511
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advancements on in vitro blood-brain barrier model: A reliable and efficient screening approach for preclinical and clinical investigation

, , ORCID Icon, , & ORCID Icon
Pages 1839-1857 | Received 06 Sep 2023, Accepted 13 Dec 2023, Published online: 28 Dec 2023

References

  • Solár P, Zamani A, Kubíčková L, et al. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020 May 6;17(1):35.
  • Rua R, McGavern DB. Advances in meningeal immunity. Trends Mol Med. 2018;24(6):542–559.
  • Banks WA. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016 Apr 1;15(4):275–292.
  • Qi D, Lin H, Hu B, et al. A review on in vitro model of the blood-brain barrier (BBB) based on hCMEC/D3 cells. J Control Release. 2023 Jun 1;358:78–97. doi: 10.1016/j.jconrel.2023.04.020
  • Alexander A, Agrawal M, Uddin A, et al. Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine. 2019;14:5895–5909.
  • Brown TD, Nowak M, Bayles AV, et al. A microfluidic model of human brain (μHuB) for assessment of blood brain barrier. Bioeng Transl Med. 2019 May;4(2):e10126. doi: 10.1002/btm2.10126
  • Shawahna R, Decleves X, Scherrmann JM. Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes. Curr Drug Metab. 2013 Jan;14(1):120–136.
  • Jagtiani E, Yeolekar M, Naik S, et al. In vitro blood brain barrier models: an overview. J Control Release. 2022 Mar 1;343:13–30. doi: 10.1016/j.jconrel.2022.01.011
  • Williams-Medina A, Deblock M, Janigro D. In vitro models of the blood–brain barrier: tools in translational medicine [Review]. Front Med Technol. 2021 Feb 15;2.
  • Shah B, Dong X. Current status of in vitro models of the blood-brain barrier. Curr Drug Deliv. 2022;19(10):1034–1046. doi:10.2174/1567201819666220303102614
  • Dubey SK, Ram MS, Krishna KV, et al. Recent expansions on cellular models to uncover the scientific barriers towards drug development for alzheimer’s disease. Cell Mol Neurobiol. 2019 Mar;39(2):181–209. doi: 10.1007/s10571-019-00653-z
  • Agrawal M, Saraf S, Saraf S, et al. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release. 2020 May 10;321:372–415. doi: 10.1016/j.jconrel.2020.02.020
  • Aday S, Cecchelli R, Hallier-Vanuxeem D, et al. Stem cell-based human blood-brain barrier models for drug discovery and delivery. Trends Biotechnol. 2016 May;34(5):382–393. doi: 10.1016/j.tibtech.2016.01.001
  • Greene C, Hanley N, Campbell M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS. 2019 Jan 29;16(1):3.
  • Lochhead JJ, Yang J, Ronaldson PT, et al. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front Physiol. 2020;11:914.
  • Xu L, Nirwane A, Yao Y. Basement membrane and blood-brain barrier. Stroke Vasc Neurol. 2019 Jul;4(2):78–82.
  • Agrawal M, Tripathi DK, Saraf S, et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release. 2017;260:61–77.
  • Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood–brain barrier. Nature. 2010 Nov 1;468(7323):557–561.
  • Díaz-Flores L, Gutiérrez R, Madrid JF, et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol. 2009 Jul;24(7):909–969. doi: 10.14670/HH-24.909
  • Reshma S, Megha KB, Amir S, et al. Blood brain barrier-on-a-chip to model neurological diseases. J Drug Delivery Sci Technol. 2023 Feb 1;80:104174. doi: 10.1016/j.jddst.2023.104174
  • Serlin Y, Shelef I, Knyazer B, et al. Anatomy and physiology of the blood–brain barrier. Semin Cell Dev Biol. 2015 Feb 1;38:2–6. doi: 10.1016/j.semcdb.2015.01.002
  • Gupta S, Dhanda S, Sandhir R. 2 - Anatomy and physiology of blood-brain barrier. In: Gao H, Gao X, editors. Brain targeted drug delivery system. United Kingdom: Academic Press; 2019. p. 7–31.
