250
Views
0
CrossRef citations to date
0
Altmetric
Original Research

MDSC-targeted liposomal all-trans retinoic acid suppresses mMdscs and improves immunotherapy in HBV infection

ORCID Icon, , , , , , , , , , & show all
Pages 347-363 | Received 25 Dec 2023, Accepted 08 Feb 2024, Published online: 26 Feb 2024

References

  • Khanam A, Ayithan N, Tang L, et al. IL-21–deficient T follicular helper cells support B cell responses through IL-27 in patients with chronic hepatitis B. Front Immunol. 2021;11:599648. doi: 10.3389/fimmu.2020.599648
  • Zhang J, Lin S, Jiang D, et al. Chronic hepatitis B and non‐alcoholic fatty liver disease: conspirators or competitors? Liver Int. 2020;40(3):496–508. doi: 10.1111/liv.14369
  • Wong GH, Wong VS, Chan HY. Combination therapy of interferon and nucleotide/nucleoside analogues for chronic hepatitis B. J Viral Hepat. 2014;21(12):825–834. doi: 10.1111/jvh.12341
  • Fung J, Lai C-L, Seto W-K, et al. Nucleoside/Nucleotide analogues in the treatment of chronic hepatitis B. J Antimicrob Chemother. 2011;66(12):2715–25. doi: 10.1093/jac/dkr388
  • Boni C, Fisicaro P, Valdatta C, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol. 2007;81(8):4215–25. doi: 10.1128/JVI.02844-06
  • Martinez MG, Villeret F, Testoni B, et al. Can we cure hepatitis B virus with novel direct‐acting antivirals? Liver Int. 2020;40(S1):27–34. doi: 10.1111/liv.14364
  • Chapman TM, McGavin JK, Noble S. Tenofovir disoproxil fumarate. Drugs. 2003;63(15):1597–608. doi: 10.2165/00003495-200363150-00006
  • Dando TM, Plosker GL. Adefovir dipivoxil: a review of its use in chronic hepatitis B. Drugs. 2003;63(20):2215–34. doi: 10.2165/00003495-200363200-00007
  • Wang Y, Thongsawat S, Gane E, et al. Efficacy and safety of continuous 4‐year telbivudine treatment in patients with chronic hepatitis B. J Viral Hepat. 2013;20(4):e37–e46. doi: 10.1111/jvh.12025
  • Luo A, Jiang X, Ren H. Lamivudine therapy for chronic hepatitis B in children: a meta-analysis. Virol J. 2019;16(1):1–9. doi: 10.1186/s12985-019-1193-x
  • Charlton MR, Alam A, Shukla A, et al. An expert review on the use of tenofovir alafenamide for the treatment of chronic hepatitis B virus infection in Asia. J Gastroenterol. 2020;55(9):811–823. doi: 10.1007/s00535-020-01698-4
  • Lee SW, Choi J, Kim SU, et al. Entecavir versus tenofovir in patients with chronic hepatitis B: enemies or partners in the prevention of hepatocellular carcinoma. Clin Mol Hepatol. 2021;27(3):402. doi: 10.3350/cmh.2021.0179
  • Roca Suarez AA, Testoni B, Zoulim F. HBV 2021: new therapeutic strategies against an old foe. Liver Int. 2021;41(S1):15–23. doi: 10.1111/liv.14851
  • Downs LO, Smith DA, Lumley SF, et al. Electronic health informatics data to describe clearance dynamics of hepatitis B surface antigen (HBsAg) and e antigen (HBeAg) in chronic hepatitis B virus infection. MBio. 2019;10(3):e00699–19. doi: 10.1128/mBio.00699-19
  • Boni C, Janssen HL, Rossi M, et al. Combined GS-4774 and tenofovir therapy can improve HBV-specific T-cell responses in patients with chronic hepatitis. Gastroenterology. 2019;157(1):227–41. e7. doi: 10.1053/j.gastro.2019.03.044
  • Lee HM, Banini BA. Updates on chronic HBV: current challenges and future goals. Curr Treat Options Gastroenterol. 2019;17(2):271–91. doi: 10.1007/s11938-019-00236-3
