863
Views
0
CrossRef citations to date
0
Altmetric
Review

Untethered shape-changing devices in the gastrointestinal tract

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1801-1822 | Received 30 Sep 2023, Accepted 01 Dec 2023, Published online: 11 Dec 2023

References

  • Ramai D, Zakhia K, Etienne D, et al. Philipp Bozzini (1773–1809): The earliest description of endoscopy. J Med Biogr. 2018;26(2):137–141.
  • Hopkins HH, Kapany NS. A flexible fibrescope, using static scanning. Nature. 1954;173(4392):39–41. doi: 10.1038/173039b0
  • Gangwani MK, Aziz A, Dahiya DS, et al. History of colonoscopy and technological advances: a narrative review. Transl Gastroenterol Hepatol. 2023;8:18. doi: 10.21037/tgh-23-4
  • Kurniawan N, Keuchel M. Flexible gastro-intestinal endoscopy — clinical challenges and technical achievements. Comput Struct Biotechnol J. 2017;15:168–179. doi: 10.1016/j.csbj.2017.01.004
  • Cummins G. Smart pills for gastrointestinal diagnostics and therapy. Adv Drug Deliv Rev. 2021;177:113931. doi: 10.1016/j.addr.2021.113931
  • Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy. Nature. 2000;405(6785):417.
  • Soffer S, Klang E, Shimon O, et al. Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis. Gastrointest Endosc. 2020;92(4):831–839.e8.
  • Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol. 2022;19(4):219–238. doi: 10.1038/s41575-021-00539-w
  • Lou J, Duan H, Qin Q, et al. Advances in oral drug delivery systems: challenges and opportunities. Pharmaceutics. 2023;15(2):484.
  • Ghosh A, Xu W, Gupta N, et al. Active matter therapeutics. Nano Today. 2020;31:31. doi: 10.1016/j.nantod.2019.100836
  • Spadoni I, Zagato E, Bertocchi A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science. 2015;350(6262):830–834.
  • Peery AF, Crockett SD, Murphy CC, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2021. Gastroenterology. 2022;162(2):621–644.
  • Osterberg L, Blaschke T. Adherence to medication. N Engl J Med. 2005;353(5):487–497. doi: 10.1056/NEJMra050100
  • Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol. 2020;11:524. doi: 10.3389/fphar.2020.00524
  • Thirumurthi S, Raju GS. Management of polypectomy complications. Gastrointest Endosc Clin N Am. 2015;25(2):335–357. doi: 10.1016/j.giec.2014.11.006
  • Mau MM, Sarker S, Terry BS. Ingestible devices for long-term gastrointestinal residency: a review. Prog Biomed Eng. 2021;3(4):042001. doi: 10.1088/2516-1091/ac1731
  • Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014;49(6):681–689. doi: 10.3109/00365521.2014.898326
  • Malachowski K, Jamal M, Jin Q, et al. Self-folding single cell grippers. Nano Lett. 2014;14:4164–4170. doi: 10.1021/nl500136a
  • Xin C, Jin D, Hu Y, et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano. 2021;15(11):18048–18059.
  • Leong TG, Randall CL, Benson BR, et al. Tetherless thermobiochemically actuated microgrippers. Proc Natl Acad Sci U S A. 2009;106:703–708. doi: 10.1073/pnas.0807698106
  • Zheng Z, Wang H, Dong L, et al. Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling. Nat Commun. 2021;12(1):411.
  • Zhang X, Chen G, Fu X, et al. Magneto-responsive microneedle robots for intestinal macromolecule delivery. Adv Mater. 2021;33:e2104932. doi: 10.1002/adma.202104932
  • Abramson A, Caffarel-Salvador E, Khang M, et al. An ingestible self-orienting system for oral delivery of macromolecules. Science. 2019;363(6427):611–615. doi: 10.1126/science.aau2277
  • Liu J, Pang Y, Zhang S, et al. Triggerable tough hydrogels for gastric resident dosage forms. Nat Commun. 2017;8(1):124.
  • Ienca R, Al Jarallah M, Caballero A, et al. The procedureless elipse gastric balloon program: multicenter experience in 1770 consecutive patients. Obes Surg. 2020;30(9):3354–3362.
  • Verma M, Vishwanath K, Eweje F, et al. A gastric resident drug delivery system for prolonged gram-level dosing of tuberculosis treatment. Sci Transl Med. 2019;11(483):11.
  • Verma M, Chu JN, Salama JAF, et al. Development of a long-acting direct-acting antiviral system for hepatitis C virus treatment in swine. Proc Natl Acad Sci U S A. 2020;117:11987–11994. doi: 10.1073/pnas.2004746117
  • Jia NZ, Gao Q, Sencadas V, et al. Shape memory-based gastric motility 3D mapping. Device. 2023;1(1):100010.
  • Gleysteen JJ. A history of intragastric balloons. Surg Obes Relat Dis. 2016;12:430–435. doi: 10.1016/j.soard.2015.10.074
  • Stavrou G, Shrewsbury A, Kotzampassi K. Six intragastric balloons: which to choose? World J Gastrointest Endosc. 2021;13(8):238–259. doi: 10.4253/wjge.v13.i8.238
  • Zhu C, Wen Y, Liu T, et al. An ingestible pill with CMOS fluorescence sensor array, bi-directional wireless interface and packaged optics for in-vivo bio-molecular sensing. IEEE Trans Biomed Circuits Syst. 2023;17(2):257–272.