  • Dhanda S, Sandhir R. Blood-brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via mmp-9 activation and downregulation of tight junction proteins. Mol Neurobiol. 2018 May;55(5):3642–3659.
  • Hanafy AS, Dietrich D, Fricker G, et al. Blood-brain barrier models: rationale for selection. Adv Drug Deliv Rev. 2021 Sept 1;176:113859. doi: 10.1016/j.addr.2021.113859
  • Terstappen GC, Meyer AH, Bell RD, et al. Strategies for delivering therapeutics across the blood–brain barrier. Nat Rev Drug Discov. 2021 May 1;20(5):362–383.
  • Clark DE. In silico prediction of blood–brain barrier permeation. Drug Discov Today. 2003 Oct 15;8(20):927–933.
  • Zhang -Y-Y, Liu H, Summerfield SG, et al. Integrating in silico and in vitro approaches to predict drug accessibility to the central nervous system. Mol Pharm. 2016 May 2;13(5):1540–1550.
  • Helms HC, Abbott NJ, Burek M, et al. In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016 May;36(5):862–890. doi: 10.1177/0271678X16630991
  • Deli MA, Abrahám CS, Kataoka Y, et al. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005 Feb;25(1):59–127. doi: 10.1007/s10571-004-1377-8
  • Ulapane KR, On N, Kiptoo P, et al. Improving brain delivery of biomolecules via BBB modulation in mouse and rat: detection using MRI, NIRF, and mass spectrometry. Nanotheranostics. 2017;1(2):217–231. doi: 10.7150/ntno.19158
  • Valic MS, Halim M, Schimmer P, et al. Guidelines for the experimental design of pharmacokinetic studies with nanomaterials in preclinical animal models. J Control Release. 2020 July 10;323:83–101. doi: 10.1016/j.jconrel.2020.04.002
  • Gonzales-Aloy E, Ahmed-Cox A, Tsoli M, et al. From cells to organoids: the evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv Drug Deliv Rev. 2023 May 1;196:114777. doi: 10.1016/j.addr.2023.114777
  • Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020 Nov 18;17(1):69.
  • Nicolazzo JA, Charman SA, Charman WN. Methods to assess drug permeability across the blood-brain barrier. J Pharm Pharmacol. 2010;58(3):281–293.
  • Lin Z, Jiang D, Liu D, et al. Noncontrast assessment of blood-brain barrier permeability to water: shorter acquisition, test-retest reproducibility, and comparison with contrast-based method. Magn Reson Med. 2021 Jul;86(1):143–156. doi: 10.1002/mrm.28687
  • Avdeef A, Deli MA, Neuhaus W. In vitro assays for assessing BBB permeability. Blood‐Brain Barrier Drug Disc. 2015;30:188–237.
  • Noorani B, Chowdhury EA, Alqahtani F, et al. LC-MS/MS-based in vitro and in vivo investigation of blood-brain barrier integrity by simultaneous quantitation of mannitol and sucrose. Fluids Barriers CNS. 2020 Oct 14;17(1):61.
  • Kumar V, Lee JD, Coulson EJ, et al. A validated quantitative method for the assessment of neuroprotective barrier impairment in neurodegenerative disease models. J Neurochem. 2021 Aug;158(3):807–817. doi: 10.1111/jnc.15119
  • Kadir RRA, Alwjwaj M, Bayraktutan U. Establishment of an in vitro model of human blood-brain barrier to study the impact of ischemic injury. Methods Mol Biol. 2022;2492:143–155.
  • Zhao W, Han L, Bae Y, et al. Lucifer yellow - a robust paracellular permeability marker in a cell model of the human blood-brain barrier. J Vis Exp. 2019 Aug;19(150):e58900.
  • Ito R, Umehara K, Suzuki S, et al. A human immortalized cell-based blood–brain barrier triculture model: development and characterization as a promising tool for drug−brain permeability studies. Mol Pharm. 2019 Nov 4;16(11):4461–4471.