  • Kong X, Sun R, Chen Y, et al. γδT cells drive myeloid-derived suppressor cell–mediated CD8+ T cell exhaustion in hepatitis B virus–induced immunotolerance. J Immunol. 2014;193(4):1645–53. doi: 10.4049/jimmunol.1303432
  • Yang F, Yu X, Zhou C, et al. Hepatitis B e antigen induces the expansion of monocytic myeloid-derived suppressor cells to dampen T-cell function in chronic hepatitis B virus infection. PLOS Pathogens. 2019;15(4):e1007690. doi: 10.1371/journal.ppat.1007690
  • Meng-Er H, Yu-Chen Y, Shu-Rong C, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72(2):567–572. doi: 10.1182/blood.V72.2.567.567
  • Degos L, Wang ZY. All trans retinoic acid in acute promyelocytic leukemia. Oncogene. 2001;20(49):7140–5. doi: 10.1038/sj.onc.1204763
  • Nefedova Y, Fishman M, Sherman S, et al. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 2007;67(22):11021–8. doi: 10.1158/0008-5472.CAN-07-2593
  • Zheng A, Xie F, Shi S, et al. Sustained drug release from liposomes for the remodeling of systemic immune homeostasis and the tumor microenvironment. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.829391
  • Xu Y, Chen X, Zheng A, et al. All-trans retinoic acid injectant and application. Google Pat. 2021. https://patents.google.com/patent/US10952984B2/en
  • Feng S, Cheng X, Zhang L, et al. Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers. Proc Nat Acad Sci. 2018;115(40):10094–10099. doi: 10.1073/pnas.1800695115
  • F-Y M, Y-L Z, Y-P L, et al. CD45+ CD33lowCD11bdim myeloid-derived suppressor cells suppress CD8+ T cell activity via the IL-6/IL-8-arginase I axis in human gastric cancer. Cell Death Dis. 2018;9(7):763. doi: 10.1038/s41419-018-0803-7
  • Dar AA, Patil RS, Pradhan TN, et al. Myeloid-derived suppressor cells impede T cell functionality and promote Th17 differentiation in oral squamous cell carcinoma. Cancer Immunol Immunother. 2020;69(6):1071–86. doi: 10.1007/s00262-020-02523-w
  • Solito S, Pinton L, De Sanctis F, et al. Methods to measure MDSC immune suppressive activity in vitro and in vivo. Curr Protoc Immunol. 2019;124(1):e61. doi: 10.1002/cpim.61
  • Huang B, Pan P-Y, Li Q, et al. Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31. doi: 10.1158/0008-5472.CAN-05-1299
  • Bogue MA, Philip VM, Walton DO, et al. Mouse phenome database: a data repository and analysis suite for curated primary mouse phenotype data. Nucleic Acids Res. 2020;48(D1):D716–D23. doi: 10.1093/nar/gkz1032
  • Vanhaver C, van der Bruggen P, Bruger AM. MDSC in mice and men: mechanisms of immunosuppression in cancer. J Clin Med. 2021;10(13):2872. doi: 10.3390/jcm10132872
  • Youn J-I, Nagaraj S, Collazo M, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181(8):5791–802. doi: 10.4049/jimmunol.181.8.5791
  • Chen Q, Yuan S, Sun H, et al. CD3+ CD20+ T cells and their roles in human diseases. Hum Immunol. 2019;80(3):191–4. doi: 10.1016/j.humimm.2019.01.001
  • Lombardo L, Capaldi A, Poccardi G, et al. Peripheral blood CD3 and CD4 T-lymphocyte reduction correlates with severity of liver cirrhosis. Int J Clin Lab Res. 1995;25(3):153–156. doi: 10.1007/BF02592558
  • Shin E-C, Sung PS, Park S-H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat Rev Immunol. 2016;16(8):509–23. doi: 10.1038/nri.2016.69
