106
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advances in nanocrystal-based technologies applied for ocular drug delivery

, , , & ORCID Icon
Pages 211-227 | Received 21 Oct 2023, Accepted 24 Jan 2024, Published online: 30 Jan 2024

References

  • Liu G, Molas M, Grossmann GA, et al. Biological properties of poly-l-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem. 2001 Sep 14;276(37):34379–34387. doi: 10.1074/jbc.M105250200
  • Khalil M, Hashmi U, Riaz R, et al. Chitosan coated liposomes (CCL) containing triamcinolone acetonide for sustained delivery: a potential topical treatment for posterior segment diseases. Int J Biol Macromol. 2020 Jan 15;143:483–491. doi: 10.1016/j.ijbiomac.2019.10.256
  • Davis BM, Normando EM, Guo L, et al. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small. 2014 Apr 24;10(8):1575–1584. doi: 10.1002/smll.201303433
  • Huang Y, Zhu Y, Cai D, et al. Penetrating-peptide-mediated non-invasive Axitinib delivery for anti-neovascularisation. J Control Release. 2022 Jul;347:449–459. doi: 10.1016/j.jconrel.2022.05.009
  • Wu Y, Liu Y, Li X, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019 Jan;14(1):1–15. doi: 10.1016/j.ajps.2018.04.008
  • Maulvi FA, Desai DT, Shetty KH, et al. Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm. 2021 Oct 25;608:121090. doi: 10.1016/j.ijpharm
  • Li J, Cheng T, Tian Q, et al. A more efficient ocular delivery system of triamcinolone acetonide as eye drop to the posterior segment of the eye. Drug Deliv. 2019 Dec;26(1):188–198. doi: 10.1080/10717544.2019.1571122
  • López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, et al. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin Drug Deliv. 2021 Jul;18(7):819–847. doi: 10.1080/17425247.2021.1872542
  • Shi S, Zhang Z, Luo Z, et al. Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac. Sci Rep. 2015 Jun 12;5(1):11337. doi: 10.1038/srep11337
  • Mandal A, Bisht R, Rupenthal ID, et al. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release. 2017 Feb 28;248:96–116. doi: 10.1016/j.jconrel.2017.01.012
  • Singh M, Bharadwaj S, Lee KE, et al. Therapeutic nanoemulsions in ophthalmic drug administration: concept in formulations and characterization techniques for ocular drug delivery. J Control Release. 2020 Dec 10;328:895–916. doi: 10.1016/j.jconrel.2020.10.025
  • Gawin-Mikołajewicz A, Nartowski KP, Dyba AJ, et al. Ophthalmic nanoemulsions: from composition to technological processes and quality control. Mol Pharm. 2021 Oct 4;18(10):3719–3740. doi: 10.1021/acs.molpharmaceut.1c00650
  • Manchanda S, Sahoo PK. Topical delivery of acetazolamide by encapsulating in mucoadhesive nanoparticles. Asian J Pharm Sci. 2017 Nov;12(6):550–557. doi: 10.1016/j.ajps.2017.04.005
  • Romero GB, Keck CM, Müller RH, et al. Development of cationic nanocrystals for ocular delivery. Eur J Pharm Biopharm. 2016 Oct;107:215–22. doi: 10.1016/j.ejpb.2016.07.005
  • Mohammad IS, Hu H, Yin L, et al. Drug nanocrystals: fabrication methods and promising therapeutic applications. Int J Pharm. 2019 May 1;562:187–202. doi: 10.1016/j.ijpharm.2019.02.045
  • Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017 Dec 1;122:31–64. doi: 10.1016/j.addr.2017.04.001