  • Sugiyama S, Sasaki T, Tanaka H, et al. The tight junction protein occludin modulates blood–brain barrier integrity and neurological function after ischemic stroke in mice. Sci Rep. 2023 Feb 18;13(1):2892.
  • Bauer H-C, Krizbai IA, Bauer H, et al. “You Shall Not Pass”—tight junctions of the blood brain barrier [Review]. Front Neurosci. 2014 December 3;8. doi: 10.3389/fnins.2014.00008
  • Lochhead JJ, Yang J, Ronaldson PT, et al. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders [Review]. Front Physiol. 2020 August 6;11. doi: 10.3389/fphys.2020.00011
  • Sasson E, Anzi S, Bell B, et al. Nano-scale architecture of blood-brain barrier tight-junctions. eLife. 2021 Dec 24;10:e63253. doi: 10.7554/eLife.63253
  • Srinivasan B, Kolli AR, Esch MB, et al. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015 Apr;20(2):107–126. doi: 10.1177/2211068214561025
  • Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier.Adv Drug Deliv Rev. 1999 Apr 5;36(2–3):179–194. doi: 10.1016/S0169-409X(98)00085-4
  • Yan L, Moriarty RA, Stroka KM. Recent progress and new challenges in modeling of human pluripotent stem cell-derived blood-brain barrier. Theranostics. 2021;11(20):10148–10170.
  • Da Gama C S, Morin-Brureau M. Study of BBB dysregulation in neuropathogenicity using integrative human model of blood-brain barrier. Front Cell Neurosci. 2022;16:863836.
  • Brown LS, Foster CG, Courtney J-M, et al. Pericytes and neurovascular function in the healthy and diseased brain [mini review]. Front Cell Neurosci. 2019 June 28;13. doi: 10.3389/fncel.2019.00013
  • Bonkowski D, Katyshev V, Balabanov RD, et al. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011 Jan 18;8(1).
  • Cabezas R, Avila M, Gonzalez J, et al. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci. 2014;8:211.
  • Herland A, van der Meer AD, FitzGerald EA, et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3d human blood-brain barrier on a chip. Plos One. 2016;11(3):e0150360. doi: 10.1371/journal.pone.0150360
  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006 Jan;7(1):41–53.
  • Yamaguchi T, Nishijima M, Kawabata K. Inhibition of glycogen synthase kinase 3ß enhances functions of induced pluripotent stem cell-derived brain microvascular endothelial cells in the blood-brain barrier. Biol Pharm Bull. 2022;45(10):1525–1530.
  • Nicolicht-Amorim P, Delgado-Garcia LM, Nakamura TKE, et al. Simple and efficient protocol to isolate and culture brain microvascular endothelial cells from newborn mice [Original Research]. Front Cell Neurosci. 2022 October 13;16. doi: 10.3389/fncel.2022.949412
  • Thomsen LB, Burkhart A, Moos T. A triple culture model of the blood-brain barrier using porcine brain endothelial cells, astrocytes and pericytes. Plos One. 2015;10(8):e0134765.
  • Yang J, Aschner M. Developmental aspects of blood–brain barrier (BBB) and rat brain endothelial (RBE4) cells as in vitro model for studies on chlorpyrifos transport. Neuro Toxicol. 2003 Aug 1;24(4):741–745.
  • Gomez-Zepeda D, Perrière N, Glacial F, et al. Functional and targeted proteomics characterization of a human primary endothelial cell model of the blood-brain barrier (BBB) for drug permeability studies. Toxicol Appl Pharmacol. 2023 Apr 15;465:116456. doi: 10.1016/j.taap.2023.116456
  • Moya ELJ, Lombardo SM, Vandenhaute E, et al. Interaction of surfactant coated PLGA nanoparticles with in vitro human brain-like endothelial cells. Int J Pharm. 2022 Jun 10;621:121780. doi: 10.1016/j.ijpharm.2022.121780
  • Friedrich A, George RL, Bridges CC, et al. Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4). Biochim Biophys Acta - Biomembr. 2001 Jun 6;1512(2):299–307.
