456
Views
0
CrossRef citations to date
0
Altmetric
Review

Silica nanoparticles for brain cancer

, , , &
Pages 1749-1767 | Received 24 Aug 2023, Accepted 18 Oct 2023, Published online: 10 Nov 2023

References

  • Miranda-Filho A, Piñeros M, Soerjomataram I, et al. Cancers of the brain and CNS: global patterns and trends in incidence. Neuro Oncol. 2017;19(2):270–280.
  • Ostrom QT, Cioffi G, Waite K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 2021;23(Supplement_3):iii1–iii105. doi: 10.1093/neuonc/noab200
  • Sun D, Gao W, Hu H, et al. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022;12(7):3049–3062. doi: 10.1016/j.apsb.2022.02.002
  • Janjua TI, Rewatkar P, Ahmed-Cox A, et al. Frontiers in the treatment of glioblastoma: past, present and emerging. Adv Drug Delivery Rev. 2021;171:108–138. doi: 10.1016/j.addr.2021.01.012
  • van Den Bent M, Gan HK, Lassman AB, et al. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study. Cancer Chemother Pharmacol. 2017;80(6):1209–1217. doi: 10.1007/s00280-017-3451-1
  • Rathore A, Dash R. Late-stage failures of monoclonal antibodies. BioPharm International. 2022;35(3):14–16, 31-14–16, 31.
  • Lim M, Weller M, Idbaih A, et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 2022;24(11):1935–1949. doi: 10.1093/neuonc/noac116
  • Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41. doi: 10.1038/s41568-019-0205-x
  • Phillips E, Penate-Medina O, Zanzonico PB, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci, Trans Med. 2014;6(260):ra260149–ra260149. doi: 10.1126/scitranslmed.3009524
  • Janjua TI, Cao Y, Yu C, et al. Clinical translation of silica nanoparticles. Nature Rev Mater. 2021;6(12):1072–1074. doi: 10.1038/s41578-021-00385-x
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):e10143. doi: 10.1002/btm2.10143
  • Malik JR, Fletcher CV, Podany AT, et al. A novel 4-cell in-vitro blood-brain barrier model and its characterization by confocal microscopy and TEER measurement. J Neurosci Methods. 2023;392:109867. doi: 10.1016/j.jneumeth.2023.109867
  • Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55–68.
  • Fruijtier-Pölloth C. The safety of nanostructured synthetic amorphous silica (SAS) as a food additive (E 551). Arch Toxicol. 2016;90:2885–2916.
  • Zanoni DK, Stambuk HE, Madajewski B, et al. Use of ultrasmall core-shell fluorescent silica nanoparticles for image-guided sentinel lymph node biopsy in head and neck melanoma: a nonrandomized clinical trial. JAMA Netw Open. 2021;4(3):e211936–e211936. doi: 10.1001/jamanetworkopen.2021.1936
  • Rastinehad AR, Anastos H, Wajswol E, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Nat Acad Sci. 2019;116(37):18590–18596. doi: 10.1073/pnas.1906929116
  • Janjua TI, Cao Y, Kleitz F, et al. Silica nanoparticles: a review of their safety and current strategies to overcome biological barriers. Adv Drug Delivery Rev. 2023 Oct 14;203:115. doi: 10.1016/j.addr.2023.115115
  • Mo J, He L, Ma B, et al. Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood–brain barrier. ACS Appl Mater Inter. 2016;8(11):6811–6825. doi: 10.1021/acsami.5b11730
  • Janjua TI, Ahmed-Cox A, Meka AK, et al. Facile synthesis of lactoferrin conjugated ultra small large pore silica nanoparticles for the treatment of glioblastoma. Nanoscale. 2021;13(40):16909–16922. doi: 10.1039/D1NR03553C
  • Chai Z, Ran D, Lu L, et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano. 2019;13(5):5591–5601. doi: 10.1021/acsnano.9b00661