  • Peters MCC, Santos Neto ED, Monteiro LM, et al. Advances in ophthalmic preparation: the role of drug nanocrystals and lipid-based nanosystems. J Drug Target. 2020 Mar;28(3):259–270. doi: 10.1080/1061186X.2019.1663858
  • Zhou L, Beuerman RW. Tear analysis in ocular surface diseases. Prog Retin Eye Res. 2012 Nov;31(6):527–50. doi: 10.1016/j.preteyeres.2012.06.002
  • Cwiklik L. Tear film lipid layer: a molecular level view. Biochim Biophys Acta. 2016 Oct;1858(10):2421–2430. doi: 10.1016/j.bbamem.2016.02.020
  • Pflugfelder SC, Stern ME. Biological functions of tear film. Exp Eye Res. 2020 Aug;197:108115. doi: 10.1016/j.exer.2020.108115
  • Ma J, Wang Y, Wei P, et al. Biomechanics and structure of the cornea: implications and association with corneal disorders. Surv Ophthalmol. 2018 Nov;63(6):851–861. doi: 10.1016/j.survophthal.2018.05.004
  • Shirasaki Y. Molecular design for enhancement of ocular penetration. J Pharm Sci. 2008 Jul;97(7):2462–2496. doi: 10.1002/jps.21200
  • Wang Y, Xu X, Gu Y, et al. Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv. 2018 Jul;15(7):687–701. doi: 10.1080/17425247.2018.1496080
  • Ghosh M, Chemistry AI. Manufacturing, and control of ophthalmic formulations. In: Brian CG, editor. Ocular pharmacology and toxicology. New York (NY): Springer; 2013. p. 53–79.
  • de Salamanca A E, Diebold Y, Calonge M, et al. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci. 2006 Apr;47(4):1416–1425. doi: 10.1167/iovs.05-0495
  • Hughes PM, Shen J. Ocular surface anatomy and physiology: impact on product development. In: Neervannan S Kompella U, editors. Ophthalmic product development: from bench to bedside. New York (NY): Springer; 2021. p. 15–37.
  • Pitkänen L, Ranta VP, Moilanen H, et al. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci. 2005 Feb;46(2):641–646. doi: 10.1167/iovs.04-1051
  • Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006 Mar;3(2):275–87. doi: 10.1517/17425247.3.2.275
  • Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008 May;5(5):567–81. doi: 10.1517/17425247.5.5.567
  • Malhotra M, Majumdar DK. Permeation through cornea. Indian J Exp Biol. 2001 Jan;39(1):11–24.
  • Ahmed I, Patton TF. Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharmaceut. 1987 Aug;38(1–3):9–21. doi: 10.1016/0378-5173(87)90092-5
  • Toffoletto N, Saramago B, Serro AP, et al. A physiology-based mathematical model to understand drug delivery from contact lenses to the back of the eye. Pharm Res. 2023 Aug;40(8):1939–1951. doi: 10.1007/s11095-023-03560-7
  • Zhang J, Liu Z, Tao C, et al. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur J Pharm Sci. 2020 Mar 1;144:105229. doi: 10.1016/j.ejps.2020.105229
  • Zhu M, Wang J, Li N. A novel thermo-sensitive hydrogel-based on poly(N-isopropylacrylamide)/hyaluronic acid of ketoconazole for ophthalmic delivery. Artif Cells Nanomed Biotechnol. 2018 Sep;46(6):1282–1287. doi: 10.1080/21691401.2017.1368024
  • Weng Y, Liu J, Jin S, et al. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B. 2017 May;7(3):281–291. doi: 10.1016/j.apsb.2016.09.001
  • Gupta A, Sun JK, Silva PS. Complications of intravitreous injections in patients with diabetes. Semin Ophthalmol. 2018;33(1):42–50. doi: 10.1080/08820538.2017.1353811
  • Toda R, Kawazu K, Oyabu M, et al. Comparison of drug permeabilities across the blood-retinal barrier, blood-aqueous humor barrier, and blood-brain barrier. J Pharm Sci. 2011 Sep;100(9):3904–3911. doi: 10.1002/jps.22610