  • Ning Y, Chen S, Li X, et al. Cholesterol, LDL, and 25-hydroxycholesterol regulate expression of the steroidogenic acute regulatory protein in microvascular endothelial cell line (Bend.3). Biochem Biophys Res Commun. 2006 Apr 21;342(4):1249–1256.
  • Yang S, Mei S, Jin H, et al. Identification of two immortalized cell lines, ECV304 and bEnd3, for in vitro permeability studies of blood-brain barrier. PLoS One. 2017;12(10):e0187017. doi: 10.1371/journal.pone.0187017
  • Neuhaus W, Lauer R, Oelzant S, et al. A novel flow based hollow-fiber blood–brain barrier in vitro model with immortalised cell line PBMEC/C1–2. J Biotechnol. 2006 Aug 20;125(1):127–141.
  • Adriani G, Ma D, Pavesi A, et al. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. Lab Chip. 2017 Jan 31;17(3):448–459.
  • Cucullo L, Hossain M, Puvenna V, et al. The role of shear stress in blood-brain barrier endothelial physiology. BMC Neurosci. 2011 May 11;12(1):40.
  • Cucullo L, McAllister MS, Kight K, et al. A new dynamic in vitro model for the multidimensional study of astrocyte–endothelial cell interactions at the blood–brain barrier. Brain Res. 2002 Oct 04;951(2):243–254.
  • Wagmann L, Gampfer TM, Meyer MRJA, et al. Recent trends in drugs of abuse metabolism studies for mass spectrometry–based analytical screening procedures. Anal Bioanal Chem Abbreviated as per journal style in globally. 2021;413:5551–5559.
  • Shah B, Dong XJCdd. Current status of in vitro models of the blood-brain barrier. Curr Drug Deliv. 2022.
  • Jeliazkova-Mecheva VV, Bobilya D. A porcine astrocyte/endothelial cell co-culture model of the blood–brain barrier. Brain Res Protoc Abbreviated as per journal style. 2003;12(2):91–98.
  • Wolff A, Antfolk M, Brodin B, et al. In vitro blood–brain barrier models—an overview of established models and new microfluidic approaches. J Pharmacl Sci abbreviated. 2015;104(9):2727–2746. doi: 10.1002/jps.24329
  • Nakagawa S, Deli MA, Kawaguchi H, et al. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54(3–4):253–263. doi: 10.1016/j.neuint.2008.12.002
  • SJTB-BBB N, Protocols R. Blood-brain barrier permeability using tracers and immunohistochemistry. Blood’Brain Barrier: Biology and Research Protocols. 2003;133–144.
  • Piantino M, Louis F, Shigemoto-Mogami Y, et al. Brain microvascular endothelial cells derived from human induced pluripotent stem cells as in vitro model for assessing blood-brain barrier transferrin receptor-mediated transcytosis. Mater Today Bio. 2022 Mar 1;14:100232. doi: 10.1016/j.mtbio.2022.100232
  • Perrière N, Demeuse P, Garcia E, et al. Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem. 2005 Apr;93(2):279–289. doi: 10.1111/j.1471-4159.2004.03020.x
  • Bernas MJ, Cardoso FL, Daley SK, et al. Establishment of primary cultures of human brain microvascular endothelial cells: a new and simplified method to obtain cells for an in vitro model of the blood-brain barrier. Nat Protoc. 2010;5(7):1265. doi: 10.1038/nprot.2010.76
  • Pong S, Karmacharya R, Sofman M, et al. The role of brain microvascular endothelial cell and blood-brain barrier dysfunction in schizophrenia. Compl Psych. 2020;6(1–2):30–46. doi: 10.1159/000511552
  • Nishihara H, Perriot S, Gastfriend BD, et al. Intrinsic blood–brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain: J Neurol. 2022;145(12):4334–4348. doi: 10.1093/brain/awac019
  • Förster C, Burek M, Romero IA, et al. Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol. 2008;586(7):1937–1949. doi: 10.1113/jphysiol.2007.146852
  • Łukasiewicz S, Błasiak E, Szczepanowicz K, et al. The interaction of clozapine loaded nanocapsules with the hCMEC/D3 cells – In vitro model of blood brain barrier. Colloids Surf, B. 2017;159:200–210. doi: 10.1016/j.colsurfb.2017.07.053
  • Hinkel S, Mattern K, Dietzel A, et al. Parametric investigation of static and dynamic cell culture conditions and their impact on hCMEC/D3 barrier properties. Int J Pharmac. 2019;566:434–444.
