67
Views
0
CrossRef citations to date
0
Altmetric
Review

Conjugates of amphotericin B to resolve challenges associated with its delivery

, &
Pages 187-210 | Received 23 Aug 2023, Accepted 17 Jan 2024, Published online: 31 Jan 2024

  • Wang X, Mohammad IS, Fan L, et al. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B. 2021;11(8):2585–2604. doi: 10.1016/j.apsb.2021.04.010
  • Chaudhari MB, Desai PP, Patel PA, et al. Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv Transl Res. 2015;6(4):354–364. doi: 10.1007/s13346-015-0267-6
  • Faustino C, Pinheiro L. Lipid systems for the delivery of Amphotericin B in antifungal therapy. Pharmaceutics. 2020;12(1):29. doi: 10.3390/pharmaceutics12010029
  • Voncik KS, Fermino BL, Cardoso NCS, et al. Difficulties in antifungal therapy with amphotericin B and the continuous search for new formulations: A literature review. African J Pharm Pharmacol. 2016;10(24):512–520. doi: 10.5897/AJPP2015.4280
  • Souza AC, Amaral AC. Antifungal therapy for systemic mycosis and the nanobiotechnology era: improving efficacy, biodistribution and toxicity. Front Microbiol. 2017;8:336. doi: 10.3389/fmicb.2017.00336
  • Das S, Devarajan PV. Enhancing safety and efficacy by altering the toxic aggregated state of Amphotericin B in lipidic nanoformulations. Mol Pharm. 2020;17(6):2186–2195. doi: 10.1021/acs.molpharmaceut.0c00313
  • Umegawa Y, Yamamoto T, Dixit M, et al. Amphotericin B assembles into seven-molecule ion channels: an NMR and molecular dynamics study. Sci Adv. 2022;8(24):eabo2658. doi: 10.1126/sciadv.abo2658
  • Abdelnasir S, Anwar A, Kawish M, et al. Metronidazole conjugated magnetic nanoparticles loaded with amphotericin B exhibited potent effects against pathogenic Acanthamoeba castellanii belonging to the T4 genotype. AMB Express. 2020;10(1):127. doi: 10.1186/s13568-020-01061-z
  • Grisin T, Bories C, Bombardi M, et al. Supramolecular chitosan micro-platelets synergistically enhance anti-candida albicans activity of Amphotericin B using an immunocompetent murine model. Pharm Res. 2017;34(5):1067–1082. doi: 10.1007/s11095-017-2117-3
  • Iqbal K, Abdalla SAO, Anwar A, et al. Isoniazid Conjugated Magnetic Nanoparticles Loaded with Amphotericin B as a Potent Antiamoebic Agent against Acanthamoeba castellanii. Antibiotics. 2020;9(5):276. doi: 10.3390/antibiotics9050276
  • Thanki K, Prajapati R, Sangamwar AT, et al. Long chain fatty acid conjugation remarkably decreases the aggregation induced toxicity of Amphotericin B. Int J Pharm. 2018;544(1):1–13. doi: 10.1016/j.ijpharm.2018.04.009
  • Cuddihy G, Wasan EK, Di Y, et al. The development of oral Amphotericin B to treat systemic fungal and parasitic infections: has the myth been finally realized? Pharmaceutics. 2019;11(3):99. doi: 10.3390/pharmaceutics11030099
  • Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013 Jun;73(9):919–934. doi: 10.1007/s40265-013-0069-4. PMID: 23729001.
