60
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanocarriers in topical photodynamic therapy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 279-307 | Received 28 Jun 2023, Accepted 09 Feb 2024, Published online: 20 Feb 2024

References

  • Calixto GM, Bernegossi J, de Freitas LM, et al. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules. 2016 Mar 11;21(3):342. doi: 10.3390/molecules21030342
  • dos Santos AF, de Almeida DRQ, Terra LF, et al. Photodynamic therapy in cancer treatment - an update review. J Cancer Metast Treat. 2019;5:25. doi: 10.20517/2394-4722.2018.83
  • Dragicevic-Curic N, Fahr A. Liposomes in topical photodynamic therapy. Expert Opin Drug Deliv. 2012;9(8):1015–1032.
  • Li X, Lovell JF, Yoon J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657–674. doi: 10.1038/s41571-020-0410-2
  • Touma DJ, Szeimies RM. Topical photodynamic therapy. In: Gilchrest BA Krutmann J, editors. Skin aging. Berlin (Heidelberg): Springer; 2006. doi: 10.1007/3-540-32953-6_14
  • Garapati C, Boddu SH, Shery J, et al. Photodynamic therapy: a special emphasis on nanocarrier-mediated delivery of photosensitizers in antimicrobial therapy. Arabian J Chem. 2023;16 : 4(4):104583. doi: 10.1016/j.arabjc.2023.104583
  • Morton CA, Szeimies RM, Basset-Seguin N, et al. European Dermatology Forum guidelines on topical photodynamic therapy 2019 Part 1: treatment delivery and established indications - actinic keratoses, Bowen’s disease and basal cell carcinomas. J Eur Acad Dermatol Venereol. 2019;33(12):2225–2238.
  • Morton CA, Szeimies RM, Basset-Séguin N, et al. European Dermatology Forum guidelines on topical photodynamic therapy 2019 part 2: emerging indications - field cancerization, photorejuvenation and inflammatory/infective dermatoses. J Eur Acad Dermatol Venereol. 2020;34(1):17–29.
  • Wang H, Zhang C, Zhang Y, et al. An efficient delivery of photosensitizers and hypoxic prodrugs for a tumor combination therapy by membrane camouflage nanoparticles. J Mater Chem B. 2020;8(14):2876–2886. doi: 10.1039/d0tb00235f
  • Hu T, Wang Z, Shen W, et al. Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics. 2021;11(7):3278–3300. doi: 10.7150/thno.54227
  • Morton CA, MacKie RM, Whitehurst C, et al. Photodynamic therapy for basal cell carcinoma: effect of tumor thickness and duration of photosensitizer application on response. Arch Dermatol. 1998;134(2):248–249. doi: 10.1001/archderm.134.2.248
  • Jerjes W, Hamdoon Z, Hopper C. Photodynamic therapy in the management of basal cell carcinoma: retrospective evaluation of outcome. Photodiagnosis Photodyn Ther. 2017;19:22–27. doi: 10.1016/j.pdpdt.2017.04.008
  • Kübler AC, Haase T, Staff C. Photodynamic therapy of primary non-melanomatous skin tumours of the head and neck. Laser Surg Med. 1999;25(1):60–68. doi: 10.1002/(SICI)1096-9101(1999)25:1<60:AID-LSM8>3.0.CO;2-X
  • Morton CA, McKenna KE, Rhodes LE, et al. Guidelines for topical photodynamic therapy: update. Br J Dermatol. 2008;159(6):1245–1266. doi: 10.1111/j.1365-2133.2008.08882.x
  • Barreto Requena M, Denise Stringasci M, Dirceu Vollet-Filho J, et al. Strategies to improve drug delivery in topical PDT. Photodynamic therapy - from basic science to clinical research. IntechOpen. 2021;5. doi: 10.5772/intechopen.94374
  • Qidwai A, Annu N, Kotta S, et al. Role of nanocarriers in photodynamic therapy. Photodiagnosis Photodyn Ther. 2020;30:101782. doi: 10.1016/j.pdpdt.2020.101782
  • Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Nanocarriers in photodynamic therapy-in vitro and in vivo studies. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(3):e1509.