  • Cucullo L, Couraud P-O, Weksler B, et al. Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab. 2008;28(2):312–328. doi: 10.1038/sj.jcbfm.9600525
  • Tricinci O, De Pasquale D, Marino A, et al. A 3D biohybrid real‐scale model of the brain cancer microenvironment for advanced in vitro testing. Adv Mate Technol. 2020;5(10):2000540. doi: 10.1002/admt.202000540
  • Adil MS, Prjpbm S. Protocols. Endothelial permeability assays in vitro. Meth Molecu Biol (Clifton, NJ). 2021;2367:177–191.
  • Deepika D, Kumar S, Bravo N, et al. Chlorpyrifos, permethrin and cyfluthrin effect on cell survival, permeability, and tight junction in an in-vitro model of the human blood-brain barrier (BBB). Neurotoxicology. 2022;93:152–162.
  • Garberg P, Ball M, Borg N, et al. In vitro models for the blood–brain barrier. Toxicol vitro. 2005;19(3):299–334. doi: 10.1016/j.tiv.2004.06.011
  • Avdeef A. How well can in vitro brain microcapillary endothelial cell models predict rodent in vivo blood–brain barrier permeability? Eur J Pharm Sci. 2011;43(3):109–124.
  • Burek M, Salvador E, Cyjj F. Generation of an immortalized murine brain microvascular endothelial cell line as an in vitro blood brain barrier model. J Visualized Exp. 2012(66):e4022.
  • Molino Y, Jabès F, Lacassagne E, et al. Setting-up an in vitro model of rat blood-brain barrier (BBB): a focus on BBB impermeability and receptor-mediated transport. J Visualized Exp. 2014(88):e51278.
  • Bowman PD, Ennis SR, Rarey KE, et al. Brain microvessel endothelial cells in tissue culture: a model for study of blood‐brain barrier permeability. Ann Neurol. 1983;14(4):396–402. doi: 10.1002/ana.410140403
  • Vandenhaute E, Dehouck L, Boucau M-C, et al. Modelling the neurovascular unit and the blood-brain barrier with the unique function of pericytes. Curr Neurovascu Res. 2011;8(4):258–269. doi: 10.2174/156720211798121016
  • Mischeck U, Meyer J, H-JJC G, et al. Characterization of γ-glutamyl transpeptidase activity of cultured endothelial cells from porcine brain capillaries. Cell and Tissue Res. 1989;256(1):221–226. doi: 10.1007/BF00224737
  • Patabendige A, Skinner RA, NJJBr A. Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res. 2013;1521:1–15.
  • Thomsen LB, Burkhart A, TJPo M. A triple culture model of the blood-brain barrier using porcine brain endothelial cells, astrocytes and pericytes. Plos one. 2015;10(8):e0134765.
  • Zhang Y, Li CS, Ye Y, et al. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability. Drug Metab Dispos. 2006;34(11):1935–1943. doi: 10.1124/dmd.105.006437.
  • Zhang Y-L, Wang J, Zhang Z-N, et al. The relationship between amyloid-beta and brain capillary endothelial cells in Alzheimer’s disease. Neural Regener Res. 2022;17(11):2355.
  • Pirchl M, Marksteiner J, CJNr H. Effects of acidosis on brain capillary endothelial cells and cholinergic neurons: relevance to vascular dementia and Alzheimer’s disease. Neurol Res. 2006;28(6):657–664.
