169
Views
2
CrossRef citations to date
0
Altmetric
Review

Recent advances in the application of clay-containing hydrogels for hemostasis and wound healing

, , , , &
Pages 457-477 | Received 26 Dec 2023, Accepted 08 Mar 2024, Published online: 14 Mar 2024

References

  • Huan Y, Zhao X, Wang C, et al. High-strength anti-bacterial composite cryogel for lethal noncompressible hemorrhage hemostasis: Synergistic physical hemostasis and chemical hemostasis[Article]. Chemical Engineering Journal. 2022 Jan;427:131977. doi: 10.1016/j.cej.2021.131977. PubMed PMID: WOS:000769391400014.
  • Yang X, Liu W, Li N, et al. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism [review]. Biomater Sci. 2017 Dec;5(12):2357–2368. doi: 10.1039/c7bm00554g PubMed PMID: WOS:000415872900001.
  • Galante JM. Using tourniquets to stop bleeding [patient education handout]. JAMA. 2017 Apr 11;317(14):1490–1490. doi: 10.1001/jama.2015.8581 PubMed PMID: MEDLINE:28399253.
  • Fisher AD, Bulger EM, Gestring ML. Stop the bleeding educating the public [editorial material]. J Am Med Assoc. 2018 Aug 14;320(6):589–590. doi: 10.1001/jama.2018.7301 PubMed PMID: WOS:000441642500013.
  • Sun X, Tang Z, Pan M, et al. Chitosan/Kaolin composite porous microspheres with high hemostatic efficacy [article]. Carbohydr Polym. 2017 Dec 1;177:135–143. doi: 10.1016/j.carbpol.2017.08.131 PubMed PMID: WOS:000411876200015.
  • Basu A, Hong J, Ferraz N. Hemocompatibility of Ca2+-crosslinked nanocellulose hydrogels: toward efficient management of hemostasis [article]. Macromol Biosci. 2017 Nov;17(11):1700236. doi: 10.1002/mabi.201700236 PubMed PMID: WOS:000415130800015.
  • Hickman DA, Pawlowski CL, Sekhon UDS, et al. Biomaterials and advanced technologies for hemostatic management of bleeding [review]. Adv Mater. 2018 Jan 25;30(4):1700859. doi: 10.1002/adma.201700859 PubMed PMID: WOS:000422932800001.
  • Dong R, Zhang H, Guo B. Emerging hemostatic materials for non-compressible hemorrhage control [review]. Natl Sci Rev. 2022 Nov 9;9(11): doi: 10.1093/nsr/nwac162 PubMed PMID: WOS:000863551700001.
  • Huang L, Liu GL, Kaye AD, et al. Advances in topical hemostatic agent therapies: a comprehensive update [review]. Adv Ther. 2020 Oct;37(10):4132–4148. doi: 10.1007/s12325-020-01467-y PubMed PMID: WOS:000567654800001.
  • Chen S, Lu J, You T, et al. Metal-organic frameworks for improving wound healing [review]. Coord Chem Rev. 2021 Jul 15;439. doi: 10.1016/j.ccr.2021.213929 PubMed PMID: WOS:000647329100013.
  • Guo B, Dong R, Liang Y, et al. Haemostatic materials for wound healing applications [Review; early access]. Nat Rev Chem. 2021;5(11):773–791. doi: 10.1038/s41570.021-00323-z PubMed PMID: WOS:000696758800001.
  • Tetley RJ, Staddon MF, Heller D, et al. Tissue fluidity promotes epithelial wound healing [article]. Nat Phys. 2019 Nov;15(11):1195–1203. doi: 10.1038/s41567-019-0618-1 PubMed PMID: WOS:000494944200028.
  • Zheng C, Zeng Q, Pimpi S, et al. Research status and development potential of composite hemostatic materials [review]. J Mat Chem B. 2020 Jul 7;8(25):5395–5410. doi: 10.1039/d0tb00906g PubMed PMID: WOS:000546037000001.
  • Li X-F, Lu P, Jia H-R, et al. Emerging materials for hemostasis [review]. Coord Chem Rev. 2023 Jan 15;475. doi: 10.1016/j.ccr.2022.214823 PubMed PMID: WOS:000880778400004.
