh nebulizer. Pharm Res. 2019;36:14. doi: 10.1007/s11095-018-2542-y
  • Lentz YK, Worden LR, Anchordoquy TJ, et al. Effect of jet nebulization on DNA: identifying the dominant degradation mechanism and mitigation methods. J Aerosol Sci. 2005;36(8):973–990. doi: 10.1016/j.jaerosci.2004.11.017
  • Catanese DJ, Fogg JM, Schrock DE, et al. Supercoiled minivector DNA resists shear forces associated with gene therapy delivery. Gene Ther. 2012;19(1):94–100. doi: 10.1038/gt.2011.77
  • Lengsfeld CS, Anchordoquy TJ. Shear‐induced degradation of plasmid DNA. J Pharm Sci. 2002;91(7):1581–1589. doi: 10.1002/jps.10140
  • Zabner J, Fasbender AJ, Moninger T, et al. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995;270(32):18997–19007. doi: 10.1074/jbc.270.32.18997
  • Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm. 2014;459(1–2):70–83. doi: 10.1016/j.ijpharm.2013.11.041
  • Banks GA, Roselli RJ, Chen R, et al. A model for the analysis of nonviral gene therapy. Gene Ther. 2003;10(20):1766–1775. doi: 10.1038/sj.gt.3302076
  • Emerson M, Renwick L, Tate S, et al. Transfection efficiency and toxicity following delivery of naked plasmid DNA and cationic lipid–DNA complexes to ovine lung segments. Mol Ther. 2003;8(4):646–653. doi: 10.1016/S1525-0016(03)00233-8
  • Ichikawa M, Muramatsu N, Matsunaga W, et al. Effects of inhalable gene transfection as a novel gene therapy for non-small cell lung cancer and malignant pleural mesothelioma. Sci Rep. 2022;12(1):8634. doi: 10.1038/s41598-022-12624-4
  • Woodside MT, García-García C, Block SM. Folding and unfolding single RNA molecules under tension. Curr Opin Chem Biol. 2008;12(6):640–646. doi: 10.1016/j.cbpa.2008.08.011
  • Bustamante C, Smith SB, Liphardt J, et al. Single-molecule studies of DNA mechanics. Curr Opin Struct Biol. 2000;10(3):279–285. doi: 10.1016/S0959-440X(00)00085-3
  • Tahara K, Hashimoto W, Takeuchi H. Inhalation properties and stability of nebulized naked siRNA solution for pulmonary therapy. Chem Pharm Bull (Tokyo). 2016;64:63–67. doi: 10.1248/cpb.c15-00615
  • Cortez-Jugo C, Masoumi S, Chan PPY, et al. Nebulization of siRNA for inhalation therapy based on a microfluidic surface acoustic wave platform. Ultrason Sonochem. 2022;88:106088. doi: 10.1016/j.ultsonch.2022.106088
  • Morgan BA, Manser M, Jeyanathan M, et al. Effect of shear stresses on adenovirus activity and aggregation during atomization to produce thermally stable vaccines by spray drying. ACS Biomater Sci Eng. 2020;6(7):4304–4313. doi: 10.1021/acsbiomaterials.0c00317
  • Roy CJ, Ault A, Sivasubramani SK, et al. Aerosolized adenovirus-vectored vaccine as an alternative vaccine delivery method. Respir Res. 2011;12(1):153. doi: 10.1186/1465-9921-12-153
  • Klein DM, Poortinga A, Verhoeven FM, et al. Degradation of lipid based drug delivery formulations during nebulization. Chem Phys. 2021;547:111192. doi: 10.1016/j.chemphys.2021.111192
  • Kim J, Jozic A, Lin Y, et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano. 2022;16(9):14792–14806. doi: 10.1021/acsnano.2c05647
  • Phalen RF, Yeh HC, Prasad SB. Morphology of the respiratory tract. In: McClellan R Henderson R, editors. Concepts in inhalation toxicology. 2nd ed. Washington DC: Taylor & Francis; 1995. p. 129–149. doi: 10.1201/b14404-9
  • Harkema JR, Plopper CG, Pinkerton KE. Comparative structure of the respiratory tract: airway architecture in humans and animals. In: Cohen M, Zelikoff J, and Schlesinger R, editors. Pulmonary Immunotoxicology. Boston (MA): Springer US; 2000. p. 1–59. doi: 10.1007/978-1-4615-4535-4_1
  • Borgström L, Olsson B, Thorsson L. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aerosol Med Off. 2006;19(4):473–483. doi: 10.1089/jam.2006.19.473
  • Ruzycki CA, Yang M, Chan H-K, et al. Improved prediction of intersubject variability in extrathoracic aerosol deposition using algebraic correlations. Aerosol Sci Technol. 2017;51(6):667–673. doi: 10.1080/02786826.2017.1306640