  • Mfouo-Tynga IS, Dias LD, Inada NM, et al. Features of third generation photosensitizers used in anticancer photodynamic therapy. Photodiagnosis Photodyn Ther. 2021;34:102091. doi: 10.1016/j.pdpdt.2020.102091
  • Pierre MB, Tedesco AC, Marchetti JM, et al. Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC Dermatol. 2001;1(1):5. doi: 10.1186/1471-5945-1-5
  • Han I, Jun MS, Kim SK, et al. Expression pattern and intensity of protopor-phyrin IX induced by liposomal 5-aminolevulinic acid in rat pilosebaceous unit throughout hair cycle. Arch Dermatol Res. 2005;297(5):210–217. doi: 10.1007/s00403-005-0613-5
  • Fang YP, Tsai YH, Wu PC, et al. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int J Pharm. 2008;356(1–2):144–152. doi: 10.1016/j.ijpharm.2008.01.020
  • Fang YP, Huang YB, Wu PC, et al. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior. Eur J Pharm Biopharm. 2009;73(3):391–398. doi: 10.1016/j.ejpb.2009.07.011
  • Oh EK, Jin SE, Kim JK, et al. Retained topical delivery of 5-aminolevulinic acid using cationic ultradeformable liposomes for photodynamic therapy. Eur J Pharm Sci. 2011;44(1–2):149–157. doi: 10.1016/j.ejps.2011.07.003
  • Di Venosa G, Hermida L, Fukuda H, et al. Comparation of liposomal formulations of ALA undecanoyl ester for its use in photodynamic therapy. J Photochem Photobiol B. 2009;96(2):152–8. doi: 10.1016/j.jphotobiol.2009.06.001
  • de Leeuw J, van der Beek N, Bjerring P, et al. Photodynamic therapy of acne vulgaris using 5-aminolevulinic acid 0.5% liposomal spray and intense pulsed light in combination with topical ker-atolytic agents. J Eur Acad Dermatol Venereol. 2010;24(4):460–469. doi: 10.1111/j.1468-3083.2009.03447.x
  • Lin MW, Huang YB, Chen CL, et al. A formulation study of 5-aminolevulinic encapsulated in DPPC liposomes in melanoma treatment. Int J Med Sci. 2016;13(7):483–489. doi: 10.7150/ijms.15411
  • Lopes SC, Silva RA, Novais MV, et al. Topical photodynamic therapy with chloroaluminum phthalocyanine liposomes is as effective as systemic pentavalent antimony in the treatment of experimental cutaneous leishmaniasis. Photodiagnosis Photodyn Ther. 2019;28:210–215. doi: 10.1016/j.pdpdt.2019.08.020
  • Hernández IP, Montanari J, Valdivieso W, et al. In vitro phototoxicity of ultradeformable liposomes containing chloroaluminum phthalocyanine against new world leishmania species. J Photochem Photobiol B. 2012;117:157–163. doi: 10.1016/j.jphotobiol.2012.09.018
  • Escobar P, Vera AM, Neira LF, et al. Photodynamic therapy using ultradeformable liposomes loaded with chlorine aluminum phthalocyanine against L. (V.) braziliensis experimental models. Exp Parasitol. 2018;194:45–52. doi: 10.1016/j.exppara.2018.09.016
  • Barbugli PA, Alves CP, Espreafico EM, et al. Photodynamic therapy utilizing liposomal ClAlPc in human melanoma 3D cell cultures. Exp Dermatol. 2015 Dec;24(12):970–2. Epub 2015 Aug 21. PMID: 26194528. doi: 10.1111/exd.12815
  • Sutoris K, Rakusan J, Karaskova M, et al. Novel topical photodynamic therapy of prostate carcinoma using hydroxy-aluminum phthalocyanine entrapped in liposomes. Anticancer Res. 2013;33(4):1563–1568.
  • Sutoris K, Vetvicka D, Horak L, et al. Evaluation of topical photodynamic therapy of mammary carcinoma with an experimental gel containing liposomal hydroxyl-aluminium phthalocyanine. Anticancer Res. 2012;32(9):3769–3774.
  • de Lima RG, Tedesco AC, da Silva RS, et al. Ultradeformable liposome loaded with zinc phthalocyanine and [Ru(NH.NHq)(tpy)NO]3+ for photodynamic therapy by topical application. Photodiagnosis Photodyn Ther. 2017;19:184–193. doi: 10.1016/j.pdpdt.2017.05.013
  • Kassab K, El Fadeel DA, Fadel M. Topical photodynamic therapy using transfersomal aluminum phthalocyanine tetrasulfonate: in vitro and in vivo study. Lasers Med Sci. 2013;28(5):1353–1361. doi: 10.1007/s10103-012-1256-3
  • Ali MFM. Topical delivery and photodynamic evaluation of a multivesicular liposomal Rose Bengal. Lasers Med Sci. 2011;26(2):267–275. doi: 10.1007/s10103-010-0859-9
  • Samy N, Fadel M. Topical liposomal rose bengal for photodynamic white hair removal: randomized, controlled, double-blind study. J Drugs Dermatol. 2014;13(4):436–442.
  • Demartis S, Rassu G, Murgia S, et al. Improving dermal delivery of Rose Bengal by deformable lipid nanovesicles for topical treatment of melanoma. Mol Pharm. 2021;18(11):4046–4057. doi: 10.1021/acs.molpharmaceut.1c00468
  • Fadel M, Salah M, Samy N, et al. Liposomal methylene blue hydrogel for selective photodynamic therapy of acne vulgaris. J Drugs Dermatol. 2009;8(11):983–990.
  • Fadel M, Kassab K, Samy N, et al. Nanovesicular photodynamic clinical treatment of resistant plantar warts. Curr Drug Deliv. 2020;17(5):396–405. doi: 10.2174/1567201817666200324142221
  • Lee EH, Lim SJ, Lee MK. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr Polym. 2019;224:115143.