  • Zhang S, Lei X, Lv Y, et al. Recent advances of chitosan as a hemostatic material: hemostatic mechanism, material design and prospective application [article]. Carbohydr Polym. 2024 Mar 1;327. doi: 10.1016/j.carbpol.2023.121673 PubMed PMID: WOS:001138942500001.
  • Zhong Y, Hu H, Min N, et al. Application and outlook of topical hemostatic materials: a narrative review [review]. Ann translat Med. 2021 Apr;9(7):577. doi: 10.21037/atm-20-7160 PubMed PMID: WOS:000657322500004.
  • Zhu J, Li F, Wang X, et al. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing [article]. ACS Appl Mater Inter. 2018 Apr 25;10(16):13304–13316. doi: 10.1021/acsami.7b18927 PubMed PMID: WOS:000431150900007.
  • Asadi N, Pazoki-Toroudi H, Del Bakhshayesh AR, et al. Multifunctional hydrogels for wound healing: special focus on biomacromolecular based hydrogels [review]. Int J Biol Macromol. 2021 Feb 15;170:728–750. doi: 10.1016/j.ijbiomac.2020.12.202 PubMed PMID: WOS:000613921400068.
  • Huang C, Dong L, Zhao B, et al. Anti-inflammatory hydrogel dressings and skin wound healing [Review]. Clin Transl Med. 2022 Nov;12(11):e1094. doi: 10.1002/ctm2.1094 PubMed PMID: WOS:000880648600001.
  • Xie M, Zheng Z, Pu S, et al. Macroporous adhesive nano-enabled hydrogels generated from air-in-water emulsions [article]. Macromol Biosci. 2022 Apr;22(4):2100491. doi: 10.1002/mabi.202100491 PubMed PMID: WOS:000749602100001.
  • Fan X, Wang S, Fang Y, et al. Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application [article]. Mater Sci Eng C-Mater Biol Appl. 2020 Apr;109:110649. doi: 10.1016/j.msec.2020.110649 PubMed PMID: WOS:000527394600121.
  • Zhang Y, Chen Q, Dai Z, et al. Nanocomposite adhesive hydrogels: from design to application [Review]. J Mat Chem B. 2021 Jan 21;9(3):585–593. doi: 10.1039/d0tb02000a PubMed PMID: WOS:000612856700003.
  • Garcia-Villen F, Souza IMS, de Melo Barbosa R, et al. Natural inorganic ingredients in wound healing [review]. Curr Pharm Des. 2020;26(6):621–641. doi: 10.2174/1381612826666200113162114 PubMed PMID: WOS:000521751200001.
  • Long M, Zhang B, Peng S, et al. Interactions between two-dimensional nanoclay and blood cells in hemostasis [article]. Mater Sci Eng C-Mater Biol Appl. 2019 Dec;105:110081. doi: 10.1016/j.msec.2019.110081 PubMed PMID: WOS:000490044700072.
  • Yang Z, Ye T, Ma F, et al. Preparation of chitosan/clay composites for safe and effective hemorrhage control [article]. Molecules. 2022 Apr;27(8):2571. doi: 10.3390/molecules27082571 PubMed PMID: WOS:000786947600001.
  • Gan C, Hu H, Meng Z, et al. Characterization and hemostatic potential of two kaolins from southern China [article]. Molecules. 2019 Sep 1;24(17):3160. doi: 10.3390/molecules24173160 PubMed PMID: WOS:000488613700140.
  • Massaro M, Colletti CG, Lazzara G, et al. The use of some clay minerals as natural resources for drug carrier applications [review]. J Funct Biomater. 2018 Dec;9(4):58. doi: 10.3390/jfb9040058 PubMed PMID: WOS:000455071000005.
  • Garcia-Villen F, Faccendini A, Miele D, et al. Wound healing activity of nanoclay/spring water hydrogels [article]. Pharmaceutics. 2020 May;12(5):467. doi: 10.3390/pharmaceutics12050467 PubMed PMID: WOS:000543393700033.
  • Cui Y, Huang Z, Lei L, et al. Robust hemostatic bandages based on nanoclay electrospun membranes [article]. Nat Commun. 2021 Oct 11; 12(1). doi: 10.1038/s41467-021-26237-4 PubMed PMID: WOS:000706146500013.