  • Omidian H, Park K. Superporous hydrogels for drug delivery systems. Comprehensive Biomater. 2011;1:563–576. doi: 10.1016/b978-0-08-055294-1.00044-1
  • Dorkoosh FA, Verhoef JC, Borchard G, et al. Development and characterization of a novel peroral peptide drug delivery system. J Control Release. 2001;71(3):307–318.
  • Waimin JF, Nejati S, Jiang H, et al. Smart capsule for non-invasive sampling and studying of the gastrointestinal microbiome. RSC Adv. 2020;10:16313–16322. doi: 10.1039/c9ra10986b
  • Abramson A, Frederiksen MR, Vegge A, et al. Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nat Biotechnol. 2022;40(1):103–109.
  • Traverso G, Schoellhammer CM, Schroeder A, et al. Microneedles for drug delivery via the gastrointestinal tract. J Pharm Sci. 2015;104:362–367. doi: 10.1002/jps.24182
  • Rani therapeutics unveils high-capacity RaniPillTM device for oral delivery of biologics; reports preliminary 2021 consolidated financial results - Rani therapeutics, LLC. Rani Therapeutics, LLC. Available from: https://ir.ranitherapeutics.com/news-releases/news-release-details/rani-therapeutics-unveils-high-capacity-ranipilltm-device-oral.
  • Abramson A, Caffarel-Salvador E, Soares V, et al. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nature Med. 2019;25(10):1512–1518.
  • Miyashita S, Guitron S, Yoshida K, et al. Ingestible, controllable, and degradable origami robot for patching stomach wounds. 2016 IEEE International Conference on Robotics and Automation (ICRA); 2016. p. 909–916. doi: 10.1109/ICRA.2016.7487222
  • Ze Q, Wu S, Dai J, et al. Spinning-enabled wireless amphibious origami millirobot. Nat Commun. 2022;13(1):3118.
  • Hu W, Lum GZ, Mastrangeli M, et al. Small-scale soft-bodied robot with multimodal locomotion. Nature. 2018;554(7690):81–85.
  • Ze Q, Wu S, Nishikawa J, et al. Soft robotic origami crawler. Sci Adv. 2022;8(13):eabm7834. doi: 10.1126/sciadv.abm7834
  • Chen W, Wainer J, Ryoo SW, et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci Adv. 2022;8(1):eabk1792.
  • Huang L, Li L, Jiang Y, et al. Tumbler‐inspired microneedle containing robots: achieving rapid self‐orientation and peristalsis‐resistant adhesion for colonic administration. Adv Funct Mater. 2023;2304276(43). doi: 10.1002/adfm.202304276
  • Jørgensen JR, Thamdrup LHE, Kamguyan K, et al. Design of a self-unfolding delivery concept for oral administration of macromolecules. J Control Release. 2021;329:948–954. doi: 10.1016/j.jconrel.2020.10.024
  • Ghosh A, Li L, Xu L, et al. Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo. Sci Adv. 2020;6(44). doi: 10.1126/sciadv.abb4133
  • Ghosh A, Liu W, Li L, et al. Autonomous untethered microinjectors for gastrointestinal delivery of insulin. ACS Nano. 2022;16(10):16211–16220. doi: 10.1021/acsnano.2c05098
  • Ghosh A, Liu Y, Artemov D, et al. Magnetic resonance guided navigation of untethered microgrippers. Adv Healthc Mater. 2021;10:e2000869. doi: 10.1002/adhm.202000869
  • Gultepe E, Randhawa JS, Kadam S, et al. Biopsy with thermally-responsive untethered microtools. Adv Mater. 2013;25:514–519. doi: 10.1002/adma.201203348
  • Laflin KE, Morris CJ, Bassik N, et al. Tetherless microgrippers with transponder tags. J Microelectromech Syst. 2011;20(2):505–511.
  • Choi A, Gultepe E, Gracias DH. Pneumatic delivery of untethered microgrippers for minimally invasive biopsy. IEEE Int Conf Control Autom. 2017;2017:857–860. doi: 10.1109/ICCA.2017.8003172
  • Yim S, Gultepe E, Gracias DH, et al. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Biomed Eng. 2014;61(2):513–521.
  • Gao W, Kagan D, Pak OS, et al. Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small. 2012;8(3):460–467.
  • Park S, Koo K-I, Bang SM, et al. A novel microactuator for microbiopsy in capsular endoscopes. J Micromech Microeng. 2008;18(2):025032.
  • Kong K, Yim S, Choi S, et al. A robotic biopsy device for capsule endoscopy. J Med Device. 2012;6(3):031004.
  • Omidian H, Park K, Rocca JG. Recent developments in superporous hydrogels. J Pharm Pharmacol. 2007;59(3):317–327. doi: 10.1211/jpp.59.3.0001
  • Aran K, Chooljian M, Paredes J, et al. An oral microjet vaccination system elicits antibody production in rabbits. Sci Transl Med. 2017;9(380). doi: 10.1126/scitranslmed.aaf6413
  • Wang X, Xuan Z, Zhu X, et al. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. J Nanobiotechnology. 2020;18(1):108.