  • Cowen LE, Sanglard D, Howard SJ, et al. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 2015;5(7):a019752. doi: 10.1101/cshperspect.a019752
  • Cavassin FB, Baú-Carneiro JL, Vilas-Boas RR, et al. Sixty years of Amphotericin B: an overview of the main antifungal agent used to treat invasive fungal infections. Infect Dis Ther. 2021;10(1):115–147. doi: 10.1007/s40121-020-00382-7
  • Fisher MC, Alastruey-Izquierdo A, Berman J, et al. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol. 2022;20(9):557–571. doi: 10.1038/s41579-022-00720-1
  • Mehta D, Saini V, Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med Chem. 2023;14(9):1603–1628. doi: 10.1039/D3MD00151B
  • Moraes DC. Recent developments on the anti-Candida effect of amphotericin B combined with a second drug – a mini-review. An Acad Bras Cienc. 2023;95(1):e20220033. doi: 10.1590/0001-3765202320220033
  • Alenazi SA, Elmorsy E, Al-Ghafari A, et al. Effect of amphotericin B-deoxycholate (Fungizone) on the mitochondria of Wistar rats’ renal proximal tubules cells. J Appl Toxicol. 2021;41(10):1620–1633. doi: 10.1002/jat.4151
  • Downes KJ, Hayes M, Fitzgerald JC, et al. Mechanisms of antimicrobial-induced nephrotoxicity in children. J Antimicrob Chemother. 2020;75(1):1–13. doi: 10.1093/jac/dkz325
  • O’Horo JC, Osmon DR, Abu Saleh OM, et al. Coadministration of liposomal Amphotericin B and contrast medium does not increase risk of kidney injury. Antimicrob Agents Chemother. 2017;61(8):e00323–17. doi: 10.1128/AAC.00323-17
  • Tragiannidis A, Gkampeta A, Vousvouki M, et al. Antifungal agents and the kidney: pharmacokinetics, clinical nephrotoxicity, and interactions. Expert Opin Drug Saf. 2021;20(9):1061–1074. doi: 10.1080/14740338.2021.1922667
  • Trejtnar F, Mandíková J, Kočíncová J, et al. Renal handling of amphotericin B and amphotericin B-deoxycholate and potential renal drug-drug interactions with selected antivirals. Antimicrob Agents Chemother. 2014;58(10):5650–5657. doi: 10.1128/AAC.02829-14
  • Gola J, Strzałka-Mrozik B, Kruszniewska-Rajs C, et al. A new form of amphotericin B – the complex with copper (II) ions – downregulates sTNFR1 shedding and changes the activity of genes involved in TNF-induced pathways: AmB-Cu2+ downregulates sTNFR1 shedding and changes the activity of genes involved in TNF-induced pathways. Pharmacol Rep. 2017a;69(1):22–28. doi: 10.1016/j.pharep.2016.09.008
  • Gola J, Strzałka-Mrozik B, Wieczorek E, et al. Amphotericin B-copper (II) complex alters transcriptional activity of genes encoding transforming growth factor-beta family members and related proteins in renal cells. Pharmacol Rep. 2017b;69(6):1308–1314. doi: 10.1016/j.pharep.2017.05.011
  • Gu L, Shi H, Zhang R, et al. Simultaneous determination of five specific and sensitive nephrotoxicity biomarkers in serum and urine samples of four drug-induced kidney injury models. J Chromatogr Sci. 2017;55(1):60–68. doi: 10.1093/chromsci/bmw150
  • Magalhães EP, Silva BP, Aires NL, et al. (–)-α-Bisabolol as a protective agent against epithelial renal cytotoxicity induced by amphotericin B. Life Sci. 2022;291:120271. doi: 10.1016/j.lfs.2021.120271
  • Espada R, Valdespina S, Alfonso C, et al. Effect of aggregation state on the toxicity of different amphotericin B preparations. Int J Pharm. 2008;361(1–2):64–69. doi: 10.1016/j.ijpharm.2008.05.013
  • Sawangchan P, Alexandrino Júnior F, Alencar ÉN, et al. The role of aggregation and ionization in the chemical instability of Amphotericin B in aqueous methanol. Int J Pharm. 2023;632:122586. doi: 10.1016/j.ijpharm.2023.122586