  • Hughes P, Rivers HM, Bantseev V, et al. Intraocular delivery considerations of ocular biologic products and key preclinical determinations. Expert Opin Drug Deliv. 2023 Feb;20(2):223–240. doi: 10.1080/17425247.2023.2166927
  • Zhang X, Cao X, Qi P. Therapeutic contact lenses for ophthalmic drug delivery: major challenges. J Biomater Sci Polym Ed. 2020 Mar;31(4):549–560. doi: 10.1080/09205063.2020.1712175
  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery. AAPS J. 2010 Sep;12(3):348–360. doi: 10.1208/s12248-010-9183-3
  • Gigliobianco MR, Casadidio C, Censi R, et al. Nanocrystals of poorly soluble drugs: drug bioavailability and physicochemical stability. Pharmaceutics. 2018 Aug 21;10(3):134. doi: 10.3390/pharmaceutics10030134
  • Zhao J, Du J, Wang J, et al. Folic acid and poly(ethylene glycol) decorated paclitaxel nanocrystals exhibit enhanced stability and breast cancer-targeting capability. ACS Appl Mater Interfaces. 2021 Mar 31;13(12):14577–14586. doi: 10.1021/acsami.1c00184
  • Lohan SB, Saeidpour S, Colombo M, et al. Nanocrystals for improved drug delivery of dexamethasone in skin investigated by EPR spectroscopy. Pharmaceutics. 2020 Apr 27;12(5):400. doi: 10.3390/pharmaceutics12050400
  • Eckert RW, Wiemann S, Keck CM. Improved dermal and transdermal delivery of curcumin with SmartFilms and nanocrystals. Molecules. 2021 Mar 15;26(6):1633. doi: 10.3390/molecules26061633
  • Mertins O, Mathews PD, Angelova A. Advances in the design of pH-sensitive cubosome liquid crystalline nanocarriers for drug delivery applications. Nanomaterials (Basel). 2020 May 18;10(5):963. doi: 10.3390/nano10050963
  • Xu Q, Kambhampati SP, Kannan RM. Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol. 2013 Jan;20(1):26–37. doi: 10.4103/0974-9233.106384
  • Malamatari M, Taylor KMG, Malamataris S, et al. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today. 2018 Mar;23(3):534–547. doi: 10.1016/j.drudis.2018.01.016
  • Ali HS, York P, Ali AM, et al. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release. 2011 Jan 20;149(2):175–181. doi: 10.1016/j.jconrel.2010.10.007
  • Yang W, Johnston KP, Williams RO. Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur J Pharm Biopharm. 2010 May;75(1):33–41. doi: 10.1016/j.ejpb.2010.01.011
  • Sharma OP, Patel V, Mehta T. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res. 2016 Aug;6(4):399–413. doi: 10.1007/s13346-016-0292-0
  • Nagai N, Ito Y, Okamoto N, et al. A nanoparticle formulation reduces the corneal toxicity of indomethacin eye drops and enhances its corneal permeability. Toxicology. 2014 May 7;319:53–62. doi: 10.1016/j.tox.2014.02.012
  • Liversidge GG, Cundy, et al., Inventor; NanoSystems L.L.C., assignee. Surface modified drug nanoparticles. European patent EP 0499299(A2). 1992 Sep 19.
  • Modi SS, Lehmann RP, Walters TR, et al. Once-daily nepafenac ophthalmic suspension 0.3% to prevent and treat ocular inflammation and pain after cataract surgery: phase 3 study. J Cataract Refract Surg. 2014 Feb;40(2):203–211. doi: 10.1016/j.jcrs.2013.07.042
  • POPOV A, Inventor KP, Inc., assignee. Pharmaceutical nanoparticles showing improved mucosal transport. European patent EP 3808339(A1). 2021 Apr 21.