  • Feng Y, Cao Y, Qu Z, et al. Virus-like silica nanoparticles improve permeability of macromolecules across the blood–brain barrier in vitro. Pharmaceutics. 2023;15(9):2239. doi: 10.3390/pharmaceutics15092239
  • Rosenholm JM, Mamaeva V, Sahlgren C, et al. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine. 2012;7(1):111–120. doi: 10.2217/nnm.11.166
  • Rahman M, Ahmad MZ, Kazmi I, et al. Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opin Drug Delivery. 2012;9(4):367–381. doi: 10.1517/17425247.2012.668522
  • Lérida-Viso A, Estepa-Fernández A, García-Fernández A, et al. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Delivery Rev. 2023;201:115049. doi: 10.1016/j.addr.2023.115049
  • Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–1251. doi: 10.1093/neuonc/noab106
  • Young RM, Jamshidi A, Davis G, et al. Current trends in the surgical management and treatment of adult glioblastoma. Ann translat Med. 2015;3(9). doi: 10.3978/j.issn.2305-5839.2015.05.10
  • Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014;16(suppl_4):iv1–iv63. doi: 10.1093/neuonc/nou223
  • Rapp M, Baernreuther J, Turowski B, et al. Recurrence pattern analysis of primary glioblastoma. World Neurosurg. 2017;103:733–740. doi: 10.1016/j.wneu.2017.04.053
  • Sarkaria JN, Hu LS, Parney IF, et al. Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2018;20(2):184–191. doi: 10.1093/neuonc/nox175
  • Perkins A, Liu G. Primary brain tumors in adults: diagnosis and treatment. Am Fam Physician. 2016;93(3):211–217.
  • Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, et al. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol. 2020;147(2):297–307. doi: 10.1007/s11060-020-03451-6
  • Stupp R, Mason WP, Van Den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996. doi: 10.1056/NEJMoa043330
  • Warren K. Diffuse intrinsic pontine glioma: poised for progress. Front Oncol. 2012;2:38080. doi: 10.3389/fonc.2012.00205
  • Mandell LR, Kadota R, Freeman C, et al. There is no role for hyperfractionated radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a pediatric oncology group phase III trial comparing conventional vs. hyperfractionated radiotherapy. Int J Radiat Oncol Biol Phys. 1999;43(5):959–964. doi: 10.1016/S0360-3016(98)00501
  • Cohen KJ, Heideman RL, Zhou T, et al. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the children’s oncology group. Neuro Oncol. 2011;13(4):410–416. doi: 10.1093/neuonc/noq205
  • Robison NJ, Kieran MW. Diffuse intrinsic pontine glioma: a reassessment. J Neurooncol. 2014;119:7–15.
  • Haas-Kogan DA, Banerjee A, Poussaint TY, et al. Phase II trial of tipifarnib and radiation in children with newly diagnosed diffuse intrinsic pontine gliomas. Neuro Oncol. 2011;13(3):298–306. doi: 10.1093/neuonc/noq202
  • Michalski A, Bouffet E, Taylor RE, et al. The addition of high-dose tamoxifen to standard radiotherapy does not improve the survival of patients with diffuse intrinsic pontine glioma. J Neurooncol. 2010;100(1):81–88. doi: 10.1007/s11060-010-0141-9
  • Izzuddeen Y, Gupta S, Haresh K, et al. Hypofractionated radiotherapy with temozolomide in diffuse intrinsic pontine gliomas: a randomized controlled trial. J Neurooncol. 2020;146:91–95.
  • Ostrom QT, Gittleman H, Fulop J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol. 2015;17(suppl_4):iv1–iv62. doi: 10.1093/neuonc/nov189
  • Kinslow CJ, Garton AL, Rae AI, et al. Extent of resection and survival for oligodendroglioma: a US population-based study. J Neurooncol. 2019;144(3):591–601.