  • Johansson A, Svensson J, Bendsoe N, et al. Fluorescence and absorption assessment of a lipid mTHPC formulation following topical application in a non-melanotic skin tumor model. J Biomed Opt. 2007;12(3):034026. doi: 10.1117/1.2743080
  • Dragicevic-Curic N, Winter S, Stupar M, et al. Temoporfin-loaded liposomal gels: viscoelastic properties and in vitro skin penetration. Int J Pharm. 2009;373(1–2):77–84. doi: 10.1016/j.ijpharm.2009.02.010
  • Dragicevic-Curic N, Scheglmann D, Albrecht V, et al. Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies. J Control Release. 2008;127(1):59–69. doi: 10.1016/j.jconrel.2007.12.013
  • Dragicevic-Curic N, Scheglmann D, Albrecht V, et al. Development of different temoporfin-loaded invasomes-novel nanocarriers of temoporfin: characterization, stability and in vitro skin penetration studies. Colloids Surf B Biointerfaces. 2009;70(2):198–206. doi: 10.1016/j.colsurfb.2008.12.030
  • Dragicevic-Curic N, Gräfe S, Albrecht V, et al. Topical application of temoporfin-loaded invasomes for photodynamic therapy of subcutaneously implanted tumours in mice: a pilot study. J Photochem Photobiol B. 2008;91(1):41–50. doi: 10.1016/j.jphotobiol.2008.01.009
  • Dragicevic-Curic N, Gräfe S, Gitter B, et al. Efficacy of temoporfin-loaded invasomes in the photodynamic therapy in human epidermoid and colorectal tumour cell lines. J Photochem Photobiol B. 2010;101(3):238–250. doi: 10.1016/j.jphotobiol.2010.07.009
  • Dragicevic N, Nikolic B, Albrecht V, et al. Biodistribution of the photosensitizer temoporfin after in vivo topical application of temoporfin-loaded invasomes in mice bearing subcutaneously implanted HT29 tumor. Int J Pharm. 2022;629:122374. doi: 10.1016/j.ijpharm.2022.122374
  • Bendsoe N, Persson L, Johansson A, et al. Fluorescence monitoring of a topically applied liposomal temoporfin formulation and photodynamic therapy of nonpigmented skin malignancies. J Environ Pathol Toxicol Oncol. 2007;26(2):117–126. doi: 10.1615/jenvironpatholtoxicoloncol.v26.i2.60
  • Dragicevic-Curic N, Scheglmann D, Albrecht V, et al. Development of liposomes containing ethanol for skin delivery of temoporfin: characterization and in vitro penetration studies. Colloids Surf B Biointerfaces. 2009;74(1):114–122. doi: 10.1016/j.colsurfb.2009.07.005
  • Dragicevic-Curic N, Gräfe S, Gitter B, et al. Surface charged temoporfin-loaded flexible vesicles: in vitro skin penetration studies and stability. Int J Pharm. 2010;384(1–2):100–108. doi: 10.1016/j.ijpharm.2009.10.006
  • Bragagni M, Scozzafava A, Mastrolorenzo A, et al. Development and ex vivo evaluation of 5-aminolevulinic acid-loaded niosomal formulations for topical photodynamic therapy. Int J Pharm. 2015;494(1):258–263. doi: 10.1016/j.ijpharm.2015.08.036
  • Fadel MA, Tawfik AA. New topical photodynamic therapy for treatment of hidradenitis suppurativa using methylene blue niosomal gel: a single-blind, randomized, comparative study. Clin Exp Dermatol. 2015;40(2):116–122. doi: 10.1111/ced.12459
  • El-Mahdy MM, Mohamed EM, Saddik MS, et al. Formulation and clinical evaluation of niosomal methylene blue for successful treatment of acne. J Adv Biomed Pharm Sci. 2020;3:116–126.
  • Dragicevic N. Invasomes as drug nanocarriers for innovative pharmaceutical dosage forms. Boca Raton, FL: CRC Press, Taylor and Francis Group; 2021.
  • Khan NH, Mir M, Qian L, et al. Skin cancer biology and barriers to treatment: recent applications of polymeric micro/nanostructures. J Adv Res. 2021;36:223–247. doi: 10.1016/j.jare.2021.06.014
  • Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003 May 1;3(5):380–387. doi: 10.1038/nrc1071
  • Mthethwa TP, Tuncel S, Durmuş M, et al. Photophysical and photochemical properties of a novel thiol terminated low symmetry zinc phthalocyanine complex and its gold nanoparticles conjugate. Dalton Trans. 2013;42(14):4922–4930. doi: 10.1039/c3dt32698e
  • Campu A, Focsan M, Lerouge F, et al. ICG-loaded gold nano-bipyramids with NIR activatable dual PTT-PDT therapeutic potential in melanoma cells. Colloids Surf B Biointerfaces. 2020 Oct;194:111213. doi: 10.1016/j.colsurfb.2020.111213
  • Zhao J, Duan L, Wang A, et al. Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(1):e1583. doi: 10.1002/wnan.1583
  • Liao G, He F, Li Q, et al. Emerging graphitic carbon nitride-based materials for biomedical applications. Pro Mater Sci. 2020;112:100666.