  • Alter HJ, Chisari FV. Is elimination of hepatitis B and C a pipe dream or reality? Gastroenterology. 2019;156(2):294–6. doi: 10.1053/j.gastro.2018.12.015
  • Revill PA, Chisari FV, Block JM, et al. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol Hepatol. 2019;4(7):545–58. doi: 10.1016/S2468-1253(19)30119-0
  • Shi B, Wu Y, Wang C, et al. Evaluation of antiviral-passive-active immunization (“sandwich”) therapeutic strategy for functional cure of chronic hepatitis B in mice. EBioMedicine. 2019;49:247–57. doi: 10.1016/j.ebiom.2019.10.043
  • Zhu H, Gu Y, Xue Y, et al. CXCR2+ MDSCs promote breast cancer progression by inducing EMT and activated T cell exhaustion. Oncotarget. 2017;8(70):114554. doi: 10.18632/oncotarget.23020
  • Zheng C, Yan H, Zeng J, et al. Comparison of pegylated interferon monotherapy and de novo pegylated interferon plus tenofovir combination therapy in patients with chronic hepatitis B. Infect Drug Resist. 2019;12:845–54. doi: 10.2147/IDR.S195144
  • Fung S, Choi HS, Gehring A, et al. Getting to HBV cure: the promising paths forward. Hepatology. 2022;76(1):233–250. doi: 10.1002/hep.32314
  • Raskov H, Orhan A, Gaggar S, et al. Neutrophils and polymorphonuclear myeloid-derived suppressor cells: an emerging battleground in cancer therapy. Oncogenesis. 2022;11(1):22. doi: 10.1038/s41389-022-00398-3
  • Alicea-Torres K, Sanseviero E, Gui J, et al. Immune suppressive activity of myeloid-derived suppressor cells in cancer requires inactivation of the type I interferon pathway. Nat Commun. 2021;12(1):1717. doi: 10.1038/s41467-021-22033-2
  • Yang D, Liu L, Zhu D, et al. A mouse model for HBV immunotolerance and immunotherapy. Cell Mol Immunol. 2014;11(1):71–8. doi: 10.1038/cmi.2013.43
  • Huang L-R, Wu H-L, Chen P-J, et al. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc Nat Acad Sci. 2006;103(47):17862–17867. doi: 10.1073/pnas.0608578103
  • Bronte V, Brandau S, Chen S-H, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7(1):12150. doi: 10.1038/ncomms12150
  • Cassetta L, Baekkevold ES, Brandau S, et al. Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunol Immunother. 2019;68(4):687–97. doi: 10.1007/s00262-019-02302-2
  • Wang X, Zhu J, Zhang Y, et al. The doses of plasmid backbone plays a major role in determining the HBV clearance in hydrodynamic injection mouse model. Virol J. 2018;15(1):1–8. doi: 10.1186/s12985-018-1002-y
  • Li X, Liu G, Chen M, et al. A novel hydrodynamic injection mouse model of HBV genotype C for the study of HBV biology and the anti-viral activity of lamivudine. Hepatitis Mon. 2016;16(2). doi: 10.5812/hepatmon.34420
  • Li L, Li S, Zhou Y, et al. The dose of HBV genome contained plasmid has a great impact on HBV persistence in hydrodynamic injection mouse model. Virol J. 2017;14(1):1–11. doi: 10.1186/s12985-017-0874-6
  • Allweiss L, Dandri M. Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J Hepatol. 2016;64(1):S17–S31. doi: 10.1016/j.jhep.2016.02.012
  • Yang PL, Althage A, Chung J, et al. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Nat Acad Sci. 2002;99(21):13825–13830. doi: 10.1073/pnas.202398599
  • Liu C, Yu S, Kappes J, et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood. 2007;109(10):4336–42. doi: 10.1182/blood-2006-09-046201