  • Mascarenhas-Melo F, Peixoto D, Aleixo C, et al. Nanoclays for wound management applications [review]. Drug Deliv Transl Res. 2023 Apr;13(4):924–945. doi: 10.1007/s13346-022-01279-3 PubMed PMID: WOS:000901955900001.
  • Wang G, Wang S, Sun Z, et al. Structures of nonionic surfactant modified montmorillonites and their enhanced adsorption capacities towards a cationic organic dye [article]. Appl Clay Sci. 2017 Nov;148:1–10. doi: 10.1016/j.clay.2017.08.001 PubMed PMID: WOS:000412036800001.
  • Liu X, Zhang Q, Gao Z, et al. Bioinspired adhesive hydrogel driven by adenine and thymine [article]. ACS Appl Mater Inter. 2017 May 24;9(20):17646–17653. doi: 10.1021/acsami.7b04832 PubMed PMID: WOS:000402498600096.
  • Han L, Lu X, Liu K, et al. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization [article]. ACS Nano. 2017 Mar;11(3):2561–2574. doi: 10.1021/acsnano.6b05318. PubMed PMID: WOS:000398014900023.
  • Golafshan N, Rezahasani R, Esfahani MT, et al. Nanohybrid hydrogels of laponite: PVA-alginate as a potential wound healing material [article]. Carbohydr Polym. 2017 Nov 15;176:392–401. doi: 10.1016/j.carbpol.2017.08.070 PubMed PMID: WOS:000410970900045.
  • Jaewjaroenwattana J, Phoolcharoen W, Pasomsub E, et al. Electrochemical paper-based antigen sensing platform using plant-derived monoclonal antibody for detecting SARS-CoV-2 [article]. Talanta. 2023 Jan 1;251:123783. doi: 10.1016/j.talanta.2022.123783 PubMed PMID: WOS:000848101100002
  • Hamid Y, Tang L, Hussain B, et al. Sepiolite clay: a review of its applications to immobilize toxic metals in contaminated soils and its implications in soil–plant system. Environ Technol & Innov. 2021 Aug 23;23:101598. doi: 10.1016/j.eti.2021.101598 PubMed PMID: WOS:000685034800028.
  • Gao Y, Sarode A, Kokoroskos N, et al. A polymer-based systemic hemostatic agent [article]. Sci Adv. 2020 Jul;6(31):eaba0588. doi: 10.1126/sciadv.aba0588 PubMed PMID: WOS:000556543100011.
  • Zhao X, Huang Y-F, Tian X, et al. Polysaccharide-based adhesive antibacterial and self-healing hydrogel for sealing hemostasis [article]. Biomacromolecules. 2022 Dec 12;23(12):5106–5115. doi: 10.1021/acs.biomac.2c00943 PubMed PMID: WOS:000887983500001.
  • Rao KM, Narayanan KB, Uthappa UT, et al. Tissue adhesive, self-healing, biocompatible, hemostasis, and antibacterial properties of fungal-derived carboxymethyl chitosan-polydopamine hydrogels [article]. Pharmaceutics. 2022 May;14(5). doi: 10.3390/pharmaceutics14051028 PubMed PMID: WOS:000802627500001.
  • Haas S, Koerner S, Zintel L, et al. Changing mechanical properties of photopolymerized, dityrosine-crosslinked protein-based hydrogels [article]. Front Bioeng Biotechnol. 2022 Sep 12;10:1006438. doi: 10.3389/fbioe.2022.1006438. PubMed PMID: WOS:000860785900001.
  • Lin X, Feng Y, He Y, et al. Engineering design of asymmetric halloysite/chitosan/collagen sponge with hydrophobic coating for high-performance hemostasis dressing [article]. Int J Biol Macromol. 2023 May 15;237:124148. doi: 10.1016/j.ijbiomac.2023.124148 PubMed PMID: WOS:000969502000001.
  • Hou S, Wang X, Zhang J. High water content hydrogels with instant mechanical recovery, anti-high temperature and anti-high ionic strength properties [article]. Colloids Surf A Physicochem Eng Asp. 2021 Jun 5;618: 126456. doi: 10.1016/j.colsurfa.2021.126456 PubMed PMID: WOS:000642465000004.