  • Yang MY, Ruzycki CA, Verschuer J, et al. Examining the ability of empirical correlations to predict subject specific in vivo extrathoracic aerosol deposition during tidal breathing. Aerosol Sci Technol. 2017;51(3):363–376. doi: 10.1080/02786826.2016.1262532
  • Usmani OS, Roche N, Jenkins M, et al. Consistent pulmonary Drug delivery with whole lung deposition using the aerosphere inhaler: a review of the evidence. Int J Chron Obstruct Pulmon Dis. 2021;16:113–124. doi: 10.2147/COPD.S274846
  • Delvadia RR, Hindle M, Longest PW, et al. In vitro tests for aerosol deposition II: IVIVCs for different dry powder inhalers in normal adults. J Aerosol Med Pulm Drug Deliv. 2012;26:138–144. doi: 10.1089/jamp.2012.0975
  • Ruzycki CA, Finlay WH, Martin AR. Estimating clinically relevant measures of inhaled pharmaceutical aerosol performance with advanced in vitro and in silico methods. In: Narang A Mahato R, editors. Organ specific drug delivery and targeting to the lungs. CRC Press; 2022. p. 3–46. doi: 10.1201/9781003182566-2
  • Weers JG, Miller DP, Tarara TE. Improved targeting of dry powder formulations of inhaled corticosteroids to children. Respir Drug Deliv. 2022;2022:1–8.
  • Weers JG, Son YJ, Glusker M, et al. Idealhalers versus realhalers: is it possible to bypass deposition in the upper respiratory tract? J Aerosol Med Pulm Drug Deliv. 2019;32(2):55–69. doi: 10.1089/jamp.2018.1497
  • Farkas D, Thomas ML, Hassan A, et al. Near elimination of in vitro Predicted extrathoracic aerosol deposition in children using a spray-Dried Antibiotic formulation and pediatric air-jet DPI. Pharm Res. 2023;40(5):1193–1207. doi: 10.1007/s11095-022-03316-9
  • Holbrook LT, Longest PW. Validating CFD predictions of highly localized aerosol deposition in airway models: in vitro data and effects of surface properties. J Aerosol Sci. 2013;59:6–21. doi: 10.1016/j.jaerosci.2013.01.008
  • Lizal F, Elcner J, Jedelsky J, et al. The effect of oral and nasal breathing on the deposition of inhaled particles in upper and tracheobronchial airways. J Aerosol Sci. 2020;150:105649. doi: 10.1016/j.jaerosci.2020.105649
  • Ruzycki CA, Murphy B, Nathoo H, et al. Combined in vitro-in silico approach to predict deposition and pharmacokinetics of budesonide dry powder inhalers. Pharm Res. 2020;37(10):209. doi: 10.1007/s11095-020-02924-7
  • Tavernini S, Farina DJ, Martin AR, et al. Using filters to estimate regional lung deposition with dry powder inhalers. Pharm Res. 2021;38(9):1601–1613. doi: 10.1007/s11095-021-03082-0
  • Finlay WH, Farina DJ, Tavernini S, et al. In vitro estimation of tracheobronchial and alveolar doses using filters. Front Drug Deliv. 2022;2:1–7. doi: 10.3389/fddev.2022.901289
  • Stocks J, Hislop AA. Structure and function of the respiratory system: developmental aspects and their relevance to aerosol therapy. In: Bisgaard H, O’Callaghan C Smaldone G, editors. Drug delivery to the lung. New York (NY): Marcel Dekker; 2002. p. 47–104. doi: 10.1201/b14022-4
  • Cohen-Cymberknoh M, Kerem E, Ferkol T, et al. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications. Thorax. 2013;68(12):1157–1162. doi: 10.1136/thoraxjnl-2013-203204
  • Martin AR. Regional deposition: targeting. J Aerosol Med Pulm Drug Deliv. 2021;34(1):1–10. doi: 10.1089/jamp.2021.29033.am
  • Schürch S, Gehr P, Im Hof V, et al. Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol. 1990;80(1):17–32. doi: 10.1016/0034-5687(90)90003-H
  • Pangeni R, Meng T, Poudel S, et al. Airway mucus in pulmonary diseases: muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers. Int J Pharm. 2023;634:122661. doi: 10.1016/j.ijpharm.2023.122661
  • Hewitt RJ, Lloyd CM. Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol. 2021; 21(6):347–362. doi: 10.1038/s41577-020-00477-9
  • Laube BL. Aerosolized medications for gene and peptide therapy. Respir Care. 2015;60(6):806–824. doi: 10.4187/respcare.03554
  • Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol. 2017; 10(2):299–306. doi: 10.1038/mi.2016.108
  • Capasso C, Hirvinen M, Cerullo V. Beyond gene delivery: strategies to engineer the surfaces of viral vectors. Biomedicines. 2013;1(1):3–16. doi: 10.3390/biomedicines1010003
  • Lee AY, Cho M-H, Kim S. Recent advances in aerosol gene delivery systems using non-viral vectors for lung cancer therapy. Expert Opin Drug Deliv. 2019;16(7):757–772. doi: 10.1080/17425247.2019.1641083
  • Manunta MDI, McAnulty RJ, Tagalakis AD, et al. Nebulisation of receptor-targeted nanocomplexes for gene delivery to the airway epithelium. PLoS One. 2011;6(10):e26768. doi: 10.1371/journal.pone.0026768
  • Wolff RK, Dorato MA. Toxicologic testing of inhaled pharmaceutical aerosols. Crit Rev Toxicol. 1993;23(4):343–369. doi: 10.3109/10408449309104076
  • In: McClellan RO, Henderson RF, editors. Concepts in inhalation toxicology. 2nd ed. Washington DC: Taylor & Francis; 1995. doi: 10.1201/b14404
  • Wolff RK. Toxicology studies for inhaled and nasal delivery. Mol Pharm. 2015;12(8):2688–2696. doi: 10.1021/acs.molpharmaceut.5b00146
  • Alexander DJ, Collins CJ, Coombs DW, et al. Association of Inhalation Toxicologists (AIT) working party recommendation for standard delivered dose calculation and expression in non-clinical aerosol inhalation toxicology studies with pharmaceuticals. Inhal Toxicol. 2008;20(13):1179–1189. doi: 10.1080/08958370802207318
  • Kuehl PJ, Chand R, McDonald JD, et al. Pulmonary and regional deposition of nebulized and dry powder aerosols in ferrets. AAPS Pharm Sci Tech. 2019;20(6):242. doi: 10.1208/s12249-019-1382-3
  • Nadithe V, Rahamatalla M, Finlay WH, et al. Evaluation of nose-only aerosol inhalation chamber and comparison of experimental results with mathematical simulation of aerosol deposition in mouse lungs. J Pharm Sci. 2003;92(5):1066–1076. doi: 10.1002/jps.10379
  • McCarron A, Parsons D, Donnelley M. Animal and cell culture models for cystic fibrosis. Am J Pathol. 2021;191(2):228–242. doi: 10.1016/j.ajpath.2020.10.017
  • Yan Z, Stewart ZA, Sinn PL, et al. Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. Hum Gene Ther Clin Dev. 2015;26(1):38–49. doi: 10.1089/humc.2014.154
  • Sun X, Yi Y, Yan Z, et al. In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis. Sci Transl Med. 2019;11(485):11. doi: 10.1126/scitranslmed.aau7531
  • Gautam A, Densmore C, Waldrep J. Pulmonary cytokine responses associated with PEI–DNA aerosol gene therapy. Gene Ther. 2001;8(3):254–257. doi: 10.1038/sj.gt.3301369
  • Densmore CL, Orson FM, Xu B, et al. Aerosol delivery of robust polyethyleneimine– DNA complexes for gene therapy and genetic immunization. Mol Ther. 2000;1(2):180–188. doi: 10.1006/mthe.1999.0021
  • Bai X, Zhao G, Chen Q, et al. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci Adv. 2022;8(25):eabn7162. doi: 10.1126/sciadv.abn7162
  • Lokugamage MP, Vanover D, Beyersdorf J, et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat Biomed Eng. 2021;5(9):1059–1068. doi: 10.1038/s41551-021-00786-x
  • Patel AK, Kaczmarek JC, Bose S, et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv Mater. 2019;31(8):1805116. doi: 10.1002/adma.201805116
  • Le Gall T, Berchel M, Davies L, et al. Aerosol-mediated non-viral lung gene therapy: the potential of aminoglycoside-based cationic liposomes. Pharmaceutics. 2021;14(1):25. doi: 10.3390/pharmaceutics14010025
  • Zamora-Avila DE, Zapata-Benavides P, Franco-Molina MA, et al. WT1 gene silencing by aerosol delivery of PEI–RNAi complexes inhibits B16-F10 lung metastases growth. Cancer Gene Ther. 2009;16(12):892–899. doi: 10.1038/cgt.2009.35
  • McIntyre C, Donnelley M, Rout-Pitt N, et al. Lobe-specific gene vector delivery to rat lungs using a miniature bronchoscope. Hum Gene Ther Methods. 2018;29(5):228–235. doi: 10.1089/hgtb.2018.050