  • Engelhard HH, Stelea A, Mundt A. Oligodendroglioma and anaplastic oligodendroglioma: Clinical features, treatment, and prognosis. Surg Neurol. 2003;60(5):443–456. doi: 10.1016/S0090-3019(03)00167-8
  • Kapoor M, Gupta V. Astrocytoma. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2013 Jan–Jul 17]. PMID: 32644468.
  • Reardon DA, Rich JN, Friedman HS, et al. Recent advances in the treatment of malignant astrocytoma. J Clin Oncol. 2006;24(8):1253–1265. doi: 10.1200/JCO.2005.04.5302
  • Baldwin RT, Preston-Martin S. Epidemiology of brain tumors in childhood—a review. Toxicol Appl Pharmacol. 2004;199(2):118–131. doi: 10.1016/j.taap.2003.12.029
  • Northcott PA, Robinson GW, Kratz CP, et al. Medulloblastoma. Nat Rev Dis Primers. 2019;5(1):11. doi: 10.1038/s41572-019-0063-6
  • Phoenix TN, Patmore DM, Boop S, et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell. 2016;29(4):508–522. doi: 10.1016/j.ccell.2016.03.002
  • Ostrom QT, Gittleman H, Xu J, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro Oncol. 2016;18(suppl_5):v1–v75. doi: 10.1093/neuonc/now207
  • Hatch EE, Linet MS, Zhang J, et al. Reproductive and hormonal factors and risk of brain tumors in adult females. Int J Cancer. 2005;114(5):797–805.
  • Wen PY, Quant E, Drappatz J, et al. Medical therapies for meningiomas. J Neurooncol. 2010;99(3):365–378. doi: 10.1007/s11060-010-0349-8
  • Danish H, Brastianos P. Novel medical therapies in meningiomas. Adv Exp Med Biol. 2023;1416:213–223. doi: 10.1007/978-3-031-29750-2_16. PMID: 37432630.
  • Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer. 2002;2(11):836–849. doi: 10.1038/nrc926
  • Raverot G, Ilie MD, Lasolle H, et al. Aggressive pituitary tumours and pituitary carcinomas. Nat Rev Endocrinol. 2021;17(11):671–684. doi: 10.1038/s41574-021-00550-w
  • Barnholtz-Sloan JS, Sloan AE, Davis FG, et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan detroit cancer surveillance system. J Clin Oncol. 2004;22(14):2865–2872. doi: 10.1200/JCO.2004.12.149
  • Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14:48–54.
  • Witzel I, Oliveira-Ferrer L, Pantel K, et al. Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res. 2016;18(1):1–9. doi: 10.1186/s13058-015-0665-1
  • Ali A, Goffin J, Arnold A, et al. Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Current Oncol. 2013;20(4):300–306. doi: 10.3747/co.20.1481
  • Tabouret E, Chinot O, Metellus P, et al. Recent trends in epidemiology of brain metastases: an overview. Anticancer Res. 2012;32(11):4655–4662.
  • Gridelli C, Rossi A, Carbone DP, et al. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015;1(1):1–16. doi: 10.1038/nrdp.2015.9
  • Schuette W. Treatment of brain metastases from lung cancer: chemotherapy. Lung Cancer. 2004;45:S253–S257. doi: 10.1016/j.lungcan.2004.07.967
  • DeSantis C, Ma J, Bryan L, et al. Breast cancer statistics, 2013. Ca A Cancer J Clinicians. 2014;64(1):52–62. doi: 10.3322/caac.21203
  • Bailleux C, Eberst L, Bachelot T. Treatment strategies for breast cancer brain metastases. Br J Cancer. 2021;124(1):142–155. doi: 10.1038/s41416-020-01175-y
  • Leone JP, Leone BA. Breast cancer brain metastases: the last frontier. Exp Hematol Oncol. 2015;4(1):1–10. doi: 10.1186/s40164-015-0028-8
  • Miller AJ, Mihm MC Jr. Melanoma. N Engl J Med. 2006;355(1):51–65. doi: 10.1056/NEJMra052166
  • Tawbi HA, Boutros C, Kok D, et al. New era in the management of melanoma brain metastases. Am Soc Clin Oncol Educ Book. 2018;38(38):741–750. doi: 10.1200/EDBK_200819
  • Kircher DA, Silvis MR, Cho JH, et al. Melanoma brain metastasis: mechanisms, models, and medicine. Int J Mol Sci. 2016;17(9):1468. doi: 10.3390/ijms17091468
  • Rutka JT, Kuo JS. Pediatric surgical neuro-oncology: current best care practices and strategies. J Neurooncol. 2004;69:139–150.