  • Tanasa E, Zaharia C, Radu I-C, et al. Novel nanocomposites based on functionalized magnetic nanoparticles and polyacrylamide: preparation and complex characterization [article]. Nanomaterials. 2019 Oct;9(10). doi: 10.3390/nano9101384 PubMed PMID: WOS:000495666800039.
  • Ianchis R, Ninciuleanu CM, Gifu IC, et al. Novel hydrogel-advanced modified clay nanocomposites as possible vehicles for drug delivery and controlled release [article]. Nanomaterials. 2017 Dec;7(12). doi: 10.3390/nano7120443 PubMed PMID: WOS:000419186800038.
  • Heidarian P, Kaynak A, Paulino M, et al. Dynamic nanocellulose hydrogels: recent advancements and future outlook [article]. Carbohydr Polym. 2021 Oct 15;270:118357. doi: 10.1016/j.carbpol.2021.118357 PubMed PMID: WOS:000684293000008.
  • Wang D, Zhu L, Qiu J, et al. Poly(acrylic acid)/palygorskite microgel via radical polymerization in aqueous phase for reinforcing poly(vinyl alcohol) hydrogel [Article]. Appl Clay Sci. 2020 Feb;185:105421. doi: 10.1016/j.clay.2019.105421 PubMed PMID: WOS:000510399600010.
  • Liu Z, Faraj Y, Ju X-J, et al. Nanocomposite smart hydrogels with improved responsiveness and mechanical properties: a mini review [review]. J Polym Sci Part B: Polym Phys. 2018 Oct 1;56(19):1306–1313. doi: 10.1002/polb.24723 PubMed PMID: WOS:000447863400005.
  • Chen X, Zhang T, Sun P, et al. Application of organic amine modified natural zeolite in filling natural Rubber [article]. Nanomaterials. 2022 Aug;12(16). doi: 10.3390/nano12162784 PubMed PMID: WOS:000845320000001.
  • Xu S, Vogt DM, Hsu W-H, et al. Biocompatible soft fluidic strain and force sensors for wearable devices [article]. Adv Funct Mater. 2019 Feb 14;29(7). doi: 10.1002/adfm.201970038 PubMed PMID: WOS:000459719800010.
  • Tang L, Yao X, Wu G, et al. Band gaps characteristics analysis of periodic oscillator coupled damping beam [article]. Materials. 2020 Dec;13(24). doi: 10.3390/ma13245748 PubMed PMID: WOS:000602997400001.
  • Shekh MI, Zhu G, Xiong W, et al. Dynamically bonded, tough, and conductive MXene@oxidized sodium alginate: chitosan based multi-networked elastomeric hydrogels for physical motion detection [article]. Int J Biol Macromol. 2023 Jan 1;224:604–620. doi: 10.1016/j.ijbiomac.2022.10.150 PubMed PMID: WOS:000906599800001.
  • Hotton C, Sirieix-Plenet J, Ducouret G, et al. Organisation of clay nanoplatelets in a polyelectrolyte-based hydrogel [article]. J Colloid Interface Sci. 2021 Dec 15;604:358–367. doi: 10.1016/j.jcis.2021.07.010 PubMed PMID: WOS:000704428600011.
  • Lin Y, Wang S, Sun S, et al. Highly tough and rapid self-healing dual-physical crosslinking poly(DMAA-co-AM) hydrogel [article]. RSC Adv. 2021 Oct 7;11(52):32988–32995. doi: 10.1039/d1ra05896g PubMed PMID: WOS:000704927700001.
  • Tamer TM, Sabet MM, Omer AM, et al. Hemostatic and antibacterial PVA/kaolin composite sponges loaded with penicillin-streptomycin for wound dressing applications [article]. Sci Rep. 2021 Feb 9;11(1):3428. doi: 10.1038/s41598-021-82963-1 PubMed PMID: WOS:000684871600009.
  • Zhang J, Pan Y, Dong S, et al. Montmorillonite/Agarose three-dimensional network gel sponge for wound healing with hemostatic and durable antibacterial properties [article]. ACS Appl Nano Mater. 2023 Aug 31;6(18):17263–17275. doi: 10.1021/acsanm.3c03708 PubMed PMID: WOS:001061528500001.