  • Puscas I, Bernard-Patrzynski F, Jutras M, et al. IVIVC assessment of two mouse brain endothelial cell models for drug screening. Pharmaceutics. 2019;11(11):587. doi: 10.3390/pharmaceutics11110587
  • Jamieson JJ, Searson PC, Gerecht S. Engineering the human blood-brain barrier in vitro. J Biol Eng. 2017;11(1):37.
  • Canfield SG, Stebbins MJ, Morales BS, et al. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem. 2017 Mar;140(6):874–888. doi: 10.1111/jnc.13923
  • Mantle JL, Min L, Lee KH. Minimum transendothelial electrical resistance thresholds for the study of small and large molecule drug transport in a human in vitro blood-brain barrier model. Mol Pharm. 2016 Dec 5;13(12):4191–4198.
  • Ballabh P, Braun A, Fau - Nedergaard M, et al. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):969–9961.
  • Sano Y, Shimizu F, Abe M, et al. Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. J Cell Physiol. 2010 Nov;225(2):519–528. doi: 10.1002/jcp.22232
  • Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv. 2003 Mar;3(2):90–105, 51.
  • Weiss N, Miller F, Cazaubon S, et al. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009 Apr;1788(4):842–857. doi: 10.1016/j.bbamem.2008.10.022
  • Kokubu Y, Yamaguchi T, Kawabata K. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells. Biochem Biophys Res Commun. 2017 Apr 29;486(2):577–583.
  • Syvänen S, Lindhe O, Palner M, et al. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009 Mar;37(3):635–643. doi: 10.1124/dmd.108.024745
  • Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007 Aug;6(8):650–661. doi: 10.1038/nrd2368
  • Weksler BB, Subileau EA, Perrière N, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. Faseb J. 2005 Nov;19(13):1872–1874. doi: 10.1096/fj.04-3458fje
  • Lippmann ES, Azarin SM, Kay JE, et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012 Aug;30(8):783–791. doi: 10.1038/nbt.2247
  • Appelt-Menzel A, Cubukova A, Günther K, et al. Establishment of a human blood-brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells. Stem Cell Reports. 2017 Apr 11;8(4):894–906.
  • Faley SL, Neal EH, Wang JX, et al. iPSC-derived brain endothelium exhibits stable, long-term barrier function in perfused hydrogel scaffolds. Stem Cell Reports. 2019 Mar 5;12(3):474–487.
  • Linville RM, DeStefano JG, Sklar MB, et al. Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials. 2019 Jan;190-191:24–37.
  • Lippmann ES, Azarin SM, Palecek SP, et al. Commentary on human pluripotent stem cell-based blood-brain barrier models. Fluids Barriers CNS. 2020 Oct 19;17(1):64.
  • Bicker J, Alves G, Fortuna A, et al. A new PAMPA model using an in-house brain lipid extract for screening the blood-brain barrier permeability of drug candidates. Int J Pharm. 2016 Mar 30;501(1–2):102–111.
  • Russo G, Grumetto L, Szucs R, et al. Determination of in vitro and in silico indexes for the modeling of blood-brain barrier partitioning of drugs via micellar and immobilized artificial membrane liquid chromatography. J Med Chem. 2017 May 11;60(9):3739–3754.
  • Radan M, Djikic T, Obradovic D, et al. Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates. Eur J Pharm Sci. 2022 Jan 1;168:106056. doi: 10.1016/j.ejps.2021.106056
  • Simon A, Darcsi A, Kéry Á, et al. Blood-brain barrier permeability study of ginger constituents. J Pharm Biomed Anal. 2020 Jan 5;177:112820. doi: 10.1016/j.jpba.2019.112820
  • Wilhelm I, Krizbai IA. In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm. 2014 Jul 7;11(7):1949–1963.
  • Siddharthan V, Kim YV, Liu S, et al. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007 May 25;1147:39–50. doi: 10.1016/j.brainres.2007.02.029
  • Bagchi S, Lahooti B, Chhibber T, et al. In vitro models of central nervous system barriers for blood-brain barrier permeation studies. Nanomedicines for Brain Drug Delivery. 2021;235–253.