  • Knaul JK, Jörg S, Oberbeck-Mueller D, et al. Lung-residing myeloid-derived suppressors display dual functionality in murine pulmonary tuberculosis. Am J Respir Crit Care Med. 2014;190(9):1053–66. doi: 10.1164/rccm.201405-0828OC
  • Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β1. J Immunol. 2009;182(1):240–9. doi: 10.4049/jimmunol.182.1.240
  • Baumann T, Dunkel A, Schmid C, et al. Regulatory myeloid cells paralyze T cells through cell–cell transfer of the metabolite methylglyoxal. Nat Immunol. 2020;21(5):555–566. doi: 10.1038/s41590-020-0666-9
  • Rodriguez PC, Ochoa AC, Al-Khami AA. Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Front Immunol. 2017;8:93. doi: 10.3389/fimmu.2017.00093
  • Sanchez-Pino MD, Dean MJ, Ochoa AC. Myeloid-derived suppressor cells (MDSC): when good intentions go awry. Cell Immunol. 2021;362:104302. doi: 10.1016/j.cellimm.2021.104302
  • Andersson KL, Chung RT. Monitoring during and after antiviral therapy for hepatitis B. Hepatology. 2009 May;49(S5):S166–73. doi: 10.1002/hep.22899
  • Wu S, Yi W, Gao Y, et al. Immune mechanisms underlying hepatitis b surface antigen seroclearance in chronic hepatitis b patients with viral coinfection. Front Immunol. 2022;13:893512. doi: 10.3389/fimmu.2022.893512
  • Fang Z, Li J, Yu X, et al. Polarization of monocytic myeloid-derived suppressor cells by hepatitis B surface antigen is mediated via ERK/IL-6/STAT3 signaling feedback and restrains the activation of T cells in chronic hepatitis B virus infection. J Immunol. 2015;195(10):4873–83. doi: 10.4049/jimmunol.1501362
  • Pal S, Nandi M, Dey D, et al. Myeloid‐derived suppressor cells induce regulatory T cells in chronically HBV infected patients with high levels of hepatitis B surface antigen and persist after antiviral therapy. Aliment Pharmacol Ther. 2019;49(10):1346–59. doi: 10.1111/apt.15226
  • Huang A, Zhang B, Yan W, et al. Myeloid-derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1–induced IL-10. J Immunol. 2014;193(11):5461–9. doi: 10.4049/jimmunol.1400849
  • Menon AP, Moreno B, Meraviglia-Crivelli D, et al. Modulating T cell responses by targeting CD3. Cancers (Basel). 2023;15(4):1189. doi: 10.3390/cancers15041189
  • Dong D, Zheng L, Lin J, et al. Structural basis of assembly of the human T cell receptor–CD3 complex. Nature. 2019;573(7775):546–52. doi: 10.1038/s41586-019-1537-0
  • Liu X, He L, Han J, et al. Association of neutrophil-lymphocyte ratio and T lymphocytes with the pathogenesis and progression of HBV-associated primary liver cancer. Plos One. 2017;12(2):e0170605. doi: 10.1371/journal.pone.0170605
  • Ruan P, Yang C, Su J, et al. Histopathological changes in the liver of tree shrew (tupaia belangeri chinensis) persistently infected with hepatitis B virus. Virol J. 2013;10(1):1–11. doi: 10.1186/1743-422X-10-333
  • Chu C-M, Yeh C-T, Chien R-N, et al. The degrees of hepatocyte nuclear but not cytoplasmic expression of hepatitis B core antigen reflect the level of viral replication in chronic hepatitis B virus infection. J Clin Microbiol. 1997;35(1):102–105. doi: 10.1128/jcm.35.1.102-105.1997
  • Chu C-M, Shyu W-C, Liaw Y-F. Immunopathology on hepatocyte expression of HBV surface, core, and x antigens in chronic hepatitis B: clinical and virological correlation. Dig Dis Sci. 2010;55(2):446–51. doi: 10.1007/s10620-009-0895-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.