  • El-Din HMN, Ibraheim DM. Biological applications of nanocomposite hydrogels prepared by gamma-radiation copolymerization of acrylic acid (AAc) onto plasticized starch (Plst)/montmorillonite clay (Mmt)/chitosan (CS) blends [article]. Int J Biol Macromol. 2021 Dec 1;192:151–160. doi: 10.1016/j.ijbiomac.2021.09.196 PubMed PMID: WOS:000710457500004.
  • Tsiligianni C, Tsiligiannis A, Tsiliyannis C. A stochastic inventory model of COVID-19 and robust, real-time identification of carriers at large and infection rate via asymptotic laws [article]. Eur J Oper Res. 2023 Jan 1;304(1):42–56. doi: 10.1016/j.ejor.2021.12.037 PubMed PMID: WOS:000854014700004.
  • Konieczynska MD, Grinstaff MW. On-demand dissolution of chemically cross-linked hydrogels [review]. Acc Chem Res. 2017 Feb;50(2):151–160. doi: 10.1021/acs.accounts.6b00547 PubMed PMID: WOS:000394724500003.
  • Uzumcu AT, Guney O, Okay O. Highly stretchable DNA/Clay hydrogels with self-healing ability [article]. ACS Appl Mater Inter. 2018 Mar 7;10(9):8296–8306. doi: 10.1021/acsami.8b00168 PubMed PMID: WOS:000427204100085.
  • Li C, Jiang T, Zhou C, et al. Injectable self-healing chitosan-based POSS-PEG hybrid hydrogel as wound dressing to promote diabetic wound healing [article]. Carbohydr Polym. 2023 Jan 1;299. doi: 10.1016/j.carbpol.2022.120198 PubMed PMID: WOS:000877553400004.
  • Ikram M, Haider A, Naz S, et al. Chitosan and carbon nitride doped barium hydroxide nanoparticles served as dye degrader and bactericidal potential: A molecular docking study [Article]. Int J Biol Macromol. 2023 Jan 1;224:938–949. doi: 10.1016/j.ijbiomac.2022.10.179 PubMed PMID: WOS:000914171100001.
  • Zandi N, Dolatyar B, Lotfi R, et al. Biomimetic nanoengineered scaffold for enhanced full-thickness cutaneous wound healing [article]. Acta Biomaterialia. 2021 Apr 1;124:191–204. doi: 10.1016/j.actbio.2021.01.029 PubMed PMID: WOS:000632820700011.
  • Ouyang Y, Zhao Y, Zheng X, et al. Rapidly degrading and mussel-inspired multifunctional carboxymethyl chitosan/montmorillonite hydrogel for wound hemostasis [article]. Int J Biol Macromol. 2023 Jul 1;242:124960. doi: 10.1016/j.ijbiomac.2023.124960 PubMed PMID: WOS:001011473000001.
  • Ul Ain N, Masood F, Noor M, et al. Fabrication and evaluation of antibacterial properties of Cu2O/sepiolite-PVA nanocomposite hydrogels against multidrug-resistant bacteria [Article]. Appl Clay Sci. 2022 Nov 1;229. doi: 10.1016/j.clay.2022.106663 PubMed PMID: WOS:000859478700007.
  • Yuan L, Jiang X, Jiang M, et al. Biocompatible gellan gum/sericin hydrogels containing halloysite@polydopamine nanotubes with hemostasis and photothermal antibacterial properties for promoting infectious wound repair [article]. Mater Design. 2023 Mar;227:111744. doi: 10.1016/j.matdes.2023.111744 PubMed PMID: WOS:001018911800001.
  • Li Z, Li B, Li X, et al. Ultrafast in-situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair [article]. Carbohydr Polym. 2021 Sep 1;267. doi: 10.1016/j.carbpol.2021.118155 PubMed PMID: WOS:000662871600007.
  • Elbassyoni S, Kamoun EA, Taha TH, et al. Effect of Egyptian attapulgite clay on the properties of PVA-HES-Clay nanocomposite hydrogel membranes for wound dressing applications [article]. Arab J Sci Eng. 2020 Jun;45(6):4737–4749. doi: 10.1007/s13369-020-04501-x PubMed PMID: WOS:000524924500004.