  • Liao G, Zhang L, Chunxue L, et al. Emerging carbon-supported single-atom catalysts for biomedical applications. Matter. 2022;5(10):3341–3374. doi: 10.1016/j.matt.2022.07.031
  • Liang S, Liao G, Zhu W, et al. Manganese-based hollow nanoplatforms for MR imaging-guided cancer therapies. Biomater Res. 2022;26(1):32. doi: 10.1186/s40824-022-00275-5
  • Zhang L, Oudeng G, Wen F, et al. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res. 2022 Nov 8;26(1):61. doi: 10.1186/s40824-022-00308-z
  • Zhang M, Zou Y, Zhong Y, et al. Polydopamine-based tumor-targeted multifunctional reagents for computer tomography/fluorescence dual-mode bioimaging-guided photothermal therapy. ACS Appl Bio Mater. 2019 Feb 18;2(2):630–637. doi: 10.1021/acsabm.8b00797
  • Yibiao Z, Fei S, Chengmei L, et al. A novel nanotheranostic agent for dual-mode imaging-guided cancer therapy based on europium complexes-grafted-oxidative dopamine. Chem Eng J. 2018;357. doi: 10.1016/j.cej.2018.09.139
  • Mo Z, Qiu M, Zhao K, et al. Multifunctional phototheranostic nanoplatform based on polydopamine-manganese dioxide-IR780 iodide for effective magnetic resonance imaging-guided synergistic photodynamic/photothermal therapy. J Colloid Interface Sci. 2022a Apr 1;611: 193–204. doi: 10.1016/j.jcis.2021.12.071
  • Mo Z, Li Q, Zhao K, et al. A nanoarchitectonic approach enables triple modal synergistic therapies to enhance antitumor effects. ACS Appl Mater Inter. 2022b Feb 17;14(8):10001–14. doi: 10.1021/acsami.1c20416.
  • Cui X, Zhang Z, Yang Y, et al. Organic radical materials in biomedical applications: state of the art and perspectives. Exploration (Beijing). 2022 Mar 17;2(2):20210264. doi: 10.1002/EXP.20210264
  • Wang D, Wu H, Phua SZF, et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat Commun. 2020;11(1):357. doi: 10.1038/s41467-019-14199-7
  • Cui X, Lu G, Dong S, et al. Stable π-radical nanoparticles as versatile photosensitizers for effective hypoxia-overcoming photodynamic therapy. Mater Horiz. 2021 Feb 1;8(2):571–576. doi: 10.1039/d0mh01312a
  • Zheng DW, Li B, Li CX, et al. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against Hypoxic Tumor via water splitting. ACS Nano.2016 Sep 27;10(9):8715–8722. doi: 10.1021/acsnano.6b04156
  • Feng L, He F, Yang G, et al. NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy. J Mater Chem B. 2016 Dec 28;4(48):8000–8008. doi: 10.1039/c6tb02232d
  • Chen R, Zhang J, Wang Y, et al. Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy. Nanoscale. 2015 Nov 7;7(41):17299–17305. doi: 10.1039/c5nr04436g
  • Zhang Y, Lv F, Cheng Y, et al. Pd@Au bimetallic nanoplates decorated mesoporous mnO2 for synergistic nucleus-targeted NIR‐II photothermal and hypoxia‐relieved photodynamic therapy. Adv Healthc Mater. 2020;9(2):1901528. doi: 10.1002/adhm.201901528
  • Qin Z, Qiu M, Zhang Q, et al. Development of copper vacancy defects in a silver-doped CuS nanoplatform for high-efficiency photothermal–chemodynamic synergistic antitumor therapy. J Mat Chem B. 2021;9(42):8882–8896. doi: 10.1039/D1TB01629F
  • Zou Y, Fei S, Chengmei L, et al. A novel nanotheranostic agent for dual-mode imaging-guided cancer therapy based on europium complexes-grafted-oxidative dopamine. Chem Eng J. 2019;357:237–247.
  • Mo Z, Pan X, Pan X, et al. MOF (fe)-derived composites as a unique nanoplatform for chemo-photodynamic tumor therapy. J Mat Chem B. 2022;10(42):8760–8770. doi: 10.1039/D2TB01691E
  • Zou Y, Jin H, Sun F, et al. Design and synthesis of a lead sulfide based nanotheranostic agent for computer tomography/magnetic resonance dual-mode-bioimaging-guided photothermal therapy. ACS Appl Nano Mater. 2018 Apr 17;1(5):2294–2305. doi: 10.1021/acsanm.8b00359
  • Huang Z, Yao D, Ye Q, et al. Zoledronic acid–gadolinium coordination polymer nanorods for improved tumor radioimmunotherapy by synergetically inducing immunogenic cell death and reprogramming the immunosuppressive microenvironment. ACS Nano. 2021 May 3;15(5):8450–8465. doi: 10.1021/acsnano.0c10764
  • Qian Y, Qiao S, Dai Y, et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 2017 Sep 26;11(9):9536–9549. doi: 10.1021/acsnano.7b05465
  • Zhang X, Tang J, Li C, et al. A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy. Bioact Mater. 2021 Feb 1;6(2):472–489. doi: 10.1016/j.bioactmat.2020.08.024
  • Zhang Y, Wang B, Zhao R, et al. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. Mater Sci Eng C Mater Biol Appl. 2020 Oct;115:111099. doi: 10.1016/j.msec.2020.111099
  • Zheng Y, Han Y, Sun Q, et al. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration (Beijing). 2022 Feb 25;2(3):20210166. doi: 10.1002/EXP.20210166
  • Souto EB, Cano A, Martins-Gomes C, et al. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering (Basel). 2022 Apr 5;9(4):158. doi: 10.3390/bioengineering9040158
  • Md S, Haque S, Madheswaran T, et al. Lipid based nanocarriers system for topical delivery of photosensitizers. Drug Discov Today. 2017;22(8):1274–1283. doi: 10.1016/j.drudis.2017.04.010
  • Champeau M, Vignoud S, Mortier L, et al. Photodynamic therapy for skin cancer: how to enhance drug penetration? J Photochem Photobiol B. 2019;197:111544.