  • Kim T, Sall K, Holland EJ, et al. Safety and efficacy of twice daily administration of KPI-121 1% for ocular inflammation and pain following cataract surgery. Clin Ophthalmol. 2019;13:69–86. doi: 10.2147/OPTH.S185800
  • ClinicalTrials.gov [internet]. Bethesda (MD): National Library of Medicine; Efficacy and safety of APP13007 for treatment of inflammation and pain after cataract surgery. 2021 [cited 2023 Oct 8]. Available from: https://clinicaltrials.gov/study/NCT04739709?term=NCT04739709&rank=1&tab=results
  • ClinicalTrials.gov [internet]. Bethesda (MD): National Library of Medicine; A study to evaluate the safety, tolerability and preliminary efficacy of APP13007 to treat inflammation and pain after cataract surgery. 2019 [cited 2023 Oct 8]. Available from: https://clinicaltrials.gov/study/NCT04089735?term=NCT04089735&rank=1
  • ClinicalTrials.gov [internet]. Bethesda (MD): national library of medicine; Efficacy and safety of APP13007 for treatment of inflammation and pain after cataract surgery including a corneal endothelial cell sub-study. 2021 [cited 2023 Oct 8]. Available from: https://clinicaltrials.gov/study/NCT04810962?term=NCT04810962&rank=1
  • Sudhakar B, NagaJyothi K, Murthy KV. Nanosuspensions as a versatile carrier based drug delivery system–an overview. Curr Drug Deliv. 2014;11(3):299–305. doi: 10.2174/1567201811666140323131342
  • Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010 Oct 31;399(1–2):129–139. doi: 10.1016/j.ijpharm.2010.07.044
  • Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol. 2010 Nov;62(11):1569–1579. doi: 10.1111/j.2042-7158.2010.01022.x
  • Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm. 2006 Apr 7;312(1–2):179–186. doi: 10.1016/j.ijpharm.2006.01.008
  • Fernandes AR, Dias-Ferreira J, Cabral C, et al. Release kinetics and cell viability of ibuprofen nanocrystals produced by melt-emulsification. Colloids Surf B Biointerfaces. 2018 Jun 1;166:24–28. doi: 10.1016/j.colsurfb.2018.03.005
  • Sylvestre JP, Tang MC, Furtos A, et al. Nanonization of megestrol acetate by laser fragmentation in aqueous milieu. J Control Release. 2011 Feb 10;149(3):273–280. doi: 10.1016/j.jconrel.2010.10.034
  • Castillo JE, Asgharian, et al., Inventor; novartis AG, assignee. Stabilized pharmaceutical sub-micron suspensions and methods of forming same. European patent EP 2425815(B1). 2017 Oct 25.
  • de Waard H, Frijlink HW, Hinrichs WL. Bottom-up preparation techniques for nanocrystals of lipophilic drugs. Pharm Res. 2011 May;28(5):1220–1223. doi: 10.1007/s11095-010-0323-3
  • Chan HK, Kwok PC. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev. 2011 May 30;63(6):406–416. doi: 10.1016/j.addr.2011.03.011
  • Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013 Aug 30;453(1):126–141. doi: 10.1016/j.ijpharm.2013.01.019
  • Baba K, Hashida N, Tujikawa M, et al. The generation of fluorometholone nanocrystal eye drops, their metabolization to dihydrofluorometholone and penetration into rabbit eyes. Int J Pharm. 2021 Jan 5;592:120067. doi: 10.1016/j.ijpharm.2020.120067
  • Miao X, Yang W, Feng T, et al. Drug nanocrystals for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 May;10(3):e1499. doi: 10.1002/wnan.1499
  • Müller RH, Gohla S, Keck CM. State of the art of nanocrystals–special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011 May;78(1):1–9. doi: 10.1016/j.ejpb.2011.01.007
  • Singh SK, Vaidya Y, Gulati M, et al. Nanosuspension: principles, perspectives and practices. Curr Drug Deliv. 2016;13(8):1222–1246. doi: 10.2174/1567201813666160101120452
  • Li J, Wang Z, Zhang H, et al. Progress in the development of stabilization strategies for nanocrystal preparations. Drug Deliv. 2021 Dec;28(1):19–36. doi: 10.1080/10717544.2020.1856224
  • Shete G, Jain H, Punj D, et al. Stabilizers used in nanocrystal based drug delivery systems. J Excipients Food Chem. 2014;5(4):184–209.
