615
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeted transport of biotherapeutics at the blood-brain barrier

, , , &
Pages 1823-1838 | Received 05 Oct 2023, Accepted 05 Dec 2023, Published online: 11 Dec 2023

References

  • Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood– brain barrier. Neurobiology Of Disease. 2010;37(1):13–25. doi: 10.1016/j.nbd.2009.07.030
  • Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood–brain barrier. Fluids Barriers CNS. 2018;15(1). doi: 10.1186/s12987-018-0113-6
  • Pardridge WM. The blood-brain barrier. Bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14. doi: 10.1602/neurorx.2.1.3
  • Pardridge WM. Advanced blood–brain barrier drug delivery. Pharmaceutics. doi: 10.3390/pharmaceutics15010093
  • Zuchero YJ, Chen X, Bien-Ly N, et al. Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016;89(1):70–82. doi: 10.1016/j.neuron.2015.11.024
  • Sonoda H, Morimoto H, Yoden E, et al. A blood-brain-barrier-penetrating anti- human transferrin receptor antibody fusion protein for neuronopathic mucopolysaccharidosis II. Mol Ther. 2018;26(5):1366–1374. doi: 10.1016/j.ymthe.2018.02.032
  • Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81(1):49–60. doi: 10.1016/j.neuron.2013.10.061
  • Kariolis MS, Wells RC, Getz JA, et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med. 2020;12(545). doi: 10.1126/scitranslmed.aay1359
  • Chew KS, Wells RC, Moshkforoush A, et al. CD98hc is a target for brain delivery of biotherapeutics. Nat Commun. 2023;14(1). doi: 10.1038/s41467-023-40681-4
  • Barker SJ, Thayer MB, Kim C, et al. Targeting transferrin receptor to transport antisense oligonucleotides across the blood-brain barrier. bioRxiv. doi: 10.1101/2023.04.25.538145
  • Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. The Journal Of Cell Biology. 1969;3:648–677. doi: 10.1083/jcb.40.3.648
  • Hartmann DA, Berthiaume AA, Grant RI, et al. Brain capillary pericytes exert a substantial but slow influence on blood flow. Nat Neurosci. 2021;24(5):633–645. doi: 10.1038/s41593-020-00793-2
  • Sargent SM, Bonney SK, Li Y, et al. Endothelial structure contributes to heterogeneity in brain capillary diameter. Vasc Biol. 2023;5(1). doi: 10.1530/VB-23-0010
  • Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020;17(1). doi: 10.1186/s12987-020-00230-3
  • Ando Y, Okada H, Takemura G, et al. Brain-specific ultrastructure of capillary endothelial glycocalyx and its possible contribution for blood brain barrier. Sci Rep. 2018;8(1). doi: 10.1038/s41598-018-35976-2
  • Kutuzov N, Flyvbjerg H, Lauritzen M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood–brain barrier. Proc Natl Acad Sci USA. 2018;115(40). doi: 10.1073/pnas.1802155115
  • Coomber BL, Stewart PA. Three-dimensional reconstruction of vesicles in endothelium of blood-brain barrier versus highly permeable microvessels. Anat Rec. 1986;215(3):256–261. doi: 10.1002/ar.1092150308
  • Noguchi Y, Yamamoto T, Shibata Y. Distribution of endothelial vesicles in the microvasculature of skeletal muscle and brain cortex of the rat, as demonstrated by tannic acid tracer analysis. Cell Tissue Res. 1986. doi: 10.1007/BF00215188 246 3 487–494
  • Roberts RL, Fine RE, Sandra A. Receptor-mediated endocytosis of transferrin at the blood-brain barrier. Journal Of Cell Science. 1993;104(2):521–532. doi: 10.1242/jcs.104.2.521
  • van Deurs B, Amtorp O. Blood-brain barrier in rats to the hemepetide microperoxidase. Neuroscience. 1978;3(8):737–748. doi: 10.1016/0306-4522(78)90069-6
  • Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. The Journal Of Cell Biology. 1967;34(1):207–217. doi: 10.1083/jcb.34.1.207
  • Toth AE, Holst MR, Nielsen MS. Vesicular transport machinery in brain endothelial cells: what we know and what we do not. CPD. 2020;26(13):1405–1416. doi: 10.2174/1381612826666200212113421
  • Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412. doi: 10.1101/cshperspect.a020412
  • Andreone BJ, Chow BW, Tata A, et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron. 2017;94(3):581–594.e5. doi: 10.1016/j.neuron.2017.03.043
  • Kirchhausen T, Owen D, Harrison SC. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harbor Perspectives In Biology. 2014;6(5):a016725–a016725. doi: 10.1101/cshperspect.a016725
  • Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab. 2017;37(10):3300–3317. doi: 10.1177/0271678X17722436
  • Del Zoppo GJ, Milner R. Integrin–Matrix Interactions in the Cerebral Microvasculature. Arterioscler Thromb Vasc Biol. 2006;26(9):1966–1975. doi: 10.1161/01.ATV.0000232525.65682.a2
  • Hösli L, Zuend M, Bredell G, et al. Direct vascular contact is a hallmark of cerebral astrocytes. Cell Reports. 2022;39(1):110599. doi: 10.1016/j.celrep.2022.110599
  • Muldoon LL, Pagel MA, Kroll RA, et al. A physiological barrier distal to the anatomic blood-brain barrier in a model of transvascular delivery. AJNR Am J Neuroradiol. 1999;20(2): 217–222 . PMID:10094341.
  • Doran SE, Ren XD, Betz AL, et al. Gene expression from recombinant viral vectors in the central nervous system after blood-brain barrier disruption. Neurosurgery. 1995;36(5):965–970. doi: 10.1227/00006123-199505000-00012
  • Thomsen MS, Johnsen KB, Kucharz K, et al. Blood–brain barrier transport of transferrin receptor-targeted nanoparticles. Pharmaceutics. 2022;14(10):2237. doi: 10.3390/pharmaceutics14102237
  • Routhe LJ, Thomsen MS, Moos T. The significance of the choroid plexus for cerebral iron homeostasis. In: Praetorius J, Blazer-Yost B Damkier H, editors. Role of the choroid plexus in health and disease. Physiology in health and disease. (NY) NY: Springer; 2020. doi: 10.1007/978-1-0716-0536-3_5
  • Bickel U. Modeling blood–brain barrier permeability to solutes and drugs in vivo. Pharmaceutics. 2022;14(8):1696. doi: 10.3390/pharmaceutics14081696
  • Pizzo ME, Wolak DJ, Kumar NN, et al. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. The Journal Of Physiology. 2018;596(3):445–475. doi: 10.1113/JP275105
  • Saunders NR, Dziegielewska KM, Møllgård K, et al. Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. The Journal Of Physiology. 2018;596(23):5723–5756. doi: 10.1113/JP275376
  • Nakagawa S, Deli MA, Kawaguchi H, et al. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochemistry International. 2009;54(3–4):253–263. doi: 10.1016/j.neuint.2008.12.002
  • Thomsen MS, Humle N, Hede E, et al. The blood-brain barrier studied in vitro across species. PLoS One. 2021;16(3):e0236770. doi: 10.1371/journal.pone.0236770.[38]
  • Daneman R, Zhou L, Kebede AA, et al. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010. doi: 10.1038/nature09513
  • Milner R, Huang X, Wu J, et al. Distinct roles for astrocyte αvβ5 and αvβ8 integrins in adhesion and migration. Journal Of Cell Science. 1999;112(23):4271–4279. doi: 10.1242/jcs.112.23.4271
  • Thomsen MS, Birkelund S, Burkhart A, et al. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood–brain barrier. Journal Of Neurochemistry. 2017;140(5):741–754. doi: 10.1111/jnc.13747
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–185. doi: 10.1124/pr.57.2.4
  • Wolburg-Buchholz K, Mack AF, Steiner E, et al. Loss of astrocyte polarity marks blood–brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol. 2009;118(2):219–233. doi: 10.1007/s00401-009-0558-4
  • Xu J, Ling EA. Studies of the ultrastructure and permeability of the blood-brain barrier in the developing corpus callosum in postnatal rat brain using electron dense tracers. J Anat. 1994;184(Pt 2): 227–237. PMID: 8014116.