  • Koo Y-E, Reddy GR, Bhojani M, et al. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Delivery Rev. 2006;58(14):1556–1577. doi: 10.1016/j.addr.2006.09.012
  • Albayrak B, Samdani A, Black P. Intra-operative magnetic resonance imaging in neurosurgery. Acta Neurochir. 2004;146(6):543–557. doi: 10.1007/s00701-004-0229-0
  • Eseonu CI, Eguia F, ReFaey K, et al. Comparative volumetric analysis of the extent of resection of molecularly and histologically distinct low grade gliomas and its role on survival. J Neurooncol. 2017;134(1):65–74. doi: 10.1007/s11060-017-2486-9
  • Chaichana KL, Jusue-Torres I, Lemos AM, et al. The butterfly effect on glioblastoma: is volumetric extent of resection more effective than biopsy for these tumors? J Neurooncol. 2014;120:625–634.
  • Reyns N, Leroy H-A, Delmaire C, et al. Intraoperative MRI for the management of brain lesions adjacent to eloquent areas. Neurochirurgie. 2017;63(3):181–188. doi: 10.1016/j.neuchi.2016.12.006
  • Senders JT, Muskens IS, Schnoor R, et al. Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochir. 2017;159(1):151–167. doi: 10.1007/s00701-016-3028-5
  • Kut C, Chaichana KL, Xi J, et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci, trans med. 2015;7(292):ra292100–ra292100. doi: 10.1126/scitranslmed.3010611
  • Armstrong C, Hunter J, Ledakis G, et al. Late cognitive and radiographic changes related to radiotherapy: initial prospective findings. Neurology. 2002;59(1):40–48. doi: 10.1212/WNL.59.1.40
  • Taphoorn MJ. Neurocognitive sequelae in the treatment of low-grade gliomas. Semin Oncol . 2003 Dec;30(6 Suppl 19):45–8. doi: 10.1053/j.seminoncol.2003.11.023. PMID: 14765385.
  • Goel A, Aggarwal BB. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer. 2010;62(7):919–930. doi: 10.1080/01635581.2010.509835
  • Lehrer EJ, Ruiz-Garcia H, Nehlsen AD, et al. Preoperative stereotactic radiosurgery for glioblastoma. Biology. 2022;11(2):194. doi: 10.3390/biology11020194
  • Foster RD, Moeller BJ, Robinson M, et al. Dosimetric analysis of intra-fraction motion detected by surface-guided radiation therapy during linac stereotactic radiosurgery. Adv Radiat Oncol. 2023;8(3):101151. doi: 10.1016/j.adro.2022.101151
  • Polkinghorn WR, Dunkel IJ, Souweidane MM, et al. Disease control and ototoxicity using intensity-modulated radiation therapy tumor-bed boost for medulloblastoma. Int J Radiat Oncol Biol Phys. 2011;81(3):e15–e20. doi: 10.1016/j.ijrobp.2010.11.08
  • Wagner D, Christiansen H, Wolff H, et al. Radiotherapy of malignant gliomas: comparison of volumetric single arc technique (RapidArc), dynamic intensity-modulated technique and 3D conformal technique. Radiother Oncol. 2009;93(3):593–596. doi: 10.1016/j.radonc.2009.10.002
  • Mohan R, Grosshans D. Proton therapy–present and future. Adv Drug Delivery Rev. 2017;109:26–44. doi: 10.1016/j.addr.2016.11.006
  • Matuszak N, Suchorska WM, Milecki P, et al. FLASH radiotherapy: an emerging approach in radiation therapy. Rep Pract Oncol Radiother. 2022;27(2):343–351. doi: 10.5603/RPOR.a2022.0038
  • Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14. doi: 10.1602/neurorx.2.1.3
  • Izquierdo MA, Scheffer GL, Flens MJ, et al. Relationship of LRP-human major vault protein to in vitro and clinical resistance to anticancer drugs. Cytotechnology. 1996;19(3):191–197. doi: 10.1007/BF00744212
  • Gatmaitan ZC, Arias IM. Structure and function of P-glycoprotein in normal liver and small intestine. Adv Pharmacol. 1993;24:77–97.