  • Sivandzade F, Cucullo L. In-vitro blood-brain barrier modeling: a review of modern and fast-advancing technologies. J Cereb Blood Flow Metab. 2018 Oct;38(10):1667–1681.
  • Andjelkovic AV, Stamatovic SM, Phillips CM, et al. Modeling blood–brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids Barriers CNS. 2020 July 16;17(1):44.
  • Bussolari SR, Dewey CF Jr, Gimbrone MA Jr. Apparatus for subjecting living cells to fluid shear stress. Rev Sci Instrum. 1982 Dec;53(12):1851–1854.
  • Cucullo L, Marchi N, Hossain M, et al. A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab. 2011 Feb;31(2):767–777. doi: 10.1038/jcbfm.2010.162
  • Sreekanthreddy P, Gromnicova R, Davies H, et al. A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions. F1000Res. 2015;4:1279.
  • Ferro MP, Heilshorn SC, Owens RM. Materials for blood brain barrier modeling in vitro. Mater Sci Eng R Rep. 2020 Apr 1;140:100522. doi: 10.1016/j.mser.2019.100522
  • Urich E, Patsch C, Aigner S, et al. Multicellular self-assembled spheroidal model of the blood brain barrier. Sci Rep. 2013;3:1500.
  • Kim J, Koo B-K, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020 Oct 01;21(10):571–584.
  • Lancaster MA, Renner M, Martin C-A, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013 Sept 1;501(7467):373–379.
  • Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014 Oct 1;9(10):2329–2340.
  • Ahn Y, J-H A, Yang H-J, et al. Human blood vessel organoids penetrate human cerebral organoids and form a vessel-like system. Cells. 2021;10(8):2036. doi: 10.3390/cells10082036
  • Ham O, Jin YB, Kim J, et al. Blood vessel formation in cerebral organoids formed from human embryonic stem cells. Biochem Biophys Res Commun. 2020 Jan 1;521(1):84–90.
  • Liebner S, Dijkhuizen RM, Reiss Y, et al. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol. 2018 Mar 1;135(3):311–336.
  • Khalil A, Elfert A, Ghanem S, et al. The role of metabolomics in hepatocellular carcinoma. Egypt Liver J. 2021;11.
  • Zhou WM, Yan YY, Guo QR, et al. Microfluidics applications for high-throughput single cell sequencing. J Nanobiotechnology. 2021 Oct 11;19(1):312.
  • Žvirblytė J, Mažutis L. Microfluidics for cancer biomarker discovery, research, and clinical application. Adv Exp Med Biol. 2022;1379:499–524.
  • Li M, Zhu M, Huang R, et al. Blood–brain barrier microfluidic chips and their applications. Organs-on-a-Chip. 2023 Dec 1;5:100027. doi: 10.1016/j.ooc.2023.100027
  • Hajal C, Offeddu GS, Shin Y, et al. Engineered human blood–brain barrier microfluidic model for vascular permeability analyses. Nat Protoc. 2022 Jan 1;17(1):95–128.
  • Banks WA. The blood–brain barrier as an endocrine tissue. Nat Rev Endocrinol. 2019 Aug 1;15(8):444–455.
  • Bickel U. Modeling blood-brain barrier permeability to solutes and drugs in vivo. Pharmaceutics. 2022 Aug 15;14(8):1696.
  • Murata Y, Neuhoff S, Rostami-Hodjegan A, et al. In vitro to in vivo extrapolation linked to physiologically based pharmacokinetic models for assessing the brain drug disposition. Aaps J. 2022 Jan 13;24(1):28.
  • Prashanth A, Donaghy H, Stoner SP, et al. Are in vitro human blood-brain-tumor-barriers suitable replacements for in vivo models of brain permeability for novel therapeutics? Cancers (Basel). 2021 Feb 25;13(5). doi: 10.3390/cancers13050955
  • Wang YI, Abaci HE, Shuler ML. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 2017 Jan;114(1):184–194.
  • Sharma C, Woo H, Kim SR. Addressing Blood-Brain Barrier Impairment in Alzheimer’s Disease. Biomedicines. 2022 Mar 22;10(4):742.