  • Lasic DD. Sterically stabilized vesicles. Angew Chem Int Ed Engl. 1994;33(17):1685–1698. doi: 10.1002/anie.199416851
  • Tuomela A, Hirvonen J, Peltonen L. Stabilizing agents for drug nanocrystals: effect on bioavailability. Pharmaceutics. 2016 May 20;8(2):16. doi: 10.3390/pharmaceutics8020016
  • Kirby BJ, Hasselbrink EF Jr. Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis. 2004 Jan;25(2):203–213. doi: 10.1002/elps.200305755
  • Liu P, Viitala T, Kartal-Hodzic A, et al. Interaction studies between indomethacin nanocrystals and PEO/PPO copolymer stabilizers. Pharm Res. 2015 Feb;32(2):628–639. doi: 10.1007/s11095-014-1491-3
  • Tian J, Ting Meng T, Ma S, et al. Spatial-thermodynamic understanding of stabilization mechanism using computational approaches and molecular-level elucidation of the mechanism of crystal transformation in polymorphic irbesartan nanosuspensions. Int J Pharm. 2022 Jan 25;612:121350. doi: 10.1016/j.ijpharm.2021.121350
  • Pirincci Tok Y, Mesut B, Güngör S, et al. Systematic screening study for the selection of proper stabilizers to produce physically stable canagliflozin nanosuspension by wet milling method. Bioengineering (Basel). 2023 Aug 4;10(8):927. doi: 10.3390/bioengineering10080927
  • Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001 May 16;48(1):27–42. doi: 10.1016/s0169-409x(01)00098-9
  • Lv F, Wang J, Chen H, et al. Enhanced mucosal penetration and efficient inhibition efficacy against cervical cancer of PEGylated docetaxel nanocrystals by TAT modification. J Control Release. 2021 Aug 10;336:572–582. doi: 10.1016/j.jconrel.2021.07.008.
  • Chai Z, Ran D, Lu L, et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to Glioma. ACS Nano. 2019 May 28;13(5):5591–5601. doi: 10.1021/acsnano.9b00661
  • Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004 Oct 13;284(1–2):109–122. doi: 10.1016/j.ijpharm.2004.07.019
  • Dibas A, Yorio T. Glucocorticoid therapy and ocular hypertension. Eur J Pharmacol. 2016 Sep 15;787:57–71. doi: 10.1016/j.ejphar.2016.06.018
  • Kassem MA, Abdel Rahman AA, Ghorab MM, et al. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007 Aug 1;340(1–2):126–133. doi: 10.1016/j.ijpharm.2007.03.011
  • Schopf L, Enlow E, Popov A, et al. Ocular pharmacokinetics of a novel loteprednol etabonate 0.4% ophthalmic formulation. Ophthalmol Ther. 2014 Dec;3(1–2):63–72. doi: 10.1007/s40123-014-0021-z.
  • Baba K, Nishida K. Steroid nanocrystals prepared using the nano spray dryer B-90. Pharmaceutics. 2013 Jan 25;5(1):107–114. doi: 10.3390/pharmaceutics5010107
  • Cabrera-Aguas M, Khoo P, Watson SL. Infectious keratitis: a review. Clin Exp Ophthalmol. 2022 Jul;50(5):543–562. doi: 10.1111/ceo.14113
  • Raj N, Vanathi M, Ahmed NH, et al. Recent perspectives in the management of fungal keratitis. J Fungi (Basel). 2021 Oct 26;7(11):907. doi: 10.3390/jof7110907
  • Khare P, Chogale MM, Kakade P, et al. Gellan gum-based in situ gelling ophthalmic nanosuspension of Posaconazole. Drug Deliv Transl Res. 2022 Dec;12(12):2920–2935. doi: 10.1007/s13346-022-01155-0
  • Permana AD, Utami RN, Layadi P, et al. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int J Pharm. 2021 Jun 1;602:120623. doi: 10.1016/j.ijpharm.2021.120623
  • Liu H, Wang Y, Li S. Advanced delivery of ciclosporin A: present state and perspective. Expert Opin Drug Deliv. 2007 Jul;4(4):349–358. doi: 10.1517/17425247.4.4.349
  • el Tayar N, Mark AE, Vallat P, et al. Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. J Med Chem. 1993 Nov 26;36(24):3757–3764. doi: 10.1021/jm00076a002
  • Kim JH, Jang SW, Han SD, et al. Development of a novel ophthalmic ciclosporin A-loaded nanosuspension using top-down media milling methods. Pharmazie. 2011 Jul;66(7):491–495.