  • Newlands E, Stevens M, Wedge S, et al. Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev. 1997;23(1):35–61. doi: 10.1016/S0305-7372(97)90019-0
  • De Vries NA, Beijnen JH, Boogerd W, et al. Blood–brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurotherapeutics. 2006;6(8):1199–1209. doi: 10.1586/14737175.6.8.1199
  • Liu H-L, Hsu P-H, Lin C-Y, et al. Focused ultrasound enhances central nervous system delivery of bevacizumab for malignant glioma treatment. Radiology. 2016;281(1):99–108. doi: 10.1148/radiol.2016152444
  • Han K, Ren M, Wick W, et al. Progression-free survival as a surrogate endpoint for overall survival in glioblastoma: a literature-based meta-analysis from 91 trials. Neuro Oncol. 2014;16(5):696–706. doi: 10.1093/neuonc/not236
  • Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708. doi: 10.1056/NEJMoa1308573
  • Lai A, Tran A, Nghiemphu PL, et al. Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol. 2011;29(2):142. doi: 10.1200/JCO.2010.30.2729
  • Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–722. doi: 10.1056/NEJMoa1308345
  • Socinski MA, Langer CJ, Huang JE, et al. Safety of bevacizumab in patients with non–small-cell lung cancer and brain metastases. J Clin Oncol. 2009;27(31):5255–5261. doi: 10.1200/JCO.2009.22.0616
  • Ilhan-Mutlu A, Osswald M, Liao Y, et al. Bevacizumab prevents brain metastases formation in lung adenocarcinoma. Mol Cancer Ther. 2016;15(4):702–710. doi: 10.1158/1535-7163.MCT-15-0582
  • Pardridge WM. Delivery of biologics across the blood–brain barrier with molecular Trojan horse technology. BioDrugs. 2017;31(6):503–519. doi: 10.1007/s40259-017-0248-z
  • Pardridge W. Targeted delivery of protein and gene medicines through the blood–brain barrier. Clin Pharmacol Ther. 2015;97(4):347–361. doi: 10.1002/cpt.18
  • Tng DJH, Low JGH. Current status of silica-based nanoparticles as therapeutics and its potential as therapies against viruses. Antiviral Res. 2022;210:105488. doi: 10.1016/j.antiviral.2022.105488
  • Gubala V, Giovannini G, Kunc F, et al. Dye-doped silica nanoparticles: synthesis, surface chemistry and bioapplications. Cancer Nanotechnology. 2020;11(1):1–43. doi: 10.1186/s12645-019-0056-x
  • Juthani R, Madajewski B, Yoo B, et al. Ultrasmall core-shell silica nanoparticles for precision drug delivery in a high-grade malignant brain tumor model. Clin Cancer Res. 2020;26(1):147–158. doi: 10.1158/1078-0432.CCR-19-1834
  • Song Y, Du D, Li L, et al. In vitro study of receptor-mediated silica nanoparticles delivery across blood–brain barrier. ACS Appl Mater Inter. 2017;9(24):20410–20416. doi: 10.1021/acsami.7b03504
  • Wu Y, Tang W, Wang P, et al. Cytotoxicity and cellular uptake of amorphous silica nanoparticles in human cancer cells. Part Part Syst Charact. 2015;32(7):779–787. doi: 10.1002/ppsc.201400167
  • Cong VT, Gaus K, Tilley RD, et al. Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives. Expert Opin Drug Delivery. 2018;15(9):881–892. doi: 10.1080/17425247.2018.1517748
  • Janjua TI, Cao Y, Ahmed-Cox A, et al. Efficient delivery of Temozolomide using ultrasmall large-pore silica nanoparticles for glioblastoma. JControlled Release. 2023;357:161–174. doi: 10.1016/j.jconrel.2023.03.040