  • Oluwatuyi OE, Ojuri OO, Khoshghalb A. Cement-lime stabilization of crude oil contaminated kaolin clay [article]. J Rock Mech Geotech Eng. 2020 Feb;12(1):160–167. doi: 10.1016/j.jrmge.2019.07.010 PubMed PMID: WOS:000512965400014.
  • Awad ME, Lopez-Galindo A, Setti M, et al. Kaolinite in pharmaceutics and biomedicine [Review]. Int J Pharmaceut. 2017 Nov 25;533(1):34–48. doi: 10.1016/j.ijpharm.2017.09.056 PubMed PMID: WOS:000413674200004.
  • Jaradat KA, Darbari Z, Elbakhshwan M, et al. Heating-freezing effects on the orientation of kaolin clay particles [article]. Appl Clay Sci. 2017 Dec 15;150:163–174. doi: 10.1016/j.clay.2017.09.028 PubMed PMID: WOS:000414820500021.
  • Zhu TT, Zhou CH, Kabwe FB, et al. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites [review]. Appl Clay Sci. 2019 Mar 1;169:48–66. doi: 10.1016/j.clay.2018.12.006 PubMed PMID: WOS:000458225700006.
  • Li Z, He J, Ma H, et al. Preparation of heterogeneous TiO2/g-C3N4 with a layered mosaic stack structure by use of montmorillonite as a hard template approach: TC degradation, kinetic, mechanism, pathway and DFT investigation [article]. Appl Clay Sci. 2021 Jun 15;207:106107. doi: 10.1016/j.clay.2021.106107 PubMed PMID: WOS:000651213800001.
  • Aslan E. Co-catalyst-free photocatalytic hydrogen evolution by laponite D clay [article]. J Photochem Photobiol A A-Chem. 2020 Mar 1;390:112335. doi: 10.1016/j.jphotochem.2019.112335 PubMed PMID: WOS:000512481000041.
  • Xiong Z-Q, Li X-D, Fu F, et al. Performance evaluation of laponite as a mud-making material for drilling fluids [article]. Petroleum Sci. 2019 Aug;16(4):890–900. doi: 10.1007/s12182-018-0298-y PubMed PMID: WOS:000482400100013.
  • Kiaee G, Dimitrakakis N, Sharifzadeh S, et al. Laponite-based nanomaterials for drug delivery [review]. Adv Healthcare Mater. 2022 Apr;11(7):2102054. doi: 10.1002/adhm.202102054 PubMed PMID: WOS:000750918700001.
  • Singh VP, Vimal KK, Sharma S, et al. Polyethylene/Sepiolite clay nanocomposites: effect of clay content, compatibilizer polarity, and molar mass on viscoelastic and dynamic mechanical properties [article]. J Appl Polym Sci. 2017 Sep 5;134(33):45197. doi: 10.1002/app.45197 PubMed PMID: WOS:000402201600018.
  • Chen B, Jia Y, Zhang M, et al. Facile modification of sepiolite and its application in superhydrophobic coatings [Article]. Appl Clay Sci. 2019 Jun 15;174:1–9. doi: 10.1016/j.clay.2019.03.016 PubMed PMID: WOS:000467661200001.
  • Danyliuk N, Tomaszewska J, Tatarchuk T. Halloysite nanotubes and halloysite-based composites for environmental and biomedical applications [review]. J Mol Liq. 2020 Jul 1;309:113077. doi: 10.1016/j.molliq.2020.113077 PubMed PMID: WOS:000544211600070.
  • Andrini L, Toja RM, Conconi MS, et al. Halloysite nanotube and its firing products: structural characterization of halloysite, metahalloysite, spinel type silicoaluminate and mullite [article]. J Electron Spectros Relat Phenomena. 2019 Jul;234:19–26. doi: 10.1016/j.elspec.2019.05.007 PubMed PMID: WOS:000472704200004.
  • Chen S, Yang Z, Wang F. Investigation on the properties of PMMA/Reactive halloysite nanocomposites based on halloysite with double bonds [article]. Polymers. 2018 Aug;10(8):919. doi: 10.3390/polym10080919 PubMed PMID: WOS:000445410200112.