  • Luschmann C, Tessmar J, Schoeberl S, et al. Developing an in situ nanosuspension: a novel approach towards the efficient administration of poorly soluble drugs at the anterior eye. Eur J Pharm Sci. 2013 Nov 20;50(3–4):385–392. doi: 10.1016/j.ejps.2013.07.002.
  • Yan R, Xu L, Wang Q, et al. Cyclosporine a nanosuspensions for ophthalmic delivery: a comparative study between cationic nanoparticles and drug-core mucus penetrating nanoparticles. Mol Pharm. 2021 Dec 6;18(12):4290–4298. doi: 10.1021/acs.molpharmaceut.1c00370
  • Deguchi S, Otake H, Nakazawa Y, et al. Ophthalmic formulation containing nilvadipine nanoparticles prevents retinal dysfunction in rats injected with Streptozotocin. Int J Mol Sci. 2017 Dec 15;18(12):2720. doi: 10.3390/ijms18122720
  • Nandwani Y, Kaur A, Bansal AK. Generation of ophthalmic nanosuspension of prednisolone acetate using a novel technology. Pharm Res. 2021 Feb;38(2):319–333. doi: 10.1007/s11095-021-02985-2
  • Formica ML, Awde Alfonso HG, Paredes AJ, et al. Development of triamcinolone acetonide nanocrystals for ocular administration. Pharmaceutics. 2023 Feb 17;15(2):683. doi: 10.3390/pharmaceutics15020683
  • Nagai N, Ono H, Hashino M, et al. Improved corneal toxicity and permeability of tranilast by the preparation of ophthalmic formulations containing its nanoparticles. J Oleo Sci. 2014;63(2):177–186. doi: 10.5650/jos.ess13082
  • Peters MCC, de Oliveira IF, Machado MGM, et al. The glucocorticoid derivative with the phthalimide group cationic nanocrystal for ophthalmic application: a design space development approach. Mater Today Chem. 2021 Mar;19:100396. doi: 10.1016/j.mtchem.2020.100396
  • Maged A, Mahmoud AA, Ghorab MM. Nano spray drying technique as a novel approach to formulate stable econazole nitrate nanosuspension formulations for ocular use. Mol Pharm. 2016 Sep 6;13(9):2951–2965. doi: 10.1021/acs.molpharmaceut.6b00167
  • Jesus J, Lourenço FR, Ishida K, et al. Besifloxacin nanocrystal: towards an innovative ophthalmic preparation. Pharmaceutics. 2022 Oct 18;14(10):2221. doi: 10.3390/pharmaceutics14102221
  • Nagai N, Y C, T W, et al. Effects of ophthalmic formulations containing cilostazol nanoparticles on retinal vasoconstriction in rats injected with endothelin-1. Pharmaceutica Analytica Acta. 2015;6(4):221–302. doi: 10.4172/2153-2435.1000351
  • Suriyaamporn P, Pornpitchanarong C, Pamornpathomkul B, et al. Ganciclovir nanosuspension-loaded detachable microneedles patch for enhanced drug delivery to posterior eye segment. J Drug Deliv Sci Tec. 2023 Oct;88:104975. doi: 10.1016/j.jddst.2023.104975
  • Ikuta Y, Aoyagi S, Tanaka Y, et al. Creation of nano eye-drops and effective drug delivery to the interior of the eye. Sci Rep. 2017 Mar 14;7(1):44229. doi: 10.1038/srep44229
  • Tuomela A, Liu P, Puranen J, et al. Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo. Int J Pharm. 2014 Jun 5;467(1–2):34–41. doi: 10.1016/j.ijpharm.2014.03.048