  • Bär T. Patterns of vascularization in the developing cerebral cortex. Ciba Found Symp. 1983;100:20–36. doi: 10.1002/9780470720813.ch3
  • Moos T, Oates PS, Morgan EH. Expression of the neuronal transferrin receptor is age dependent and susceptible to iron deficiency. J Comp Neurol. 1998;398(3):420–430. PMID: 9714152. doi: 10.1002/(SICI)1096-9861(19980831)398:3<420:AID-CNE8>3.0.CO;2-1
  • Fisher J, Devraj K, Ingram J, et al. Ferritin: a novel mechanism for delivery of iron to the brain and other organs. American Journal Of Physiology-Cell Physiology. 2007;293(2):C641–C649. doi: 10.1152/ajpcell.00599.2006
  • Li L, Fang CJ, Ryan JC, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci USA. 2010;107(8):3505–3510. doi: 10.1073/pnas.0913192107
  • Andreone BJ, Lacoste B, Gu C. Neuronal and vascular interactions. Annu Rev Neurosci. 2015;38(1):25–46. doi: 10.1146/annurev-neuro-071714-033835
  • Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–561. doi: 10.1038/nature09522
  • Betsholtz C, Keller A. PDGF, pericytes and the pathogenesis of idiopathic basal ganglia calcification (IBGC). Brain Pathology. 2014;24(4):387–395. doi: 10.1111/bpa.12158
  • Coelho-Santos V, Shih AY. Postnatal development of cerebrovascular structure and the neurogliovascular unit. Wiley Interdiscip Rev Dev Biol. 2020;9(2). doi: 10.1002/wdev.363
  • van Gelder W, Huijskes-Heins MI, van Dijk JP, et al. Quantification of different transferrin receptor pools in primary cultures of porcine blood-brain barrier endothelial cells. J Neurochem. 1995;64(6):2708–2715. doi: 10.1046/j.1471-4159.1995.64062708.x
  • Moos T, Morgan EH. A morphological study of the developmentally regulated transport of iron into the brain. Dev Neurosci. 2002;24(2–3):99–105. doi: 10.1159/000065702
  • Rouault TA. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci. 2013;14(8):551–564. doi: 10.1038/nrn3453
  • Moos T, Morgan EH. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat. J Neurochem. 2001;79(1):119–129. doi: 10.1046/j.1471/4159.2001.00541.x
  • Marcos-Contreras OA, Greineder CF, Kiseleva RY, et al. Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood–brain barrier. Proc Natl Acad Sci USA. 2020;117(7):3405–3414. doi: 10.1073/pnas.1912012117
  • Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3(84). doi: 10.1126/scitranslmed.3002230
  • Stocki P, Szary J, Demydchuk M, et al. CDR3 variants of the TXB2 shuttle with increased TfR1 association rate and enhanced brain penetration. Pharmaceutics. 2023;15(3):739. doi: 10.3390/pharmaceutics15030739
  • Palsa K, Baringer SL, Shenoy G, et al. Exosomes are involved in iron transport from human blood–brain barrier endothelial cells and are modified by endothelial cell iron status. Journal Of Biological Chemistry. 2023;299(2):102868. doi: 10.1016/j.jbc.2022.102868
  • Yang AC, Stevens MY, Chen MB, et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature. 2020;2453–z. doi: 10.1038/s41586-020-
  • Yogi A, Hussack G, van Faassen H, et al. Brain delivery of IGF1R5, a single- domain antibody targeting insulin-like growth factor-1 receptor. Pharmaceutics. 2022;14(7):1452. doi: 10.3390/pharmaceutics14071452
  • Shin JW, An S, Kim D, et al. Grabody B, an IGF1 receptor-based shuttle, mediates efficient delivery of biologics across the blood-brain barrier. Cell Rep Methods. 2022;2(11):100338. doi: 10.1016/j.crmeth.2022.100338
  • Fan K, Jia X, Zhou M, et al. Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano. 2018;12(5):4105–4115. doi: 10.1021/acsnano.7b06969