  • Collier NJ, Rhodes LE. Photodynamic therapy for basal cell carcinoma: the clinical context for future research priorities. Molecules. 2020;25(22):5398. doi: 10.3390/molecules25225398
  • Dragicevic N, Maibach H. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement. Adv Drug Deliv Rev. 2018;127:58–84.
  • Choi MJ, Maibach HI. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol Physiol. 2005;18(5):209–219. doi: 10.1159/000086666
  • Raza K, Singh B, Lohan S, et al. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm. 2013;456(1):65–72. doi: 10.1016/j.ijpharm.2013.08.019
  • Derycke ASL, De Witte PAM. Liposomes for photodynamic therapy. Advanced Drug Delivery Rev. 2004;56(1):17–30.
  • Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst. 1996;13(3–4):257–388.
  • Cevc G, Mazgareanu S, Rother M. Preclinical characterisation of NSAIDs in ultradeformable carriers or conventional topical gels. Int J Pharm. 2008;360(1–2):29–39.
  • Touitou E, Dayan N, Bergelson L, et al. Ethosomes — novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–418.
  • Jafari A, Daneshamouz S, Ghasemiyeh P, et al. Ethosomes as dermal/transdermal drug delivery systems: applications, preparation and characterization. J Liposome Res. 2023;33(1):34–52. doi: 10.1080/08982104.2022.2085742
  • Mura S, Manconi M, Valenti D, et al. Transcutol containing vesicles for topical delivery of minoxidil. J Drug Target. 2011;19(3):189–196. doi: 10.3109/1061186X.2010.483516
  • Mura S, Manconi M, Fadda AM, et al. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil: in vitro evaluation of drug permeation by infrared spectroscopy. Pharm Dev Technol. 2013;18(6):1339–1345. doi: 10.3109/10837450.2012.685661
  • Cevc G, Gebauer D. Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier. Biophys J. 2003;84(2):1010–1024.
  • den Bergh BAI V, Vroom J, Gerritsen H, et al. Interactions of elastic and rigid vesicles with human skin in vitro: electron microscopy and two-photon excitation microscopy. Biochim Biophys Acta. 1999;1461(1):155–173. doi: 10.1016/S0005-2736(99)00176-5
  • Yasamineh S, Yasamineh P, Ghafouri Kalajahi H, et al. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm. 2022;624:121878. doi: 10.1016/j.ijpharm.2022.121878
  • Aparajay P, Dev A. Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci. 2022;168:106052. doi: 10.1016/j.ejps.2021.106052
  • Muzzalupo R, Pérez L, Pinazo A, et al. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: skin penetration behavior and controlled drug release. Int J Pharm. 2017;529(1–2):245–252. doi: 10.1016/j.ijpharm.2017.06.083
  • De Rosa FS, Bentley MV. Photodynamic therapy of skin cancers: sensitizers, clinical studies and future directives. Pharm Res. 2000;17(12):1447–1455. doi: 10.1023/a:1007612905378
  • Jeffes EW. Levulan: the first approved topical photosensitizer for the treatment of actinic keratosis. J DermatolTreat. 2002;13(1):S19–23. doi: 10.1080/095466302317414663
  • Donnelly RF, McCarron PA, Morrow DI, et al. Photosensitiser de-livery for photodynamic therapy. Part 1: topical carrier platforms. Expert Opin Drug Deliv. 2008;5(7):757–766.
  • Casas A, Fukuda H, Di Venosa G, et al. The influence of the vehicle on the synthesis of porphyrins after topical application of 5-aminolaevulinic acid. Implications in cu-taneous photodynamic sensitization. Br J Dermatol. 2000;143(3):564–572. doi: 10.1111/j.1365-2133.2000.03711.x
  • Casas A, Perotti C, Saccoliti M, et al. ALA and ALA hexyl ester in free and liposomal formulations for the photosensitisation of tumour organ cultures. Br J Cancer. 2002;86(5):837–842. doi: 10.1038/sj.bjc.6600144
  • Bunke A, Zerbe O, Schmid H, et al. Degradation mechanism and stability of 5-aminolevulinic acid. J Pharm Sci. 2000;89(10):1335–1341.
  • Nunes SM, Sguilla FS, Tedesco AC. Photophysical studies of zinc phthalocyanine and chloroaluminum phthalocyanine incorporated into liposomes in the presence of additives. Braz J Med Biol Res. 2004;37(2):273–284. doi: 10.1590/s0100-879x2004000200016
  • Hopper C. Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol. 2000;1(4):212–219. doi: 10.1016/S1470-2045(00)00166-2
  • Ris HB, Altermatt HJ, Stewart CM, et al. Photodynamic therapy with m-tetrahydroxyphenylchlorin in vivo: optimization of the therapeutic index. Int J Cancer. 1993;55(2):245–249. doi: 10.1002/ijc.2910550213
  • Kelbauskas L. Untersuchungen zur Struktur-Eigenschafts-Beziehung selbstassoziierender Photosensibilisatoren mittels zeitaufgelöster Spektroskopie [ dissertation]. Jena (Germany): Friedrich-Schiller University Jena; 2003.