  • Lee H, Choi H, Lee M, et al. Preliminary study on alginate/NIPAM hydrogel-based soft microrobot for controlled drug delivery using electromagnetic actuation and near-infrared stimulus. Biomed Microdevices. 2018;20(4):103.
  • Do TN, Ho KY, Phee SJ. A magnetic soft endoscopic capsule-inflated intragastric balloon for weight management. Sci Rep. 2016;6(1):39486. doi: 10.1038/srep39486
  • Son D, Gilbert H, Sitti M Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy. 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017; p. 1132–1139, doi: 10.1109/ICRA.2017.7989135
  • Dhalla AK, Al-Shamsie Z, Beraki S, et al. A robotic pill for oral delivery of biotherapeutics: safety, tolerability, and performance in healthy subjects. Drug Deliv Transl Res. 2021;12(1):294–305.
  • Hoang MC, Le VH, Nguyen KT, et al. A robotic biopsy endoscope with magnetic 5-DOF locomotion and a retractable biopsy punch. Micromach. 2020;11(1):98.
  • Randall CL, Gultepe E, Gracias DH. Self-folding devices and materials for biomedical applications. Trends Biotechnol. 2012;30:138–146. doi: 10.1016/j.tibtech.2011.06.013
  • Ghosh A, Yoon C, Ongaro F, et al. Stimuli-responsive soft untethered grippers for drug delivery and robotic surgery. Front Mech Eng Chin. 2017;3:7. doi: 10.3389/fmech.2017.00007
  • Hines L, Petersen K, Lum GZ, et al. Soft actuators for small-scale robotics. Adv Mater. 2017;29: doi: 10.1002/adma.201603483
  • Zhou H, Mayorga-Martinez CC, Pané S, et al. Magnetically driven micro and nanorobots. Chem Rev. 2021;121(8):4999–5041.
  • Ongaro F, Scheggi S, Ghosh A, et al. Design, characterization and control of thermally-responsive and magnetically-actuated micro-grippers at the air-water interface. PLoS One. 2017;12(12):e0187441.
  • Go G, Nguyen VD, Jin Z, et al. A thermo-electromagnetically actuated microrobot for the targeted transport of therapeutic agents. Int J Control Autom Syst. 2018;16(3):1341–1354.
  • Breger JC, Yoon C, Xiao R, et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater Interfaces. 2015;7(5):3398–3405.
  • Peraza Hernandez EA, Hartl DJ, Lagoudas DC. Active origami: modeling, design, and applications. 1st ed. Cham Switzerland: Springer International Publishing; 2018. doi: 10.1007/978-3-319-91866-2
  • George D, Madou MJ, Peraza Hernandez EA. Programmable self-foldable films for origami-based manufacturing. Smart Mater Struct. 2021;30(2):025012. doi: 10.1088/1361-665X/abd004
  • Pandey S, Ewing M, Kunas A, et al. Algorithmic design of self-folding polyhedra. Proc Natl Acad Sci U S A. 2011;108:19885–19890. doi: 10.1073/pnas.1110857108
  • Demaine ED, Tachi T. Origamizer: a practical algorithm for folding any polyhedron. Wadern/Saarbruecken Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH; 2017. doi: 10.4230/LIPIcs.SoCG.2017.34
  • Xu T, Zhang J, Salehizadeh M, et al. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci Rob. 2019;4(29). doi: 10.1126/scirobotics.aav4494
  • Kim J, Chung SE, Choi S-E, et al. Programming magnetic anisotropy in polymeric microactuators. Nat Mater. 2011;10(10):747–752.
  • Kim Y, Yuk H, Zhao R, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature. 2018;558(7709):274–279.
  • Dong Y, Wang L, Xia N, et al. Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Sci Adv. 2022;8(25):eabn8932.
  • Lu H, Zhang M, Yang Y, et al. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat Commun. 2018;9(1):3944.
  • Le VH, Rodriguez HL, Lee C, et al. A soft-magnet-based drug-delivery module for active locomotive intestinal capsule endoscopy using an electromagnetic actuation system. Sens Actuators A Phys. 2016;243:81–89. doi: 10.1016/j.sna.2016.03.020
  • Kim SH, Ishiyama K. Magnetic robot and manipulation for active-locomotion with targeted drug release. IEEE ASME Trans Mechatron. 2014;19:1651–1659. doi: 10.1109/TMECH.2013.2292595
  • Song S, Yuan S, Zhang F, et al. Integrated design and decoupled control of anchoring and drug release for wireless capsule robots. IEEE ASME Trans Mechatron. 2022;27(5):2897–2907.
  • Zhou H, Alici G. A novel magnetic anchoring system for wireless capsule endoscopes operating within the gastrointestinal tract. IEEE ASME Trans Mechatron. 2019;24(3):1106–1116. doi: 10.1109/TMECH.2019.2909288
  • Ye D, Zhang F, Yuan S, et al. Magnetically driven wireless capsule robot with targeting biopsy function. 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 2019; p. 1222–1227, doi: 10.1109/ROBIO49542.2019.8961521
  • Simi M, Gerboni G, Menciassi A, et al. Magnetic torsion spring mechanism for a wireless biopsy capsule. J Med Device. 2013;7(4):041009.