  • Nästle L, Deuschle FC, Morath V, et al. FerryCalin: an engineered Lipocalin protein directed against the transferrin receptor with potential for brain drug delivery. Chembiochem. 2023;24(10). doi: 10.1002/cbic.202200795
  • Bien-Ly N, Yu YJ, Bumbaca D, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. Journal Of Experimental Medicine. 2014;211(2):233–244. doi: 10.1084/jem.20131660
  • Couch JA, Yu YJ, Zhang Y, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci Transl Med. 2013;5(183):183ra57, 1–12. doi: 10.1126/scitranslmed.3005338
  • Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Advanced Drug Delivery Reviews. 2007;59(8):748–758. doi: 10.1016/j.addr.2007.06.008
  • Johnsen KB, Burkhart A, Thomsen LB, et al. Targeting the transferrin receptor for brain drug delivery. Progress In Neurobiology. 2019;181:101665. doi: 10.1016/j.pneurobio.2019.101665
  • Nielsen SSE, Holst MR, Langthaler K, et al. Apicobasal transferrin receptor localization and trafficking in brain capillary endothelial cells. Fluids Barriers CNS. 2023;20(1). doi: 10.1186/s12987-022-00404-1
  • Siupka P, Hersom MN, Lykke-Hartmann K, et al. Bidirectional apical–basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2017;37(7):2598–2613. doi: 10.1177/0271678X17700665
  • Haqqani AS, Thom G, Burrell M, et al. Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood–brain barrier in vitro is dependent on its binding affinity. J Neurochem. 2018;146(6):735–752. doi: 10.1111/jnc.14482
  • Sade H, Baumgartner C, Hugenmatter A, et al. A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS One. 2014;9(4):e96340. doi: 10.1371/journal.pone.0096340
  • Terstappen GC, Meyer AH, Bell RD, et al. Strategies for delivering therapeutics across the blood–brain barrier. Nat Rev Drug Discov. 2021;20(5):021- 00139–y. doi: 10.1038/s41573-
  • Qu M, Lin Q, Huang L, et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. Journal Of Controlled Release. 2018;287:156–166. doi: 10.1016/j.jconrel.2018.08.035
  • Chen CC, Liu L, Ma F, et al. Elucidation of exosome migration across the blood- brain barrier model in vitro. Cell Mol Bioeng. 2016;0458–3. doi: 10.1007/s12195-016-
  • Stocki P, Szary J, Rasmussen CLM, et al. Blood-brain barrier transport using a high affinity, brain-selective VNAR antibody targeting transferrin receptor 1. FASEB J. 2021;35(2). doi: 10.1096/fj.202001787R
  • Georgieva JV, Katt M, Ye Z, et al. The 46.1 antibody mediates neurotensin uptake into the CNS and the effects depend on the route of intravenous administration. Pharmaceutics. 2022;14(8):1706. doi: 10.3390/pharmaceutics14081706
  • Triguero D, Buciak J, Pardridge WM. Capillary depletion method for quantification of blood–brain barrier transport of circulating peptides and plasma proteins. Journal Of Neurochemistry. 1990;54(6):1882–1888. doi: 10.1111/j.1471-4159
  • Hultqvist G, Syvänen S, Fang XT, et al. Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics. 2017;7(2):308–318. doi: 10.7150/thno.17155
  • Kucharz K, Kutuzov N, Zhukov O, et al. Shedding light on the blood–brain barrier transport with Two-Photon Microscopy in vivo. Pharm Res. 2022;39(7):1457–1468. doi: 10.1007/s11095-022-03266-2
  • Holst CB, Brøchner CB, Vitting-Seerup K, et al. The HOPX and BLBP landscape and gliogenic regions in developing human brain. Journal Of Anatomy. 2023;243(1):23–38. doi: 10.1111/joa.13844
  • Wouters Y, Jaspers T, Rué L, et al. Vhhs as tools for therapeutic protein delivery to the central nervous system. Fluids Barriers CNS. 2022;19(1):00374–4. doi: 10.1186/s12987-022-