  • Dragicevic-Curic N, Winter S, Krajisnik D, et al. Stability evaluation of temoporfin-loaded liposomal gels for topical application. J Liposome Res. 2010;20(1):38–48. doi: 10.3109/08982100903030263
  • Hajare AA, Mali SS, Ahir AA, et al. Lipid nanoparticles: a modern formulation approach in topical drug delivery systems. J Adv Drug Deliv. 2014;1(1):30–37.
  • Goto PL, Siqueira-Moura MP, Tedesco AC. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells. Int J Pharm. 2017 Feb 25;518(1–2):228–241. doi: 10.1016/j.ijpharm.2017.01.004
  • Palliyage GH, Hussein N, Mimlitz M, et al. Novel curcumin-resveratrol solid nanoparticles synergistically inhibit proliferation of melanoma cells. Pharm Res. 2021 May;38(5):851–871. Epub 2021 May 12. PMID: 33982225. doi: 10.1007/s11095-021-03043-7
  • Abdel Fadeel DA, Kamel R, Fadel M. Pegylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: in-vitro/in-vivo studies and histopathological examination. Sci Rep. 2020;10(1):10435. doi: 10.1038/s41598-020-67349-z
  • Qidwai A, Khan S, Md S, et al. Nanostructured lipid carrier in photodynamic therapy for the treatment of basal-cell carcinoma. Drug Deliv. 2016;23(4):1476–1485. doi: 10.3109/10717544.2016.1165310
  • Almeida EDP, Santos Silva LA, de Araujo GRS, et al. Chitosan-functionalized nanostructured lipid carriers containing chloroaluminum phthalocyanine for photodynamic therapy of skin cancer. Eur J Pharm Biopharm. 2022;179:221–231. doi: 10.1016/j.ejpb.2022.09.009
  • Sato MR, Oshiro-Junior JA, Rodero CF, et al. Photodynamic therapy-mediated hypericin-loaded nanostructured lipid carriers against vulvovaginal candidiasis. J Mycol Med. 2022;32(4):101296. doi: 10.1016/j.mycmed.2022.101296
  • Zhang LW, Al-Suwayeh SA, Hung CF, et al. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions. Int J Nanomedicine. 2011;6:693–704. doi: 10.2147/IJN.S17524
  • Araújo LM, Thomazine JA, Lopez RF. Development of microemulsions to topically deliver 5-aminolevulinic acid in photodynamic therapy. Eur J Pharm Biopharm. 2010 May;75(1):48–55. doi: 10.1016/j.ejpb.2010.01.008
  • Ribeiro AP, Andrade MC, Bagnato VS, et al. Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions. Lasers Med Sci. 2015 Feb;30(2):549–559. doi: 10.1007/s10103-013-1354-x
  • Rossetti FC, Depieri LV, Praça FG, et al. Optimization of protoporphyrin IX skin delivery for topical photodynamic therapy: nanodispersions of liquid-crystalline phase as nanocarriers. Eur J Pharm Sci. 2016 Feb 15;83:99–108. doi: 10.1016/j.ejps.2015.12.003
  • Turchiello RF, Vena FC, Maillard P. et al. Cubic phase gel as a drug delivery system for topical application of 5-ALA, its ester derivatives and m-THPC in photodynamic therapy (PDT). J Photochem Photobiol B. 2003 Apr;70(1):1–6.
  • da Silva DB, da Silva CL, Davanzo NN, et al. Protoporphyrin IX (PpIX) loaded PLGA nanoparticles for topical photodynamic therapy of melanoma cells. Photodiagnosis Photodyn Ther. 2021;35:102317. doi: 10.1016/j.pdpdt.2021.102317
  • de Toledo MCMC, Abreu ADS, Carvalho JA, et al. Zinc phthalocyanine tetrasulfonate-loaded polyelectrolytic PLGA nanoparticles for photodynamic therapy applications. Photodiagnosis Photodyn Ther. 2020;32:101966. doi: 10.1016/j.pdpdt.2020.101966
  • Wang X, Shi L, Tu Q, et al. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model. Int J Nanomedicine. 2015;10:347–355. doi: 10.2147/IJN.S71245
  • González-Delgado JA, Castro PM, Machado A, et al. Hydrogels containing porphyrin-loaded nanoparticles for topical photodynamic applications. Int J Pharm. 2016;510(1):221–231.