  • Nudelman IL, Fuko V, Greif F, et al. Colonic anastomosis with the nickel-titanium temperature-dependent memory-shape device. Am J Surg. 2002;183:697–701. doi: 10.1016/s0002-9610(02)00857-7
  • Babaee S, Pajovic S, Kirtane AR, et al. Temperature-responsive biometamaterials for gastrointestinal applications. Sci Transl Med. 2019;11(488):11.
  • Pocek M, Maspes F, Masala S, et al. Palliative treatment of neoplastic strictures by self-expanding nitinol Strecker stent. Eur Radiol. 1996;6(2):230–235.
  • Sabahi N, Chen W, Wang C-H, et al. A review on additive manufacturing of shape-memory materials for biomedical applications. JOM. 2020;72(3):1229–1253.
  • Cwikiel W, Willén R, Stridbeck H, et al. Self-expanding stent in the treatment of benign esophageal strictures: experimental study in pigs and presentation of clinical cases. Radiology. 1993;187(3):667–671.
  • Heunis CM, Wang Z, de Vente G, et al. A magnetic bio-inspired soft carrier as a temperature-controlled gastrointestinal drug delivery system. Macromol biosci. 2023;23:e2200559. doi: 10.1002/mabi.202200559
  • Uboldi M, Pasini C, Pandini S, et al. Expandable drug delivery systems based on shape memory polymers: impact of film coating on mechanical properties and release and recovery performance. Pharmaceutics. 2022;14(12):2814.
  • Zhong H, Chan G, Hu Y, et al. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics. 2018;10(4):263.
  • Homayun B, Lin X, Choi H-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11(3):11. doi: 10.3390/pharmaceutics11030129
  • DiMatteo MR, Giordani PJ, Lepper HS, et al. Patient adherence and medical treatment outcomes: a meta-analysis. Med care. 2002;40(9):794–811.
  • Jimmy B, Jose J. Patient medication adherence: measures in daily practice. Oman Med J. 2011;26(3):155–159. doi: 10.5001/omj.2011.38
  • Altreuter DH, Kirtane AR, Grant T, et al. Changing the pill: developments toward the promise of an ultra-long-acting gastroretentive dosage form. Expert Opin Drug Deliv. 2018;15:1189–1198. doi: 10.1080/17425247.2018.1544615
  • Koziolek M, Grimm M, Schneider F, et al. Navigating the human gastrointestinal tract for oral drug delivery: uncharted waters and new frontiers. Adv Drug Deliv Rev. 2016;101:75–88. doi: 10.1016/j.addr.2016.03.009
  • Liu X, Steiger C, Lin S, et al. Ingestible hydrogel device. Nat Commun. 2019;10(1):1–10.
  • Bellinger AM, Jafari M, Grant TM, et al. Oral, ultra–long-lasting drug delivery: application toward malaria elimination goals. Sci Transl Med. 2016;8(365):365ra157.
  • Ghavami M, Pedersen J, Kjeldsen RB, et al. A self-unfolding proximity enabling device for oral delivery of macromolecules. J Control Release. 2023;361:40–52. doi: 10.1016/j.jconrel.2023.07.041
  • Krause J, Rosenbaum C, Grimm M, et al. The EsoCap-system – an innovative platform to drug targeting in the esophagus. J Control Release. 2020;327:1–7. doi: 10.1016/j.jconrel.2020.08.011
  • Levy JA, Straker MA, Stine JM, et al. Thermomechanical soft actuator for targeted delivery of anchoring drug deposits to the GI tract. Adv Mater Technol. 2023;8(2):2201365.
  • Tan R, Yang X, Lu H, et al. Nanofiber-based biodegradable millirobot with controllable anchoring and adaptive stepwise release functions. Matter. 2022;5(4):1277–1295.
  • Ying B, Huang H, Su Y, et al. Theranostic gastrointestinal residence systems. Device. 2023;1(2):100053.
  • Berner B, Cowles VE. Case studies in swelling polymeric gastric retentive tablets. Expert Opin Drug Deliv. 2006;3:541–548. doi: 10.1517/17425247.3.4.541
  • Gralise® once-daily (gabapentin) tablets. Available from: https://www.gralise.com/#safety.
  • Gabapentin Extended-Release - Depomed: Gabapentin ER, Gabapentin Gastric Retention, Gabapentin GR. Drugs R And D. 2007;8(5):317–320. doi: 10.2165/00126839-200708050-00005
  • Knezevic NN, Aijaz T, Candido KD, et al. The effect of once-daily gabapentin extended release formulation in patients with postamputation pain. Front Pharmacol. 2019;10:445022. doi: 10.3389/fphar.2019.00504
  • Glumetza Oral: Uses, Side Effects, Interactions, Pictures, Warnings & Dosing - WebMD. Available from: https://www.webmd.com/drugs/2/drug-144868/glumetza-oral/details.
  • Metformin extended release–DepoMed: metformin, metformin gastric retention, metformin GR. Drugs R D. 2004;5(4):231–233. doi: 10.2165/00126839-200405040-00009
  • Jin X, Wei C, Wu C, et al. Gastric fluid-induced double network hydrogel with high swelling ratio and long-term mechanical stability. Compos B Eng. 2022;236:109816. doi: 10.1016/j.compositesb.2022.109816
  • Raman R, Hua T, Gwynne D, et al. Light-degradable hydrogels as dynamic triggers for gastrointestinal applications. Sci Adv. 2020;6(3):eaay0065.