  • Yu L, Liu J, Mao J, et al. Dietary palygorskite clay-adsorbed nano-ZnO supplementation improves the intestinal barrier function of weanling pigs [article]. Front Nutr. 2022 May 12;9:857898. doi: 10.3389/fnut.2022.857898 PubMed PMID: WOS:000803667700001.
  • Greco D, D’Ascanio V, Abbasciano M, et al. Simultaneous removal of mycotoxins by a new feed additive containing a tri-octahedral smectite mixed with lignocellulose [article]. Toxins (Basel). 2022 Jun;14(6):393. doi: 10.3390/toxins14060393 PubMed PMID: WOS:000817459500001.
  • Du M, Chen Y, Wang S, et al. Effects of dietary palygorskite supplementation on the growth performance, oxidative status, immune function, intestinal barrier and cecal microbial community of broilers [Article]. Front Microbiol. 2022 Aug 25;13:985784. doi: 10.3389/fmicb.2022.985784 PubMed PMID: WOS:000852640400001.
  • Wang B, Hu X, Zhou D, et al. Highly selective and sustainable clean-up of phosphate from aqueous phase by eco-friendly lanthanum cross-linked polyvinyl alcohol/alginate/palygorskite composite hydrogel beads [article]. J Clean Prod. 2021 May 20;298:126878. doi: 10.1016/j.jclepro.2021.126878 PubMed PMID: WOS:000697162500005.
  • Youcef LD, Belaroui LS, Lopez-Galindo A. Adsorption of a cationic methylene blue dye on an Algerian palygorskite [article]. Appl Clay Sci. 2019 Oct;179:105145. doi: 10.1016/j.clay.2019.105145 PubMed PMID: WOS:000479025400005.
  • Jawad AH, Abdulhameed AS. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: adsorption kinetic, isotherm and mechanism study [article]. Surf Interfaces. 2020 Mar;18:100422. doi: 10.1016/j.surfin.2019.100422 PubMed PMID: WOS:000540775900003.
  • Mustapha S, Tijani JO, Ndamitso MM, et al. The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment [article]. Sci Rep. 2020 Aug 3;10(1):13068. doi: 10.1038/s41598-020-69808-z PubMed PMID: WOS:000556396000019.
  • Elsabahy M, Hamad MA. Design and preclinical evaluation of chitosan/kaolin nanocomposites with enhanced hemostatic efficiency [article]. Mar Drugs. 2021 Feb;19(2):50. doi: 10.3390/md19020050 PubMed PMID: WOS:000622696900001.
  • Alrubaye AJ, Hasan M, Fattah MY. Stabilization of soft kaolin clay with silica fume and lime. Int J Geotech Eng. 2017;11(1):90–96. doi: 10.1080/19386362.2016.1187884 PubMed PMID: INSPEC:17876608.
  • Hoggarth A, Grist M, Murch T. Influence of celox rapid’s mode of action under normal and compromised blood conditions. J Spec Oper Med. 2020;20(2):154–155. doi: 10.55460/4yll-m365 Summer PubMed PMID: MEDLINE:32573757.
  • Streifel BC, Lundin JG, Sanders AM, et al. Hemostatic and absorbent polyHIPE-kaolin composites for 3D printable wound dressing materials [article]. Macromol biosci. 2018 May;18(5):1700414. doi: 10.1002/mabi.201700414 PubMed PMID: WOS:000431504100005.
  • Wang X-X, Liu Q, Sui J-X, et al. Recent advances in hemostasis at the nanoscale [review]. Adv Healthcare Mater. 2019 Dec 5;8(23):1900823. doi: 10.1002/adhm.201900823 PubMed PMID: WOS:000494867400001.
  • Liang Y, Xu C, Li G, et al. Graphene-kaolin composite sponge for rapid and riskless hemostasis [article]. Colloids Surf B Biointerfaces. 2018 Sep 1;169:168–175. doi: 10.1016/j.colsurfb.2018.05.016 PubMed PMID: WOS:000440119200019.
  • Lundin JG, McGann CL, Daniels GC, et al. Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications [article]. Mater Sci Eng C-Mater Biol Appl. 2017 Oct 1;79:702–709. doi: 10.1016/j.msec.2017.05.084 PubMed PMID: WOS:000404704300082.