  • Rodriguez L, Vallecorsa P, Battah S, et al. Aminolevulinic acid dendrimers in photodynamic treatment of cancer and atheromatous disease. Photochem Photobiol Sci. 2015;14(9):1617–1627. doi: 10.1039/c5pp00126a
  • Zhou T, Battah S, Mazzacuva F, et al. Design of Bifunctional Dendritic 5-aminolevulinic acid and hydroxypyridinone conjugates for photodynamic therapy. Bioconjug Chem. 2018;29(10):3411–3428. doi: 10.1021/acs.bioconjchem.8b00574
  • Dabrzalska M, Janaszewska A, Zablocka M, et al. Cationic phosphorus dendrimer enhances photodynamic activity of rose bengal against basal cell carcinoma cell lines. Mol Pharm. 2017;14(5):1821–1830. doi: 10.1021/acs.molpharmaceut.7b00108
  • Hutnick MA, Ahsanuddin S, Guan L, et al. Pegylated dendrimers as drug delivery vehicles for the Photosensitizer Silicon Phthalocyanine Pc 4 for candidal infections. Biomacromolecules. 2017;18(2):379–385. doi: 10.1021/acs.biomac.6b01436
  • Chi YF, Qin JJ, Li Z, et al. Enhanced anti-tumor efficacy of 5-aminolevulinic acid-gold nanoparticles-mediated photodynamic therapy in cutaneous squamous cell carcinoma cells. Braz J Med Biol Res. 2020;53(5):e8457. doi: 10.1590/1414-431x20208457
  • Rizzi M, Tonello S, Estevão BM, et al. Verteporfin based silica nanoparticle for in vitro selective inhibition of human highly invasive melanoma cell proliferation. J Photochem Photobiol B. 2017;167:1–6.
  • Wang P, Tang H, Zhang P. Highly efficient and biocompatible nanoparticle-based photosensitizer for treatment of acne vulgaris. Nanomedicine (Lond). 2018;13(20):2629–2636. doi: 10.2217/nnm-2018-0125
  • Müller RH, Shegokar R, Keck CM. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discov Technol. 2011;8(3):207–227. doi: 10.2174/157016311796799062
  • Müller RH, Zhai X, Romero GB, et al. Nanocrystals for passive dermal penetration enhancement-nanocarriers. In: Dragicevic N Maibach H, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement. Berlin (Heidelberg): Springer; 2016. p. 283–295.
  • Luna-Canales IC, Delgado-Buenrostro NL, Chirino YI. et al. Curcumin-loaded microemulsion: formulation, characterization, and in vitro skin penetration. Drug Dev Ind Pharm. 2023 Jan;49(1):42–51.
  • Solans C, Izquierdo P, Nolla J, et al. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10(3–4):102–110. doi: 10.1016/j.cocis.2005.06.004
  • Izquierdo P, Wiechers JW, Escribano E, et al. A study on the influence of emulsion droplet size on the skin penetration of tetracaine. Skin Pharmacol Physiol. 2007;20(5):263–270. doi: 10.1159/000106076
  • Abdel-Mottaleb MMA, Lamprecht A. Polymeric nano (and micro-) particles as carriers for enhanced skin penetration. In: Dragicevic N Maibach H, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement - nanocarriers. Berlin (Heidelberg): Springer; 2016. p. 187–199.
  • Alvarez-Román R, Naik A, Kalia YN, et al. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99(1):53–62. doi: 10.1016/j.jconrel.2004.06.015
  • Zeng L, Gowda BHJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer. 2023;22(1):10. doi: 10.1186/s12943-022-01708-4
  • Kesharwani P, Gothwal A, Iyer AK, et al. Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov Today. 2018;23(2):300–314. doi: 10.1016/j.drudis.2017.06.009
  • Ybarra DE, Calienni MN, Ramirez LF, et al. Vismodegib in PAMAM-dendrimers for potential theragnosis in skin cancer. OpenNano. 2022;7:100053. doi: 10.1016/j.onano.2022.100053
  • VV V, OP P. Poly(amidoamine) dendrimers as skin penetration enhancers: influence of charge, generation, and concentration. J Pharm Sci. 2009;98(7):2345–2356. doi: 10.1002/jps.21603
  • Filipowicz A, Wołowiec S. Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers. Int J Pharm. 2011 Apr 15;408(1–2):152–156. doi: 10.1016/j.ijpharm.2011.01.033
  • Sebestik J, Niederhafner P, Jezek J. Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids. 2011;40(2):301–370. doi: 10.1007/s00726-010-0707-z
  • Ziyu L, Zhang J, Huang Y, et al. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coord Chem Rev. 2022;471:214723. doi: 10.1016/j.ccr.2022.214723
  • Singh P, Pandit S, VRSS M, et al. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018 Jul 6;19(7):1979. doi: 10.3390/ijms19071979
  • Alrushaid N, Khan FA, Al-Suhaimi EA, et al. Nanotechnology in cancer Diagnosis and treatment. Pharmaceutics. 2023;15(3):1025. doi: 10.3390/pharmaceutics15031025
  • Gonçalves JP, da Cruz AF, Nunes ÁM, et al. Biocompatible gum arabic-gold nanorod composite as an effective therapy for mistreated melanomas. Int J Biol Macromol. 2021;185:551–561. doi: 10.1016/j.ijbiomac.2021.06.172
  • Bayir S, Barras A, Boukherroub R, et al. Mesoporous silica nanoparticles in recent photodynamic therapy applications. Photochem Photobiol Sci. 2018;17(11):1651–1674. doi: 10.1039/c8pp00143j
  • Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013 May 7;42(9):3862–3875. doi: 10.1039/c3cs35405a
  • Baldea I, Giurgiu L, Teacoe ID, et al. Photodynamic therapy in melanoma-where do we stand? Curr Med Chem. 2018 Dec 1;25(40):5540–5563. doi: 10.2174/0929867325666171226115626
  • Zhang H, Lu XF, Wu Z-P, et al. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent Sci. 2020;6:1288–1301. doi: 10.1021/acscentsci.0c00512
  • Zhi D, Yang T, O’hagan J, et al. Photothermal therapy. J Control Release. 2020;325:52–71. doi: 10.1016/j.jconrel.2020.06.032
  • Wang X, Li C, Qian J, et al. NIR-II responsive hollow magnetite nanoclusters for targeted magnetic resonance imaging-guided Photothermal/Chemo-therapy and chemodynamic therapy. Small. 2021;17(31):e2100794. doi: 10.1002/smll.202100794
  • Deng RH, Zou MZ, Zheng D, et al. Nanoparticles from cuttlefish ink inhibit tumor growth by synergizing immunotherapy and photothermal therapy. ACS Nano. 2019 Jun 27;13(8):8618–8629. doi: 10.1021/acsnano.9b02993
  • Huang L, Yan W, Cai B, et al. Dual-engineered, “trojanized” macrophages bio-modally eradicate tumors through biologically and photothermally deconstructing cancer cells in an on-demand, NIR-commanded, self-explosive manner. Biomaterials. 2020 Aug 1;250:120021. doi: 10.1016/j.biomaterials.2020.120021
  • Huang Y, Guan Z, Dai X, et al. Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer. Nat Commun. 2021 Jul 14;12(1):4310. doi: 10.1038/s41467-021-24564-0
  • Ding J, Lu G, Nie W. et al. Self‐activatable photo‐extracellular vesicle for synergistic trimodal anticancer therapy. Adv Mater. 2021 Feb;33(7):2005562.