  • Laxmi CN, Ganga Bhavani M, Krishna Prasad V, et al. Floating drug delivery approaches for prolonged gastric retention. Res J Pharm Technol. 2013;6:706–710.
  • Kirtane AR, Abouzid O, Minahan D, et al. Development of an oral once-weekly drug delivery system for HIV antiretroviral therapy. Nat Commun. 2018;9(1):1–12.
  • Kanasty R, Low S, Bhise N, et al. A pharmaceutical answer to nonadherence: Once weekly oral memantine for Alzheimer’s disease. J Control Release. 2019;303:34–41. doi: 10.1016/j.jconrel.2019.03.022
  • Kirtane AR, Hua T, Hayward A, et al. A once-a-month oral contraceptive. Sci Transl Med. 2019;11(521):11. doi: 10.1126/scitranslmed.aay2602
  • Zhang S, Bellinger AM, Glettig DL, et al. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat Mater. 2015;14(10):1065–1071.
  • Kong YL, Zou X, McCandler CA, et al. 3D-printed gastric resident electronics. Adv Mater Technol. 2019;4:1800490. doi: 10.1002/admt.201800490
  • Navon N. The accordion pill®: unique oral delivery to enhance pharmacokinetics and therapeutic benefit of challenging drugs. Ther Deliv. 2019;10(7):433–442. doi: 10.4155/tde-2018-0067
  • LeWitt PA, Giladi N, Navon N. Pharmacokinetics and efficacy of a novel formulation of carbidopa-levodopa (accordion pill) in Parkinson’s disease. Parkinsonism Relat Disord. 2019;65:131–138. doi: 10.1016/j.parkreldis.2019.05.032
  • Malachowski K, Breger J, Kwag HR, et al. Stimuli-responsive theragrippers for chemomechanical controlled release. Angew Chem Int Ed Engl. 2014;53(31):8045–8049.
  • Melocchi A, Uboldi M, Inverardi N, et al. Expandable drug delivery system for gastric retention based on shape memory polymers: development via 4D printing and extrusion. Int J Pharm. 2019;571:118700. doi: 10.1016/j.ijpharm.2019.118700
  • Peachey C, Imran T. Moving towards oral delivery of biologics. Eur Pharm Rev. 2023;28:50–52.
  • Urquhart L. Top companies and drugs by sales in 2021. Nat Rev Drug Discov. 2022;21(4):251. doi: 10.1038/d41573-022-00047-9
  • Vllasaliu D, Thanou M, Stolnik S, et al. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin Drug Deliv. 2018;15:759–770. doi: 10.1080/17425247.2018.1504017
  • Peng H, Wang J, Chen J, et al. Challenges and opportunities in delivering oral peptides and proteins. Expert Opin Drug Deliv. 2023;1–21. doi: 10.1080/17425247.2023.2237408
  • New R. Oral delivery of biologics via the intestine. Pharmaceutics. 2020;13(1):18. doi: 10.3390/pharmaceutics13010018
  • Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov. 2019;19(4):277–289. doi: 10.1038/s41573-019-0053-0
  • Byrne J, Huang H-W, McRae JC, et al. Devices for drug delivery in the gastrointestinal tract: a review of systems physically interacting with the mucosa for enhanced delivery. Adv Drug Deliv Rev. 2021;177:113926. doi: 10.1016/j.addr.2021.113926
  • Caffarel-Salvador E, Abramson A, Langer R, et al. Oral delivery of biologics using drug-device combinations. Curr Opin Pharmacol. 2017;36:8–13. doi: 10.1016/j.coph.2017.07.003
  • Kaffash E, Shahbazi M-A, Hatami H, et al. An insight into gastrointestinal macromolecule delivery using physical oral devices. Drug Discov Today. 2022;27(8):2309–2321.
  • Luo Z, Paunović N, Leroux J-C. Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev. 2021;175:113814. doi: 10.1016/j.addr.2021.05.024
  • Abramson A, Kirtane AR, Shi Y. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter. 2022;5(3):975–987. doi: 10.1016/j.matt.2021.12.022
  • Hashim M, Korupolu R, Syed B, et al. Jejunal wall delivery of insulin via an ingestible capsule in anesthetized swine—A pharmacokinetic and pharmacodynamic study. Pharmacol Res Perspect. 2019;7(5):e00522. doi: 10.1002/prp2.522
  • Luo Z, Klein Cerrejon D, Römer S, et al. Boosting systemic absorption of peptides with a bioinspired buccal-stretching patch. Sci Transl Med. 2023;15(715):eabq1887.
  • Kwame G, Yeboah GSW. Site-specific drug delivery to the gastrointestinal tract. J Mol Pharm Org Process Res. 2013;1(2):e106. doi: 10.4172/2329-9053.1000e106
  • Lim AW, Talley NJ, Walker MM, et al. Current status and advances in esophageal drug delivery technology: influence of physiological, pathophysiological and pharmaceutical factors. Drug Deliv. 2023;30(1):2219423.