  • Todke PA, Devarajan PV. In-silico approach as a tool for selection of excipients for safer amphotericin B nanoformulations. J Control Release. 2022;349:756–764. doi: 10.1016/j.jconrel.2022.07.030
  • Ramos GS, Vallejos VMR, Borges GSM, et al. Formulation of Amphotericin B in PEGylated liposomes for improved treatment of cutaneous Leishmaniasis by parenteral and oral routes. Pharmaceutics. 2022;14(5):989. doi: 10.3390/pharmaceutics14050989
  • Banshoya K, Kaneo Y, Tanaka T, et al. Synthesis and evaluation of styrene-maleic acid copolymer conjugated amphotericin B. Int J Pharm. 2019;572:118719. doi: 10.1016/j.ijpharm.2019.118719
  • Silva-Carvalho R, Leão T, Bourbon AI, et al. Hyaluronic acid-amphotericin B nanocomplexes: a promising anti-leishmanial drug delivery system. Biomater Sci. 2022a;10(8):1952–1967. doi: 10.1039/d1bm01769a
  • Jain K, Mehra NK, Jain NK. Nanotechnology in drug delivery: safety and toxicity issues. Curr Pharm Des. 2015a;21(29):4252–4261. doi: 10.2174/1381612821666150901103208
  • Ojha B, Jain VK, Mehra NK, et al. Nanotechnology: introduction and basic concepts. In: Dendrimers in nanomedicine; 2021. p. 1–17. doi: 10.1201/9781003029915
  • Jain K, Zhong J. Theranostic applications of nanomaterials. Curr Pharm Des. 2022;28(2):77. doi: 10.2174/138161282802211223150153
  • Patel P, Kumar K, Jain VK, et al. Nanotheranostics for diagnosis and treatment of breast cancer. Curr Pharm Des. 2023;29(10):732–747. doi: 10.2174/1381612829666230329122911
  • Tandel H, Bhatt P, Jain K, et al. In-vitro and in-vivo tools in emerging drug delivery scenario: challenges and updates. In: In-vitro and in-vivo tools in drug delivery research for optimum clinical outcomes; 2018. p. 1–24. doi: 10.1201/b22448-1
  • Gauro R, Jain K, Jain VK, et al. Macromolecular architecture and molecular modelling of dendrimers. In: Dendrimers in nanomedicine. Vol. 9781003029915; 2021. p. 77–88. doi: 10.1201/9781003029915
  • Ayyala RS, Suner SS, Bhethanabotla VR, et al. Fungal Keratitis Treatment Using Drug-Loaded Hyaluronic Acid Microgels. ACS Appl Bio Mater. 2022;5(8):3806–3815. doi: 10.1021/acsabm.2c00362
  • Juneja M, Suthar T, Pardhi VP, et al. Emerging trends and promises of nanoemulsions in therapeutics of infectious diseases. Nanomedicine (Lond). 2022;17(11):793–812. doi: 10.2217/nnm-2022-0006
  • Kumar P, Kumar P, Singh N, et al. Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis-An updated review. Front Bioeng Biotechnol. 2022;10:1016925. doi: 10.3389/fbioe.2022.1016925
  • Pardhi VP, Suthar T, Sharma A, et al. Bedaquiline fumarate microemulsion: formulation optimization, rheological characterization and in vitro studies. Nanomedicine (Lond). 2022;17(21):1529–1546. doi: 10.2217/nnm-2022-0132
  • Cuellar J, Parada-Díaz L, Garza J, et al. A theoretical analysis of interaction energies and intermolecular interactions between Amphotericin B and potential bioconjugates used in the modification of nanocarriers for drug delivery. Molecules. 2023;28(6):2674. doi: 10.3390/molecules28062674
  • Suthar T, Patel P, Singh P, et al. Hesperidin microemulsion: Formulation optimization, characterization, and in vitro evaluation. J Drug Deliv Sci Technol. 2023;80(104166):1–12. doi: 10.1016/j.jddst.2023.104166
  • Kumar P, Shivam P, Mandal S, et al. Synthesis, characterization, and mechanistic studies of a gold nanoparticle-amphotericin B covalent conjugate with enhanced antileishmanial efficacy and reduced cytotoxicity. Int J Nanomedicine. 2019;14:6073–6101. doi: 10.2147/IJN.S196421