  • Donia M, Osman R, Awad GAS, et al. Polypeptide and glycosaminoglycan polysaccharide as stabilizing polymers in nanocrystals for a safe ocular hypotensive effect. Int J Biol Macromol. 2020 Nov 1;162:1699–1710. doi: 10.1016/j.ijbiomac.2020.07.306
  • Miao X, Li Y, Wang X, et al. Transport mechanism of coumarin 6 nanocrystals with two particle sizes in MDCKII monolayer and Larval Zebrafish. ACS Appl Mater Interfaces. 2016 May 25;8(20):12620–12630. doi: 10.1021/acsami.6b01680
  • Vidlářová L, Romero GB, Hanuš J, et al. Nanocrystals for dermal penetration enhancement - effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm. 2016 Jul;104:216–225. doi: 10.1016/j.ejpb.2016.05.004
  • Lu Y, Lv Y, Li T. Hybrid drug nanocrystals. Adv Drug Deliv Rev. 2019 Mar 15;143:115–133. doi: 10.1016/j.addr.2019.06.006.
  • Hollis CP, Weiss HL, Leggas M, et al. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release. 2013 Nov 28;172(1):12–21. doi: 10.1016/j.jconrel.2013.06.039
  • Chen Y, Li T. Cellular uptake mechanism of paclitaxel nanocrystals determined by confocal imaging and kinetic measurement. AAPS J. 2015 Sep;17(5):1126–1134. doi: 10.1208/s12248-015-9774-0
  • Liu D, Wan B, Qi J, et al. Permeation into but not across the cornea: bioimaging of intact nanoemulsions and nanosuspensions using aggregation-caused quenching probes. Chin Chem Lett. 2018;29(12):1834–1838. doi: 10.1016/j.cclet.2018.11.015
  • Möschwitzer J, Müller RH. Spray coated pellets as carrier system for mucoadhesive drug nanocrystals. Eur J Pharm Biopharm. 2006 Apr;62(3):282–287. doi: 10.1016/j.ejpb.2005.09.005
  • Alshweiat A, Csóka I, Tömösi F, et al. Nasal delivery of nanosuspension-based mucoadhesive formulation with improved bioavailability of loratadine: preparation, characterization, and in vivo evaluation. Int J Pharm. 2020 Apr 15;579:119166. doi: 10.1016/j.ijpharm.2020.119166
  • Baba K, Tanaka Y, Kubota A, et al. A method for enhancing the ocular penetration of eye drops using nanoparticles of hydrolyzable dye. J Control Release. 2011 Aug 10;153(3):278–87. doi: 10.1016/j.jconrel.2011.04.019.
  • Lin HY, Tom, et al., Inventor; Belite Bio, LLC, assignee. Formulations of rbp4 inhibitors and methods of use. Would Intellectual Property Organization patent WO 2021007172(A1). 2021 Jan 14.
  • ClinicalTrials.gov [internet]. Bethesda (MD): National library of medicine; Phase 3, randomized, placebo-controlled study of tinlarebant to explore safety and efficacy in geographic atrophy (PHOENIX). 2023 [cited 2023 Oct 8]. Available from: https://clinicaltrials.gov/study/NCT05949593?term=NCT05949593&rank=12021
  • Kumar S, Burgess DJ. Wet milling induced physical and chemical instabilities of naproxen nano-crystalline suspensions. Int J Pharm. 2014 May 15;466(1–2):223–232. doi: 10.1016/j.ijpharm.2014.03.021
  • Meng T, Li Y, Ma S, et al. Elaborating the crystal transformation referenced microhydrodynamic model and fracture mechanism combined molecular modelling of irbesartan nanosuspensions formation in wet media milling. Int J Pharm. 2023 Feb 5;632:122562. doi: 10.1016/j.ijpharm.2022.122562

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.