  • Ai J, Biazar E, Jafarpour M, et al. Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine. 2011;6:1117–1127. doi: 10.2147/IJN.S16603
  • Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine. 2014 Feb 20;9:1025–37. doi: 10.2147/IJN.S38378 PMID: 24591825; PMCID: PMC3934594
  • Fang YP, Wu PC, Tsai YH, et al. Physicochemical and safety evaluation of 5-aminolevulinic acid in novel liposomes as carrier for skin delivery. J Liposome Res. 2008;18(1):31–45. doi: 10.1080/08982100801893952
  • Azarnezhad A, Samadian H, Jaymand M. et al. Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit Rev Toxicol. 2020 Feb;50(2):148–176.
  • RS R, Bandaru R, Kenguva G, et al. Dendrimers in photodynamic therapy. In: Kesharwani, P, editor. Nanomaterials for Photodynamic Therapy (Woodhead Publishing Series in Biomaterials). 1st ed. Woodhead Publishing, Elsevier; 2023. p. 281–305.
  • Li X, Naeem A, Xiao S, et al. Safety challenges and application strategies for the use of dendrimers in medicine. Pharmaceutics. 2022 Jun 17;14(6):1292. doi: 10.3390/pharmaceutics14061292
  • Qin L, Gan J, Niu D, et al. Interfacial-confined coordination to single-atom nanotherapeutics. Nat Commun. 2022 Jan 10;13(1):91. doi: 10.1038/s41467-021-27640-7 PMID: 35013181; PMCID: PMC8748799.
  • Zhang X, Wang H, Wang H, et al. Single-layered graphitic-C(3)N(4) quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv Mater. 2014 Jul 9;26(26):4438–4443. doi: 10.1002/adma.201400111
  • Lin RK, Venkatesan P, Yeh CH, et al. Effective topical treatments using innovative NNO-tridentate vanadium(IV) complexes-mediated photodynamic therapy in a psoriasis-like mouse model. J Mater Chem B. 2022;10(25):4759–4770. doi: 10.1039/d2tb00344a
  • Makuch S, Dróżdż M, Makarec A, et al. An update on photodynamic therapy of psoriasis-current strategies and nanotechnology as a future perspective. Int J Mol Sci. 2022;23(17):9845. doi: 10.3390/ijms23179845
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–1107. doi: 10.1016/j.biopha.2018.07.049
  • Clemente N, Miletto I, Gianotti E, et al. Verteporfin-loaded Mesoporous Silica Nanoparticles’ Topical Applications Inhibit Mouse Melanoma Lymphangiogenesis and micrometastasis in vivo. Int J Mol Sci. 2021 Dec 14;22(24):13443. doi: 10.3390/ijms222413443
  • Conte C, Ungaro F, Maglio G, et al. Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn (II)-phthalocyanine inspired by combination therapy for cancer. JControlled Release. 2013 Apr 10;167(1):40–45. doi: 10.1016/j.jconrel.2012.12.026
  • Kenchegowda M, Rahamathulla M, Hani U, et al. Smart nanocarriers as an emerging platform for cancer therapy: a review. Molecules. 2021;27(1):146. doi: 10.3390/molecules27010146
  • Ghosh S, Carter KA, Lovell JF. Liposomal formulations of photosensitizers. Biomaterials. 2019;218:119341. doi: 10.1016/j.biomaterials.2019.119341
  • Chen L, Huang J, Li X, et al. Progress of Nanomaterials in photodynamic therapy against tumor. Front Bioeng Biotechnol. 2022;10:920162.
  • Yang YL, Lin K, Yang L. Progress in Nanocarriers Codelivery System to enhance the anticancer effect of photodynamic therapy. Pharmaceutics. 2021;13(11):1951. doi: 10.3390/pharmaceutics13111951

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.