  • Ehrenfreund-Kleinman T, Azzam T, Falk R, et al. Synthesis and characterization of novel water soluble amphotericin B-arabinogalactan conjugates. Biomaterials. 2002;23(5):1327–1335. doi: 10.1016/S0142-9612(01)00251-4
  • Francis AP, Gurudevan S, Jayakrishnan A. Synthetic polymannose as a drug carrier: synthesis, toxicity and anti-fungal activity of polymannose-amphotericin B conjugates. J Biomater Sci Polym Ed. 2018;29(13):1529–1548. doi: 10.1080/09205063.2018.1469186
  • Gurudevan S, Francis AP, Jayakrishnan A. Amphotericin B-albumin conjugates: Synthesis, toxicity and anti-fungal activity. Eur J Pharm Sci. 2018;115:167–174. doi: 10.1016/j.ejps.2018.01.017
  • Ravichandran V, Jayakrishnan A. Synthesis and evaluation of anti-fungal activities of sodium alginate-amphotericin B conjugates. Int j biol macromol. 2018;108:1101–1109. doi: 10.1016/j.ijbiomac.2017.11.030
  • Shu C, Li T, Yang W, et al. Amphotericin B-conjugated polypeptide hydrogels as a novel innovative strategy for fungal infections. R Soc Open Sci. 2018;5(3):171814. doi: 10.1098/rsos.171814
  • Silva-Carvalho R, Leão T, Gama FM, et al. Covalent conjugation of Amphotericin B to hyaluronic acid: an injectable water-soluble conjugate with reduced toxicity and Anti-Leishmanial potential. Biomacromolecules. 2022b;23(3):1169–1182. doi: 10.1021/acs.biomac.1c01451
  • Correa T, Bazylinski DA, Garcia F, et al. A rapid and simple preparation of amphotericin B-loaded bacterial magnetite nanoparticles. RSC Adv. 2021;11(45):28000–28007. doi: 10.1039/D1RA03950D
  • Ghosh C, Varela-Aramburu S, Eldesouky HE, et al. Non-Toxic Glycosylated Gold Nanoparticle-Amphotericin B Conjugates Reduce Biofilms and Intracellular Burden of Fungi and Parasites. Adv Ther. 2021;4(5):2000293(1–8). doi: 10.1002/adtp.202000293
  • Gudz KY, Antipina LY, Permyakova ES, et al. Ag-doped and antibiotic-loaded hexagonal boron nitride nanoparticles as promising carriers to fight different pathogens. ACS Appl Mater Interfaces. 2021;13(20):23452–23468. doi: 10.1021/acsami.1c03775
  • Thanki K, Date T, Jain S. Enabling oral Amphotericin B delivery by merging the benefits of prodrug approach and nanocarrier-mediated drug delivery. ACS Biomater Sci Eng. 2023;9(6):2879–2890. doi: 10.1021/acsbiomaterials.0c01505
  • Anwar A, Siddiqui R, Hussain MA, et al. Silver nanoparticle conjugation affects antiacanthamoebic activities of amphotericin B, nystatin, and fluconazole. Parasitol Res. 2018;117(1):265–271. doi: 10.1007/s00436-017-5701-x
  • Ahmad A, Wei Y, Syed F, et al. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb Pathog. 2016;99:271–281. doi: 10.1016/j.micpath.2016.08.031
  • Kagan S, Ickowicz D, Shmuel M, et al. Toxicity mechanisms of amphotericin B and its neutralization by conjugation with arabinogalactan. Antimicrob Agents Chemother. 2012;56(11):5603–5611. doi: 10.1128/AAC.00612-12
  • Jain K, Verma AK, Mishra PR, et al. Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomedicine. 2015b;11(3):705–713. doi: 10.1016/j.nano.2014.11.008
  • Jain K, Verma AK, Mishra PR, et al. Surface-engineered dendrimeric nanoconjugates for macrophage-targeted delivery of amphotericin B: formulation development and in vitro and in vivo evaluation. Antimicrob Agents Chemother. 2015c;59(5):2479–2487. doi: 10.1128/AAC.04213-14
  • Falk R, Domb AJ, Polacheck I. A novel injectable water-soluble amphotericin B-arabinogalactan conjugate. Antimicrob Agents Chemother. 1999;43(8):1975–1981. doi: 10.1128/AAC.43.8.1975
  • Golenser J, Frankenburg S, Ehrenfreund T, et al. Efficacious treatment of experimental leishmaniasis with amphotericin B-arabinogalactan water-soluble derivatives. Antimicrob Agents Chemother. 1999;43(9):2209–2214.