  • Barisano G, Montagne A, Kisler K, et al. Blood-brain barrier link to human cognitive impairment and Alzheimer’s Disease. Nat Cardiovasc Res. 2022 Feb;1(2):108–115. doi: 10.1038/s44161-021-00014-4
  • Zhang Y, Nozohouri S, Abbruscato TJ. In vivo evaluation of BBB integrity in the post-stroke brain. Methods Mol Biol. 2023;2616:191–203.
  • Miny L, Maisonneuve BGC, Quadrio I, et al. Modeling neurodegenerative diseases using in vitro compartmentalized microfluidic devices [review]. Front Bioeng Biotechnol. 2022 Jun 24;10:10.
  • Mata A, Fleischman AJ, Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices. 2005 Dec 1;7(4):281–293.
  • Friend J, Yeo L. Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics. 2010;4(2). DOI:10.1063/1.3259624
  • Menon NV, Chuah YJ, Cao B, et al. A microfluidic co-culture system to monitor tumor-stromal interactions on a chip. Biomicrofluidics. 2014;8(6). doi: 10.1063/1.4903762
  • Du G, Fang Q, den Toonder JM. Microfluidics for cell-based high throughput screening platforms - A review. Anal Chim Acta. 2016 Jan 15;903:36–50. doi: 10.1016/j.aca.2015.11.023
  • Wan AMD, Devadas D, Young EWK. Recycled polymethylmethacrylate (PMMA) microfluidic devices. Sens Actuators B Chem. 2017 Dec 1;253:738–744. doi: 10.1016/j.snb.2017.07.011
  • Chen X, Liu C, Muok L, et al. Dynamic 3D on-chip BBB model design, development, and applications in neurological diseases. Cells. 2021;10(11):3183. doi: 10.3390/cells10113183
  • Koenig L, Ramme AP, Faust D, et al. A human stem cell-derived brain-liver chip for assessing blood-brain-barrier permeation of pharmaceutical drugs. Cells. 2022;11(20):3295. doi: 10.3390/cells11203295
  • Wevers NR, Nair AL, Fowke TM, et al. Modeling ischemic stroke in a triculture neurovascular unit on-a-chip. Fluids Barriers CNS. 2021 Dec 14;18(1):59.
  • Pamies D, Barreras P, Block K, et al. A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. Altex. 2017;34(3):362–376. doi: 10.14573/altex.1609122
  • Pediaditakis I, Kodella KR, Manatakis DV, et al. A microengineered Brain-Chip to model neuroinflammation in humans. iScience. 2022 Aug 19;25(8):104813.
  • Peng B, Hao S, Tong Z, et al., Blood–brain barrier (BBB)-on-a-chip: a promising breakthrough in brain disease research [10.1039/D2LC00305H]. Lab Chip. 2022; 22(19): 3579–3602. doi: 10.1039/D2LC00305H
  • Shao X, Gao D, Chen Y, et al. Development of a blood-brain barrier model in a membrane-based microchip for characterization of drug permeability and cytotoxicity for drug screening. Anal Chim Acta. 2016 Aug 31;934:186–193. doi: 10.1016/j.aca.2016.06.028
  • Yue H, Xie K, Ji X, et al. Vascularized neural constructs for ex-vivo reconstitution of blood-brain barrier function. Biomaterials. 2020 July 01;245:119980. doi: 10.1016/j.biomaterials.2020.119980
  • van der Helm MW, van der Meer AD, Eijkel JCT, et al. Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers. 2016 Jan-Mar;4(1):e1142493. doi: 10.1080/21688370.2016.1142493
  • Lee IK, Wang CC, Lin MC, et al. Effective strategies to prevent coronavirus disease-2019 (COVID-19) outbreak in hospital. J Hosp Infect. 2020 Mar 3;105:102–103. doi: 10.1016/j.jhin.2020.02.022
  • Wevers NR, Kasi DG, Gray T, et al. A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS. 2018 Aug 31;15(1):23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.