  • Krause J, Brokmann F, Rosenbaum C, et al. The challenges of drug delivery to the esophagus and how to overcome them. Expert Opin Drug Deliv. 2022;19:119–131. doi: 10.1080/17425247.2022.2033206
  • Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J. 2010;25(2):70–78. doi: 10.5001/omj.2010.24
  • Lee SH, Bajracharya R, Min JY, et al. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics. 2020;12(1):12.
  • Pinto JF. Site-specific drug delivery systems within the gastro-intestinal tract: from the mouth to the colon. Int J Pharm. 2010;395:44–52. doi: 10.1016/j.ijpharm.2010.05.003
  • Babaee S, Shi Y, Abbasalizadeh S, et al. Kirigami-inspired stents for sustained local delivery of therapeutics. Nat Mater. 2021;20(8):1085–1092.
  • Woods SP, Constandinou TG. A compact targeted drug delivery mechanism for a next generation wireless capsule endoscope. J Microbio Robot. 2016;11(1–4):19–34. doi: 10.1007/s12213-016-0088-9
  • Cortegoso Valdivia P, Robertson AR, De Boer NKH, et al. An overview of robotic capsules for drug delivery to the gastrointestinal tract. J Clin Med Res. 2021;10(24):5791.
  • Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS Pharm Sci Tech. 2015;16(4):731–741. doi: 10.1208/s12249-015-0350-9
  • Hongying L, Xitian P, Chengwen Z, et al. Design of site specific delivery capsule based on MEMS. 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, 2008; p. 498–501. doi: 10.1109/NEMS.2008.4484380
  • Wilding II, Hirst P, Connor A. Development of a new engineering-based capsule for human drug absorption studies. Pharm Sci Technol Today. 2000;3(11):385–392. doi: 10.1016/s1461-5347(00)00311-4
  • Xitian P, Hongying L, Kang W, et al. A novel remote controlled capsule for site-specific drug delivery in human GI tract. Int J Pharm. 2009;382(1–2):160–164.
  • Pi X, Lin Y, Wei K, et al. A novel micro-fabricated thruster for drug release in remote controlled capsule. Sens Actuators A Phys. 2010;159(2):227–232.
  • Groening R, Bensmann H. High frequency controlled capsules with integrated gas producing cells. Eur J Pharm Biopharm. 2009;72:282–284. doi: 10.1016/j.ejpb.2009.01.003
  • Becker D, Zhang J, Heimbach T, et al. Novel orally swallowable IntelliCap® device to quantify regional drug absorption in human GI tract using diltiazem as model drug. AAPS Pharm Sci Tech. 2014;15(6):1490–1497.
  • Thombre AG, Shamblin SL, Malhotra BK, et al. Pharmacoscintigraphy studies to assess the feasibility of a controlled release formulation of ziprasidone. J Control Release. 2015;213:10–17. doi: 10.1016/j.jconrel.2015.06.032
  • Parasrampuria DA, Kanamaru T, Connor A, et al. Evaluation of regional gastrointestinal absorption of edoxaban using the enterion capsule. J Clin Pharmacol. 2015;55:1286–1292. doi: 10.1002/jcph.540
  • Lee J, Lee H, Kwon S-H, et al. Active delivery of multi-layer drug-loaded microneedle patches using magnetically driven capsule. Med Eng Phys. 2020;85:87–96. doi: 10.1016/j.medengphy.2020.09.012
  • Zhou H, Alici G. A magnetically actuated novel robotic capsule for site-specific drug delivery inside the gastrointestinal tract. IEEE Trans Syst Man Cybern. 2022;52:4010–4020. doi: 10.1109/TSMC.2021.3088952
  • Yim S, Sitti M. Shape-programmable soft capsule robots for semi-implantable drug delivery. IEEE Trans Rob. 2012;28(5):1198–1202. doi: 10.1109/TRO.2012.2197309
  • Yu W, Rahimi R, Ochoa M, et al. A smart capsule with GI-tract-location-specific payload release. IEEE Trans Biomed Eng. 2015;62(9):2289–2295.
  • Huang H, Lyu Y, Nan K. Soft robot-enabled controlled release of oral drug formulations. Soft Matter. 2023;19(7):1269–1281. doi: 10.1039/d2sm01624a
  • Miyashita S, Guitron S, Ludersdorfer M, et al. An untethered miniature origami robot that self-folds, walks, swims, and degrades. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015;p. 1490–1496. doi: 10.1109/ICRA.2015.7139386
  • Pantula A, Datta B, Shi Y, et al. Untethered unidirectionally crawling gels driven by asymmetry in contact forces. Sci Rob. 2022;7(73):eadd2903.
  • Athas JC, Nguyen CP, Zarket BC, et al. Enzyme-triggered folding of hydrogels: Toward a mimic of the Venus flytrap. ACS Appl Mater Interfaces. 2016;8(29):19066–19074.
  • Soon RH, Yin Z, Dogan MA, et al. Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. Nat Commun. 2023;14(1):3320.
  • Leung BHK, Poon CCY, Zhang R, et al. A therapeutic wireless capsule for treatment of gastrointestinal haemorrhage by balloon tamponade effect. IEEE Trans Biomed Eng. 2017;64(5):1106–1114.