  • Kwon D, Cha BG, Cho Y, et al. Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Lett. 2017;17(5):2747–2756. doi: 10.1021/acs.nanolett.6b04130
  • Möller K, Bein T. Talented mesoporous silica nanoparticles. Chem Mater. 2017;29(1):371–388. doi: 10.1021/acs.chemmater.6b03629
  • You Y, He L, Ma B, et al. High‐drug‐loading mesoporous silica nanorods with reduced toxicity for precise cancer therapy against nasopharyngeal carcinoma. Adv Funct Mater. 2017;27(42):1703313. doi: 10.1002/adfm.201703313
  • Wechsler ME, Vela Ramirez JE, Peppas NA. 110th anniversary: nanoparticle mediated drug delivery for the treatment of Alzheimer’s disease: crossing the blood–brain barrier. Industrial & Engineering Chemistry Research. 2019;58(33):15079–15087. doi: 10.1021/acs.iecr.9b02196
  • Walter FR, Santa-Maria AR, Mészáros M, et al. Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barr. 2021;9(3):1904773. doi: 10.1080/21688370.2021.1904773
  • Jallouli Y, Paillard A, Chang J, et al. Influence of surface charge and inner composition of porous nanoparticles to cross blood–brain barrier in vitro. Int J Pharmaceut. 2007;344(1–2):103–109. doi: 10.1016/j.ijpharm.2007.06.023
  • Meka AK, Gopalakrishna A, Iriarte-Mesa C, et al. Influence of pore size and surface functionalization of mesoporous silica nanoparticles on the solubility and antioxidant activity of confined coenzyme Q10. Mol Pharmaceut. 2023;20(6):2966–2977. doi: 10.1021/acs.molpharmaceut.3c00017
  • Kuang J, Song W, Yin J, et al. iRGD modified chemo‐immunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma. Adv Funct Mater. 2018;28(17):1800025. doi: 10.1002/adfm.201800025
  • Kircher MF, De La Zerda A, Jokerst JV, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-raman nanoparticle. Nature Med. 2012;18(5):829–834. doi: 10.1038/nm.2721
  • Turan O, Bielecki P, Perera V, et al. Delivery of drugs into brain tumors using multicomponent silica nanoparticles. Nanoscale. 2019;11(24):11910–11921. doi: 10.1039/C9NR02876E
  • Zhang H, Zhang W, Zhou Y, et al. Dual functional mesoporous silicon nanoparticles enhance the radiosensitivity of VPA in glioblastoma. Transl Oncol. 2017;10(2):229–240. doi: 10.1016/j.tranon.2016.12.011
  • Ortiz-Islas E, Sosa-Arróniz A, Manríquez-Ramírez ME, et al. Mesoporous silica nanoparticles functionalized with folic acid for targeted release cis-pt to glioblastoma cells. Rev Adv Mater Sci. 2021;60(1):25–37. doi: 10.1515/rams-2021-0009
  • Chen N, Shao C, Qu Y, et al. Folic acid-conjugated MnO nanoparticles as a T 1 contrast agent for magnetic resonance imaging of tiny brain gliomas. ACS Appl Mater Inter. 2014;6(22):19850–19857. doi: 10.1021/am505223t
  • Li M, Cui X, Wei F, et al. RGD peptide modified erythrocyte membrane/porous nanoparticles loading mir-137 for NIR-stimulated theranostics of glioblastomas. Nanomaterials. 2022;12(9):1464. doi: 10.3390/nano12091464
  • Juthani R, Madajewski B, Yoo B, et al. Ultrasmall core-shell silica nanoparticles for precision drug delivery in a high-grade malignant brain tumor ModelUltrasmall silica nanoparticles for precision drug delivery. Clin Cancer Res. 2020;26(1):147–158. doi: 10.1158/1078-0432.CCR-19-1834