  • Esparza TJ, Su S, Francescutti CM, et al. Enhanced in vivo blood brain barrier transcytosis of macromolecular cargo using an engineered pH-sensitive mouse transferrin receptor binding nanobody. Fluids Barriers CNS. 2023;20(1). doi: 10.1186/s12987-023-00462-z
  • Johnsen KB, Bak M, Kempen PJ, et al. Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles. Theranostics. 2018;8(12):3416–3436. doi: 10.7150/thno.25228
  • Kucharz K, Kristensen K, Johnsen KB, et al. Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nat Commun. 2021;12(1). doi: 10.1038/s41467-021-24323-1
  • Alata W, Yogi A, Brunette E, et al. Targeting insulin-like growth factor-1 receptor (IGF1R) for brain delivery of biologics. The FASEB Journal. 2022;36(3). doi: 10.1096/fj.202101644R
  • Hede E, Christiansen CB, Heegaard CW, et al. Gene therapy to the blood–brain barrier with resulting protein secretion as a strategy for treatment of Niemann Picks type C2 disease. Journal Of Neurochemistry. 2021;156(3):290–308. doi: 10.1111/jnc.14982
  • Rasmussen CLM, Hede E, Routhe LJ, et al. A novel strategy for delivering N iemann- P ick type C2 proteins across the blood–brain barrier using the brain endothelial-specific AAV-BR1 virus. Journal Of Neurochemistry. 2023;164(1):6–28. doi: 10.1111/jnc.15621
  • Helms HC, Abbott NJ, Burek M, et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36(5):862–890. doi: 10.1177/0271678X16630991
  • Christensen SC, Hudecz D, Jensen A, et al. Basigin antibodies with capacity for drug delivery across brain endothelial cells. Mol Neurobiol. 2021;58(9):4392–4403. doi: 10.1007/s12035-021-02421-x
  • Manthe RL, Loeck M, Bhowmick T, et al. Intertwined mechanisms define transport of anti-ICAM nanocarriers across the endothelium and brain delivery of a therapeutic. Journal Of Controlled Release. 2020;324:181–193. doi: 10.1016/j.jconrel.2020.05.009
  • Faresjö R, Sehlin D, Syvänen S. Age, dose, and binding to TfR on blood cells influence brain delivery of a TfR-transported antibody. Fluids Barriers CNS. 2023;20(1). doi: 10.1186/s12987-023-00435-2
  • Edavettal S, Cejudo-Martin P, Dasgupta B, et al. Enhanced delivery of antibodies across the blood-brain barrier via TEMs with inherent receptor-mediated phagocytosis. Med. 2022;3(12):860–882.e15. doi: 10.1016/j.medj.2022.09.007
  • Borges LF, Elliott PJ, Gill R, et al. Selective extraction of small and large molecules from the cerebrospinal fluid by purkinje neurons. Science. 1985;228(4697):346–348. doi: 10.1126/science.2580350
  • Arguello A, Mahon CS, Calvert MEK, et al. Molecular architecture determines brain delivery of a transferrin receptor–targeted lysosomal enzyme. J Exp Med. 2022;219(3). doi: 10.1084/jem.20211057
  • Gehrlein A, Udayar V, Anastasi N, et al. Targeting neuronal lysosomal dysfunction caused by β-glucocerebrosidase deficiency with an enzyme-based brain shuttle construct. Nat Commun. 2023;14(1). doi: 10.1038/s41467-023-37632-4
  • Ullman JC, Arguello A, Getz JA, et al. Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci Transl Med. 2020;12(545). doi: 10.1126/scitranslmed.aay1163
  • Gosk S, Vermehren C, Storm G, et al. Targeting anti—transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cereb Blood Flow Metab. 2004;24(11):1193–1204. doi: 10.1097/01.WCB.0000135592.28823.47
  • Campos CR, Kemble AM, Niewoehner J, et al. Brain shuttle neprilysin reduces central amyloid-β levels. PLoS One. 2020;15(3):e0229850. doi: 10.1371/journal.pone.0229850
  • Johnsen KB, Burkhart A, Melander F, et al. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci Rep. 2017;7(1):1. doi: 10.1038/s41598-017-11220-1