  • van Hooft JE, Uitdehaag MJ, Bruno MJ, et al. Efficacy and safety of the new WallFlex enteral stent in palliative treatment of malignant gastric outlet obstruction (DUOFLEX study): a prospective multicenter study. Gastrointest Endosc. 2009;69(6):1059–1066.
  • Abramson A, Dellal D, Kong YL, et al. Ingestible transiently anchoring electronics for microstimulation and conductive signaling. Sci Adv. 2020;6(35):eaaz0127.
  • Wang C, Wu Y, Dong X, et al. In situ sensing physiological properties of biological tissues using wireless miniature soft robots. Sci Adv. 2023;9(23):eadg3988. doi: 10.1126/sciadv.adg3988
  • Min J, Yang Y, Wu Z, et al. Robotics in the gut. Adv Ther. 2020;3(4):1900125.
  • Valdastri P, Quaglia C, Susilo E, et al. Wireless therapeutic endoscopic capsule: in vivo experiment. Endoscopy. 2008;40(12):979–982.
  • du Plessis d’Argentre A, Perry S, Iwata Y, et al. Programmable medicine: autonomous, ingestible, deployable hydrogel patch and plug for stomach ulcer therapy. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 2018;p. 1511–1518. doi: 10.1109/ICRA.2018.8460615
  • Kang HW, Kim SG. Upper gastrointestinal stent insertion in malignant and Benign Disorders. Clin Endosc. 2015;48(3):187–193. doi: 10.5946/ce.2015.48.3.187
  • Kochar R, Shah N. Enteral stents: from esophagus to colon. Gastrointest Endosc. 2013;78:913–918. doi: 10.1016/j.gie.2013.07.015
  • Conigliaro R, Battaglia G, Repici A, et al. Polyflex stents for malignant oesophageal and oesophagogastric stricture: a prospective, multicentric study. Eur J Gastroenterol Hepatol. 2007;19:195–203. doi: 10.1097/MEG.0b013e328013a418
  • Sreedharan A, Harris K, Crellin A, et al. Interventions for dysphagia in oesophageal cancer. Cochrane Database Syst Rev. 2009;CD005048. doi: 10.1002/14651858.CD005048.pub2
  • Talreja JP, Eloubeidi MA, Sauer BG, et al. Fully covered removable nitinol self-expandable metal stents (SEMS) in malignant strictures of the esophagus: a multicenter analysis. Surg Endosc. 2012;26(6):1664–1669.
  • Hirdes MMC, Siersema PD, Vleggaar FP. A new fully covered metal stent for the treatment of benign and malignant dysphagia: a prospective follow-up study. Gastrointest Endosc. 2012;75:712–718. doi: 10.1016/j.gie.2011.11.036
  • Overweight & Obesity Statistics. National Institute of diabetes and digestive and kidney diseases. NIDDK - National Institute Of Diabetes And Digestive And Kidney Diseases; 2023. Available from: https://www.niddk.nih.gov/health-information/health-statistics/overweight-obesity.
  • Arterburn DE, Telem DA, Kushner RF, et al. Benefits and risks of bariatric surgery in adults: a review. JAMA. 2020;324(9):879–887.
  • Wolfe BM, Kvach E, Eckel RH. Treatment of obesity: weight loss and bariatric surgery. Circ Res. 2016;118(11):1844–1855. doi: 10.1161/CIRCRESAHA.116.307591
  • Wang Y, Kassab GS. Efficacy and mechanisms of gastric volume-restriction bariatric devices. Front Physiol. 2021;12:761481. doi: 10.3389/fphys.2021.761481
  • Mauro A, Lusetti F, Scalvini D, et al. A comprehensive review on bariatric endoscopy: where we are now and where we are going. Medicina. 2023;59(3):636.
  • Kumar N, Bazerbachi F, Rustagi T, et al. The influence of the Orbera intragastric balloon filling volumes on weight loss, tolerability, and adverse events: a systematic review and meta-analysis. Obes Surg. 2017;27(9):2272–2278.
  • De Peppo F, Caccamo R, Adorisio O, et al. The Obalon swallowable intragastric balloon in pediatric and adolescent morbid obesity. Endosc Int Open. 2017;5(01):E59–E63.
  • Usuy E, Brooks J. Response rates with the Spatz3 adjustable balloon. Obes Surg. 2018;28(5):1271–1276. doi: 10.1007/s11695-017-2994-x
  • Fittipaldi-Fernandez RJ, Zotarelli-Filho IJ, Diestel CF, et al. Randomized prospective clinical study of Spatz3® adjustable intragastric balloon treatment with a control group: a large-scale Brazilian experiment. Obes Surg. 2021;31(2):787–796.
  • Do TN, Seah TET, Ho KY, et al. Development and testing of a magnetically actuated capsule endoscopy for obesity treatment. PLoS One. 2016;11(1):e0148035.
  • Phan PT, Tiong AMH, Miyasaka M, et al. EndoPil: a magnetically actuated swallowable capsule for weight management: development and trials. Ann Biomed Eng. 2021;49(5):1391–1401.
  • Kencana AP, Rasouli M, Huynh VA, et al. An ingestible wireless capsule for treatment of obesity. Conf Proc IEEE Eng Med Biol Soc. 2010; 2010: p. 963–966. doi: 10.1109/IEMBS.2010.5627585
  • Yan L, Wang T, Liu D, et al. Capsule robot for obesity treatment with wireless powering and communication. IEEE Trans Ind Electron. 2015;62(2):1125–1133.