  • Zhang P, Cao F, Zhang J, et al. Temozolomide and chloroquine co-loaded mesoporous silica nanoparticles are effective against glioma. Heliyon. 2023;9(8):e18490. doi: 10.1016/j.heliyon.2023.e18490
  • You Y, Yang L, He L, et al. Tailored mesoporous silica nanosystem with enhanced permeability of the blood–brain barrier to antagonize glioblastoma. J Mat Chem B. 2016;4(36):5980–5990. doi: 10.1039/C6TB01329E
  • Cui Y, Xu Q, Chow P-H, et al. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials. 2013;34(33):8511–8520. doi: 10.1016/j.biomaterials.2013.07.075
  • Yan F, Wang Y, He S, et al. Transferrin-conjugated, fluorescein-loaded magnetic nanoparticles for targeted delivery across the blood–brain barrier. J Mater Sci. 2013;24(10):2371–2379. doi: 10.1007/s10856-013-4993-3
  • Zhang W, Zhu D, Tong Z, et al. Influence of surface ligand density and particle size on the penetration of the blood–brain barrier by porous silicon nanoparticles. Pharmaceutics. 2023;15(9):2271. doi: 10.3390/pharmaceutics15092271
  • Bertucci A, Prasetyanto EA, Septiadi D, et al. Combined delivery of temozolomide and anti‐miR221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells. Small. 2015;11(42):5687–5695. doi: 10.1002/smll.201500540
  • Goel S, Chen F, Hong H, et al. VEGF121-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl Mater Inter. 2014;6(23):21677–21685. doi: 10.1021/am506849p
  • Ahmadi Nasab N, Hassani Kumleh H, Beygzadeh M, et al. Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artific Cells Nanomed Biotechnol. 2018;46(1):75–81. doi: 10.1080/21691401.2017.1290648
  • Shi J, Hou S, Huang J, et al. An MSN-PEG-IP drug delivery system and IL13Rα2 as targeted therapy for glioma. Nanoscale. 2017;9(26):8970–8981. doi: 10.1039/C6NR08786H
  • Heggannavar GB, Vijeth S, Kariduraganavar MY. Development of dual drug loaded PLGA based mesoporous silica nanoparticles and their conjugation with angiopep-2 to treat glioma. J Drug Delivery Sci Technol. 2019;53:101157. doi: 10.1016/j.jddst.2019.101157
  • Zhu J, Zhang Y, Chen X, et al. Angiopep-2 modified lipid-coated mesoporous silica nanoparticles for glioma targeting therapy overcoming BBB. Biochem Biophys Res Commun. 2021;534:902–907. doi: 10.1016/j.bbrc.2020.10.076
  • Tao J, Fei W, Tang H, et al. Angiopep-2-conjugated “core–shell” hybrid nanovehicles for targeted and pH-triggered delivery of arsenic trioxide into glioma. Mol Pharmaceut. 2019;16(2):786–797. doi: 10.1021/acs.molpharmaceut.8b01056
  • Wu M, Zhang H, Tie C, et al. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat Commun. 2018;9(1):4777. doi: 10.1038/s41467-018-07250-6
  • Turan O, Bielecki PA, Perera V, et al. Treatment of glioblastoma using multicomponent silica nanoparticles. Adv Ther. 2019;2(11):1900118. doi: 10.1002/adtp.201900118
  • Bernardi RJ, Lowery AR, Thompson PA, et al. Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol. 2008;86(2):165–172. doi: 10.1007/s11060-007-9467-3
  • Arami H, Patel CB, Madsen SJ, et al. Nanomedicine for spontaneous brain tumors: a companion clinical trial. ACS Nano. 2019;13(3):2858–2869. doi: 10.1021/acsnano.8b04406
  • Leamon CP, Low PS. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discovery Today. 2001;6(1):44–51. doi: 10.1016/S1359-6446(00)01594-4
  • Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Delivery. 2008;5(3):309–319. doi: 10.1517/17425247.5.3.309
  • Haubner R, Finsinger D, Kessler H. Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angew Chem Int Ed Engl. 1997;36(13‐14):1374–1389. doi: 10.1002/anie.199713741
  • Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238(4826):491–497. doi: 10.1126/science.2821619
  • Pan L, Liu J, He Q, et al. MSN‐mediated sequential vascular‐to‐cell nuclear‐targeted drug delivery for efficient tumor regression. Adv Mater. 2014;26(39):6742–6748. doi: 10.1002/adma.201402752
  • Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32(18):4205–4210. doi: 10.1016/j.biomaterials.2011.02.029
  • Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging. Mol Pharmaceut. 2006;3(5):472–487. doi: 10.1021/mp060049x
  • Bogdanowich‐Knipp SJ, Chakrabarti S, Siahaan TJ, et al. Solution stability of linear vs. cyclic RGD peptides. J Pept Res. 1999;53(5):530–541. doi: 10.1034/j.1399-3011.1999.00052.x
  • Ruan H, Chai Z, Shen Q, et al. A novel peptide ligand RAP12 of LRP1 for glioma targeted drug delivery. JControlled Release. 2018;279:306–315. doi: 10.1016/j.jconrel.2018.04.035
  • Lopes MBS, Bogaev CA, Gonias SL, et al. Expression of α2‐macroglobulin receptor/low density lipoprotein receptor‐related protein is increased in reactive and neoplastic glial cells. FEBS Lett. 1994;338(3):301–305. doi: 10.1016/0014-5793(94)80288-2
  • Demeule M, Currie JC, Bertrand Y, et al. Involvement of the low‐density lipoprotein receptor‐related protein in the transcytosis of the brain delivery vector Angiopep‐2. J Neurochem. 2008;106(4):1534–1544. doi: 10.1111/j.1471-4159.2008.05492.x
  • Ke W, Shao K, Huang R, et al. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials. 2009;30(36):6976–6985. doi: 10.1016/j.biomaterials.2009.08.049
  • Fillebeen C, Descamps L, Dehouck M-P, et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem. 1999;274(11):7011–7017. doi: 10.1074/jbc.274.11.7011
  • Sabra S, Agwa MM. Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications. Int j biol macromol. 2020;164:1046–1060. doi: 10.1016/j.ijbiomac.2020.07.167
  • Tran TH, Tran PTT, Truong DH. Lactoferrin and nanotechnology: the potential for cancer treatment. Pharmaceutics. 2023;15(5):1362. doi: 10.3390/pharmaceutics15051362
  • Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500–510. doi: 10.1038/nri3863
  • Zhang P, Hu L, Yin Q, et al. Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting delivery: synthesis, preparation and in vivo evaluation. JControlled Release. 2012;159(3):429–434. doi: 10.1016/j.jconrel.2012.01.031
  • Jefferies WA, Brandon MR, Hunt SV, et al. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312(5990):162–163. doi: 10.1038/312162a0
  • Gorick CM, Breza VR, Nowak KM, et al. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv Drug Delivery Rev. 2022;191:114583. doi: 10.1016/j.addr.2022.114583
  • McMahon D, Poon C, Hynynen K. Evaluating the safety profile of focused ultrasound and microbubble-mediated treatments to increase blood-brain barrier permeability. Expert Opin Drug Delivery. 2019;16(2):129–142. doi: 10.1080/17425247.2019.1567490

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.