  • Nishi KK, Antony M, Mohanan PV, et al. Amphotericin B-gum arabic conjugates: synthesis, toxicity, bioavailability, and activities against Leishmania and fungi. Pharm Res. 2007;24(5):971–980.
  • Kagan S, Ickowicz DE, Domb AJ, et al. Unique aggregation of conjugated amphotericin B and its interaction with lipid membranes. Med Mycol. 2017;55(4):414–421. doi: 10.1093/mmy/myw099
  • Sokolsky-Papkov M, Domb AJ, Golenser J. Impact of aldehyde content on amphotericin B-dextran imine conjugate toxicity. Biomacromolecules. 2006;7(5):1529–1535. doi: 10.1021/bm050747n
  • Bagre A, Patel P, Naqvi S, et al. Chapter 1 – emerging concerns of infectious diseases and drug delivery challenge. In: Jain K Ahmad J, editors. Nanotheranostics for infectious diseases: design, characterization and application”. Elsevier; 2022. doi: 10.1016/B978-0-323-91201-3.00013-X
  • Dowari P, Roy S, Das S, et al. Mannose-decorated composite peptide hydrogel with thixotropic and syneresis properties and its application in treatment of leishmaniasis. Chem Asian J. 2022;17(18):e202200550. doi: 10.1002/asia.202200550
  • Galdopórpora JM, Martinena C, Bernabeu E, et al. Inhalable mannosylated rifampicin-curcumin co-loaded nanomicelles with enhanced in vitro antimicrobial efficacy for an optimized pulmonary tuberculosis therapy. Pharmaceutics. 2022;14(5):959.
  • Uehara K, Harumoto T, Makino A, et al. Targeted delivery to macrophages and dendritic cells by chemically modified mannose ligand-conjugated siRNA. Nucleic Acids Res. 2022;50(9):4840–4859. doi: 10.1093/nar/gkac308
  • Ravichandran V, Kesavan V, Cojean S, et al. Polysorbate surfactants as drug carriers: tween 20-amphotericin B conjugates as anti-fungal and anti-leishmanial agents. Curr Drug Deliv. 2018a;15(7):1028–1037. doi: 10.2174/1567201815666180503122829
  • Ravichandran V, Kothandaraman GP, Bories C, et al. Synthetic polysaccharides as drug carriers: synthesis of polyglucose-Amphotericin B conjugates and in vitro evaluation of their anti-fungal and anti-leishmanial activities. J Nanosci Nanotechnol. 2018b;18(4):2405–2414. doi: 10.1166/jnn.2018.14296
  • Banshoya K, Kaneo Y, Tanaka T, et al. Development of an amphotericin B micellar formulation using cholesterol-conjugated styrene-maleic acid copolymer for enhancement of blood circulation and antifungal selectivity. Int J Pharm. 2020;589:119813. doi: 10.1016/j.ijpharm.2020.119813
  • Arias ER, Angarita-Villamizar V, Baena Y, et al. Phospholipid-Conjugated PEG-b-PCL copolymers as precursors of micellar vehicles for Amphotericin B. Polymers. 2021;13(11):1747. doi: 10.3390/polym13111747
  • Rodriguez YJ, Quejada LF, Villamil JC, et al. Development of Amphotericin B micellar formulations based on copolymers of Poly(ethylene glycol) and Poly(ε-caprolactone) conjugated with retinol. Pharmaceutics. 2020;12(3):196. doi: 10.3390/pharmaceutics12030196
  • Xu H, Teng F, Zhou F, et al. Linolenic acid-modified MPEG-PEI micelles for encapsulation of amphotericin B. Future Med Chem. 2019;11(20):2647–2662. doi: 10.4155/fmc-2018-0580
  • Song Z, Wen Y, Deng P, et al. Linolenic acid-modified methoxy poly (ethylene glycol)-oligochitosan conjugate micelles for encapsulation of amphotericin B. Carbohydr Polym. 2019;205:571–580. doi: 10.1016/j.carbpol.2018.10.086
  • Wang Y, Ke X, Voo ZX, et al. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Acta Biomater. 2016;46:211–220. doi: 10.1016/j.actbio.2016.09.036
  • Zhang P, Yang X, He Y, et al. Preparation, characterization, and toxicity evaluation of amphotericin B loaded MPEG-PCL micelles and its application for buccal tablets. Appl Microbiol Biotechnol. 2017;101(19):7357–7370.