  • Yang H, Yang H, Zhu C, et al. Highly expandable edible hydrogels for the prevention and treatment of obesity through dietary intervention. Food Hydrocoll. 2023;144:108946. doi: 10.1016/j.foodhyd.2023.108946
  • Aronne LJ, Anderson JE, Sannino A, et al. Recent advances in therapies utilizing superabsorbent hydrogel technology for weight management: a review. Obesity Sci Prac. 2022;8(3):363–370.
  • Greenway FL, Aronne LJ, Raben A, et al. A randomized, double-blind, placebo-controlled study of Gelesis100: a novel nonsystemic oral hydrogel for weight loss. Obesity. 2019;27(2):205–216.
  • Giruzzi N. Plenity (Oral Superabsorbent Hydrogel). Clin Diabetes. 2020;38(3):313–314. doi: 10.2337/cd20-0032
  • Cutts TF, Luo J, Starkebaum W, et al. Is gastric electrical stimulation superior to standard pharmacologic therapy in improving GI symptoms, healthcare resources, and long-term health care benefits? Neurogastroenterol Motil. 2005;17(1):35–43.
  • Abell TL, Yamada G, McCallum RW, et al. Effectiveness of gastric electrical stimulation in gastroparesis: results from a large prospectively collected database of national gastroparesis registries. Neurogastroenterol Motil. 2019;31(12):e13714.
  • Maisiyiti A, Chen JD. Systematic review on gastric electrical stimulation in obesity treatment. Expert Rev Med Devices. 2019;16(10):855–861. doi: 10.1080/17434440.2019.1673728
  • Zhang C, Pan C, Chan KF, et al. Wirelessly powered deformable electronic stent for noninvasive electrical stimulation of lower esophageal sphincter. Sci Adv. 2023;9(10):eade8622.
  • Peery AF, Dellon ES, Lund J, et al. Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology. 2012;143(5):1179–1187.e3.
  • Slawinski PR, Obstein KL, Valdastri P. Emerging issues and future developments in capsule endoscopy. Tech Gastrointest Endosc. 2015;17:40–46. doi: 10.1016/j.tgie.2015.02.006
  • Yim S, Sitti M. Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans Robot. 2012;28(1):183–194. doi: 10.1109/TRO.2011.2163861
  • Zhou H, Alici G, Munoz F. A magnetically actuated anchoring system for a wireless endoscopic capsule. Biomed Microdevices. 2016;18(6):102. doi: 10.1007/s10544-016-0129-0
  • Wang T, Hu W, Ren Z, et al. Ultrasound-guided wireless tubular robotic anchoring system. IEEE Robot Autom Lett. 2020;5(3):4859–4866.
  • Zhang F, Ye D, Song S, et al. Design of a novel biopsy capsule robot with anchoring function for intestinal tract. 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2019. p. 1471–1476. doi: 10.1109/ROBIO49542.2019.8961585
  • Hajishafiee M, Bitarafan V, Feinle-Bisset C. Gastrointestinal sensing of meal-related signals in humans, and dysregulations in eating-related disorders. Nutrients. 2019;11(6):11. doi: 10.3390/nu11061298
  • Gu B-H, Kim M, Yun C-H. Regulation of gastrointestinal immunity by metabolites. Nutrients. 2021;13(1):167. doi: 10.3390/nu13010167
  • Nakamura R, Izumi S, Kawaguchi H, et al. Swallowable sensing device for long-term gastrointestinal tract monitoring. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:3039–3042. doi: 10.1109/EMBC.2016.7591370
  • Xie W, Lewis WM, Kaser J, et al. Design and validation of a biosensor implantation capsule robot. J Biomech Eng. 2017;139: doi: 10.1115/1.4036607
  • Liu X, Yang Y, Inda ME, et al. Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv Funct Mater. 2021;31(27):31.
  • Dagdeviren C, Javid F, Joe P, et al. Flexible piezoelectric devices for gastrointestinal motility sensing. Nat Biomed Eng. 2017;1(10):807–817.
  • Nejati S, Wang J, Sedaghat S, et al. Smart capsule for targeted proximal colon microbiome sampling. Acta Biomater. 2022;154:83–96. doi: 10.1016/j.actbio.2022.09.050
  • Chen L, Gruzinskyte L, Jørgensen SL, et al. An ingestible self-polymerizing system for targeted sampling of gut microbiota and biomarkers. ACS Nano. 2020;14(9):12072–12081.
  • Rehan M, Al-Bahadly I, Thomas DG, et al. Development of a robotic capsule for in vivo sampling of gut microbiota. IEEE Robot Autom Lett. 2022;7(4):9517–9524.
  • Ye D, Xue J, Yuan S, et al. Design and control of a magnetically-actuated capsule robot with biopsy function. IEEE Trans Biomed Eng. 2022;69(9):2905–2915.
  • Zheng Z, Wang H, Dong L, et al. Author correction: ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling. Nat Commun. 2021;12(1):1598.
  • Anacleto P, Gultepe E, Gomes S, et al. Self-folding microcube antennas for wireless power transfer in dispersive media. Technology. 2016;4(2):120–129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.