  • Kahana M, Weizman A, Gabay M, et al. Liposome-based targeting of dopamine to the brain: a novel approach for the treatment of Parkinson’s disease. Mol Psychiatry. 2021;26(6):2626–2632. doi: 10.1038/s41380-020-0742-4
  • Zhao Y, Yue P, Peng Y, et al. Recent advances in drug delivery systems for targeting brain tumors. Drug Deliv. 2023;30(1):1–18. doi: 10.1080/10717544.2022.2154409
  • D’Souza A, Dave KM, Stetler RA, et al. Targeting the blood-brain barrier for the delivery of stroke therapies. Advanced Drug Delivery Reviews. 2021;171:332–351. doi: 10.1016/j.addr.2021.01.015
  • Baghirov H, Snipstad S, Sulheim E, et al. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model. PLoS One. 2018;13(1):e0191102. doi: 10.1371/journal.pone.0191102
  • Liu D, Zhu M, Zhang Y, et al. Crossing the blood-brain barrier with AAV vectors. Metab Brain Dis. 2021;36(1):45–52. doi: 10.1007/s11011-020-00630-2
  • Zhou K, Han J, Wang Y, et al. Routes of administration for adeno- associated viruses carrying gene therapies for brain diseases. Front Mol Neurosci. 2022. doi: 10.3389/fnmol.2022.988914
  • Körbelin J, Dogbevia G, Michelfelder S, et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol Med. 2016;8(6):609–625. doi: 10.15252/emmm.201506078
  • Santisteban MM, Ahn SJ, Lane D, et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension. 2020;76(3):795–807. doi: 10.1161/HYPERTENSIONAHA.120.15581
  • Nikolakopoulou AM, Wang Y, Ma Q, et al. Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin a. Journal Of Experimental Medicine. 2021;218(4). doi: 10.1084/jem.20202207
  • Sundaram SM, Arrulo Pereira A, Müller-Fielitz H, et al. Gene therapy targeting the blood–brain barrier improves neurological symptoms in a model of genetic MCT8 deficiency. Brain. 2022;145(12):4264–4274. doi: 10.1093/brain/awac243
  • Aydin S, Pareja J, Schallenberg VM, et al. Antigen recognition detains CD8+ T cells at the blood-brain barrier and contributes to its breakdown. Nat Commun. 2023;14(1). doi: 10.1038/s41467-023-38703-2
  • Kawabata H, Konno A, Matsuzaki Y, et al. A blood-brain barrier-penetrating AAV2 mutant created by a brain microvasculature endothelial cell-targeted AAV2 variant. Molecular Therapy Methods & Clinical Development. 2023;29:81–92. doi: 10.1016/j.omtm.2023.02.016
  • Huang Q, Chen AT, Chan KY, et al. Targeting AAV vectors to the central nervous system by engineering capsid–receptor interactions that enable crossing of the blood–brain barrier. PLoS Biol. 2023;21(7):e3002112. doi: 10.1371/journal.pbio.3002112
  • Graßhoff H, Müller-Fielitz H, Dogbevia GK, et al. Short regulatory DNA sequences to target brain endothelial cells for gene therapy. J Cereb Blood Flow Metab. 2022;42(1):104–120. doi: 10.1177/0271678X211039617
  • Xie R, Wang Y, Burger JC, et al. Non-viral approaches for gene therapy and therapeutic genome editing across the blood–brain barrier. Med X. 2023;1(1). doi: 10.1007/s44258-023-00004-0
  • Pardridge WM. Brain gene therapy with Trojan horse lipid nanoparticles. Trends Mol Med. 2023. doi: 10.1016/j.molmed.2023.02.004
  • Burkhart A, Thomsen LB, Thomsen MS, et al. Transfection of brain capillary endothelial cells in primary culture with defined blood–brain barrier properties. Fluids Barriers CNS. 2015;12(1). doi: 10.1186/s12987-015-0015-9
  • Lichota J, Skjørringe T, Thomsen LB, et al. Macromolecular drug transport into the brain using targeted therapy. J Neurochem. 2010. doi: 10.1111/j.1471-4159.2009.06544.x
  • Ma F, Yang L, Sun Z, et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci Adv. 2020;6(30). doi: 10.1126/sciadv.abb4429

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.