  • Zhou L, Zhang P, Chen Z, et al. Preparation, characterization, and evaluation of amphotericin B-loaded MPEG-PCL-g-PEI micelles for local treatment of oral Candida albicans. Int J Nanomedicine. 2017;12:4269–4283. doi: 10.2147/IJN.S124264
  • Akbar N, Aslam Z, Siddiqui R, et al. Zinc oxide nanoparticles conjugated with clinically-approved medicines as potential antibacterial molecules. AMB Express. 2021;11(1):104. doi: 10.1186/s13568-021-01261-1
  • Anwar A, Siddiqui R, Raza Shah M, et al. Gold nanoparticles conjugation enhances antiacanthamoebic properties of nystatin, fluconazole and Amphotericin B. J Microbiol Biotechnol. 2019;29(1):171–177. doi: 10.4014/jmb.1805.05028
  • Patel PA, Patravale VB. AmbiOnp: solid lipid nanoparticles of amphotericin B for oral administration. J Biomed Nanotechnol. 2011;7(5):632–639. doi: 10.1166/jbn.2011.1332
  • Jain V, Gupta A, Pawar VK, et al. Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles. Appl Biochem Biotechnol. 2014;174(4):1309–1330. doi: 10.1007/s12010-014-1084-y
  • Amekyeh H, Billa N, Roberts C. Correlating gastric emptying of amphotericin B and paracetamol solid lipid nanoparticles with changes in particle surface chemistry. Int J Pharm. 2017;517(1–2):42–49. doi: 10.1016/j.ijpharm.2016.12.001
  • Singh A, Yadagiri G, Parvez S, et al. Formulation, characterization and in vitro anti-leishmanial evaluation of amphotericin B loaded solid lipid nanoparticles coated with vitamin B12-stearic acid conjugate. Mater Sci Eng C Mater Biol Appl. 2020;117:111279. doi: 10.1016/j.msec.2020.111279
  • Parvez S, Yadagiri G, Gedda MR, et al. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Sci Rep. 2020;10(12243):1–14.