  • Weiss DJ, Mutlu GM, Bonneau L, et al. Comparison of surfactant and perfluorochemical liquid enhanced adenovirus-mediated gene transfer in normal rat lung. Mol Ther J Am Soc Gene Ther. 2002;6(1):43–49. doi: 10.1006/mthe.2002.0632
  • Bisserier M, Mathiyalagan P, Zhang S, et al. Regulation of the methylation and expression levels of the BMPR2 gene by SIN3a as a novel therapeutic mechanism in pulmonary arterial hypertension. Circulation. 2021;144(1):52–73. doi: 10.1161/CIRCULATIONAHA.120.047978
  • Koehler DR, Frndova H, Leung K, et al. Aerosol delivery of an enhanced helper-dependent adenovirus formulation to rabbit lung using an intratracheal catheter. J Gene Med. 2005;7(11):1409–1420. doi: 10.1002/jgm.797
  • Aguero J, Ishikawa K, Hadri L, et al. Intratracheal gene delivery of SERCA2a ameliorates chronic post-capillary pulmonary hypertension. J Am Coll Cardiol. 2016;67(17):2032–2046. doi: 10.1016/j.jacc.2016.02.049
  • Cooney AL, Sinn PL. Intratracheal aerosolization of viral vectors to newborn pig airways. Biotechniques. 2020;68(5):235–239. doi: 10.2144/btn-2019-0150
  • Cao H, Machuca TN, Yeung JC, et al. Efficient gene delivery to pig airway epithelia and submucosal glands using helper-dependent adenoviral vectors. Mol Ther Nucleic Acids. 2013;2:e127. doi: 10.1038/mtna.2013.55
  • McLachlan G, Baker A, Tennant P, et al. Optimizing aerosol gene delivery and expression in the ovine lung. Mol Ther. 2007;15(2):348–354. doi: 10.1038/sj.mt.6300058
  • Legere RM, Cohen ND, Poveda C, et al. Safe and effective aerosolization of in vitro transcribed mRNA to the respiratory tract epithelium of horses without a transfection agent. Sci Rep. 2021;11(1):371. doi: 10.1038/s41598-020-79855-1
  • Driscoll KE. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 2000;55(1):24–35. doi: 10.1093/toxsci/55.1.24
  • Osier M, Oberdorster G. Intratracheal inhalation vs intratracheal instillation: differences in particle effects. Fundam Appl Toxicol. 1997;40:220–227. doi: 10.1006/faat.1997.2390
  • Yang L, Feuchtinger A, Möller W, et al. Three-dimensional quantitative co-mapping of pulmonary morphology and nanoparticle distribution with cellular resolution in nondissected murine lungs. ACS Nano. 2019;13(2):1029–1041. doi: 10.1021/acsnano.8b07524
  • Bush E, Nicholas A, Pei T, et al. Targeting aEnac with an epithelial RNAi trigger delivery platform for the treatment of cystic fibrosis. Eur Respir J. 2018;52:p. OA514.
  • Cheever TR, Berkley D, Braun S, et al. Perspectives on best practices for gene therapy programs. Hum Gene Ther. 2015;26:127–133. doi: 10.1089/hum.2014.147
  • Design and Analysis of Shedding Studies for Virus or Bacteria-Based Gene Therapy and Oncolytic Products. Docket Number FDA-2014-D-0852. [Internet]. U.S. Departent of Health and Human Services, Food and Drug Adminstration. Center for Biologics Evaluation and Research; 2019 [cited 2023 May 18]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/design-and-analysis-shedding-studies-virus-or-bacteria-based-gene-therapy-and-oncolytic-products
  • U.S. Pharmacopeia. General chapter, <601> inhalation and nasal Drug products: aerosols, sprays, and powders - performance quality tests. USP-NF. Rockville (MD): Untied States Pharmacopeia; 2023.
  • U.S. Pharmacopeia. General chapter, <1601> products for nebulization - characterization tests. USP-NF. Rockville (MD): Untied States Pharmacopeia; 2023.
  • Cipolla D, Wu H, Gonda I, et al. Aerosol performance and stability of liposomes containing ciprofloxacin nanocrystals. J Aerosol Med Pulm Drug Deliv. 2015;28(6):411–422. doi: 10.1089/jamp.2015.1241
  • European Pharmacopeia. Ph Eur 9.8 general chapter 2.9.44 preparations for nebulization - characterization. Strasbourg (France): Directorate for the Quality of Medicines and HealthCare of the Council of Europe (EDQM); 2019.
  • Li B, Manan RS, Liang S-Q, et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat Biotechnol. 2023. doi: 10.1038/s41587-023-01679-x