  • Thanki K, Date T, Jain S. Improved oral bioavailability and gastrointestinal stability of amphotericin B through fatty acid conjugation approach. Mol Pharm. 2019;16(11):4519–4529. doi: 10.1021/acs.molpharmaceut.9b00662
  • Skwarecki AS, Skarbek K, Martynow D, et al. Molecular Umbrellas Modulate the Selective Toxicity of Polyene Macrolide Antifungals. Bioconjug Chem. 2018;29(4):1454–1465. doi: 10.1021/acs.bioconjchem.8b00136
  • Savla R, Browne J, Plassat V, et al. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm. 2017;43(11):1743–1758. doi: 10.1080/03639045.2017.1342654
  • Sleep D. Albumin and its application in drug delivery. Exp Opin Drug Deliv. 2015;12(5):793–812. doi: 10.1517/17425247.2015.993313
  • Stevens CA, Kaur K, Klok HA. Self-assembly of protein-polymer conjugates for drug delivery. Adv Drug Deliv Rev. 2021;174:447–460. doi: 10.1016/j.addr.2021.05.002
  • Efimova SS, Tevyashova AN, Olsufyeva EN, et al. Pore-forming activity of new conjugate antibiotics based on amphotericin B. PloS One. 2017;12(11):e0188573. doi: 10.1371/journal.pone.0188573
  • Jain K, Jain NK. Novel therapeutic strategies for treatment of visceral leishmaniasis. Drug Discov Today. 2013;18(23–24):1272–1281. doi: 10.1016/j.drudis.2013.08.005
  • Jain V, Jain K. Molecular targets and pathways for the treatment of visceral leishmaniasis. Drug Discov Today. 2018;23(1):161–170. doi: 10.1016/j.drudis.2017.09.006
  • Park SC, Kim YM, Lee JK, et al. Targeting and synergistic action of an antifungal peptide in an antibiotic drug-delivery system. Journal Of Controlled Release. 2017;256:46–55. doi: 10.1016/j.jconrel.2017.04.023
  • Li X, Huang R, Tang FK, et al. Red-emissive guanylated polyene-functionalized carbon dots arm oral epithelia against invasive fungal infections. ACS Appl Mater Interfaces. 2019;11(50):46591–46603.
  • Baibek A, Üçüncü M, Short B, et al. Dyeing fungi: amphotericin B based fluorescent probes for multiplexed imaging. Chem Commun (Camb). 2021;57(15):1899–1902. doi: 10.1039/D0CC08177A
  • Ferreira SMZMD, Carneiro HC, Alves RB, et al. A UBI 31-38 peptide-coumarin conjugate: photophysical features, imaging tracking and synergism with Amphotericin B against Cryptococcus. CTMC. 2018;18(2):157–163.
  • Joyson N, Pathak A, Jain K. One platform comparison of polymeric and lipidic nanoparticles for the delivery of Amphotericin B. AAPS PharmScitech. 2023;24(8):226(1–22616. doi: 10.1208/s12249-023-02672-y
  • Tevyashova AN, Olsufyeva EN, Solovieva SE, et al. Structure-antifungal activity relationships of polyene antibiotics of the amphotericin B group. Antimicrob Agents Chemother. 2013;57(8):3815–22. doi: 10.1128/AAC.00270-13
  • Carolus H, Pierson S, Lagrou K, et al. Amphotericin B and other polyenes-discovery, clinical use, mode of action and drug resistance. J Fungi (Basel). 2020;6(4):321. doi: 10.3390/jof6040321
  • Spitzer M, Robbins N, Wright GD. Combinatorial strategies for combating invasive fungal infections. Virulence. 2017;8(2):169–185. doi: 10.1080/21505594.2016.1196300
  • Agarwal V, Kumia K, Gupta A, et al. Local injection of amphotericin B: novel use in the treatment of fungal maxillary sinusitis. Int J Oral Maxillofac Surg. 2023;52(12):1282–1285. doi: 10.1016/j.ijom.2023.07.008
  • Johri N, Choudhary A, Rawat U, et al. Amphotericin-B-induced chronic kidney disease in a post-covid-19 patient with widespread rhinocerebral mucormycosis and pneumonia: A case report. Curr Drug Saf. 2023. doi: 10.2174/1574886318666230804101539
  • Karadeniz Uğurlu Ş, Selim S, Kopar A, et al. Rhino-orbital Mucormycosis: clinical findings and treatment outcomes of four cases. Turk J Ophthalmol. 2015;45(4):169–174. doi: 10.4274/tjo.82474
  • Pathak A, Jain K. Dendrimer–drug conjugates. In Polymer-drug conjugates: linker chemistry, protocols and applications; 2023. p. 315–345. Elsevier. doi: 10.1016/B978-0-323-91663-9.00005-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.