  • Khan SA, Hussain D, Khan TA. Mechanistic evaluation of metformin drug confiscation from liquid phase on itaconic acid/kaolin hydrogel nanocomposite [Article]. Environ Sci Pollut Res. 2021 Oct;28(38):53298–53313. doi: 10.1007/s11356-021-14329-z PubMed PMID: WOS:000653624400016.
  • Yilmaz E, Kaya GG, Deveci H. Removal of methylene blue dye from aqueous solution by semi-interpenetrating polymer network hybrid hydrogel: optimization through Taguchi method [article]. J Polym Sci Part a-Polym Chem. 2019 May 15;57(10):1070–1078. doi: 10.1002/pola.29361 PubMed PMID: WOS:000467061300004.
  • Tamer TM, Sabet MM, Alhalili ZAH, et al. Influence of cedar essential oil on physical and biological properties of hemostatic, antibacterial, and antioxidant polyvinyl alcohol/cedar oil/Kaolin composite hydrogels [article]. Pharmaceutics. 2022 Dec;14(12):2649. doi: 10.3390/pharmaceutics14122649 PubMed PMID: WOS:000902683800001.
  • Long M, Liu Q, Wang D, et al. A new nanoclay-based bifunctional hybrid fiber membrane with hemorrhage control and wound healing for emergency self-rescue [article]. Mater Today Adv. 2021 Dec;12:100190. doi: 10.1016/j.mtadv.2021.100190 PubMed PMID: WOS:000744197600001.
  • Long M, Zhang Y, Huang P, et al. Emerging nanoclay composite for effective hemostasis [article]. Adv Funct Mater. 2018 Mar 7;28(10):1704452. doi: 10.1002/adfm.201704452 PubMed PMID: WOS:000426603700003.
  • Andrabi SM, Kumar A. A kaolin/calcium incorporated shape memory and antimicrobial chitosan-dextran based cryogel as an efficient haemostatic dressing for uncontrolled hemorrhagic wounds [article]. Biomater Sci. 2023 Jul; 150. doi: 10.1016/j.bioadv.2023.213424 PubMed PMID: WOS:001088409700001.
  • Zhou Q, Zhou X, Mo Z, et al. A PEG-CMC-THB-PRTM hydrogel with antibacterial and hemostatic properties for promoting wound healing [article]. Int J Biol Macromol. 2023 Jan 1;224:370–379. doi: 10.1016/j.ijbiomac.2022.10.130 PubMed PMID: WOS:000934024200001.
  • Chen W, Hu Y, Lv W, et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition [article]. Nat Commun. 2019 Oct 31;10:4973. doi: 10.1038/s41467-019-12952-6 PubMed PMID: WOS:000493438700021.
  • Krupskaya VV, Zakusin SV, Tyupina EA, et al. Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions [article]. Minerals. 2017 Apr;7(4):49. doi: 10.3390/min7040049 PubMed PMID: WOS:000404046400003.
  • Ma F, Sui S, Yang Z, et al. Evaluation of novel tranexamic acid/montmorillonite intercalation composite, as a new type of hemostatic material [article]. Biomed Res Int. 2022 Feb 28;2022:3963681. doi: 10.1155/2022/3963681 PubMed PMID: WOS:000773003900002.
  • Xu C, Xu P, Gao Y, et al. Hierarchically cross-linked gelatin/tannic acid/laponite hybrid antimicrobial hydrogel for hemostatic dressings [article]. Compos Commun. 2023 Nov;43:101743. doi: 10.1016/j.coco.2023.101743 PubMed PMID: WOS:001088328000001.
  • Gao X, Miao R, Tao Y, et al. Effect of montmorillonite powder on intestinal mucosal barrier in children with abdominal Henoch-Schonlein purpura a randomized controlled study [article]. Medicine. 2018 Sep;97(39):pe12577. doi: 10.1097/md.0000000000012577 PubMed PMID: WOS:000449373500088.
  • Cao S, Yang Y, Zhang S, et al. Multifunctional dopamine modification of green antibacterial hemostatic sponge [article]. Mater Sci Eng C-Mater Biol Appl. 2021 Aug;127:112227. doi: 10.1016/j.msec.2021.112227 PubMed PMID: WOS:000669576600003.
  • Kaluderovic LM, Tomic ZP, Asanin DP, et al. Examination of the influence of phenyltrimethylammonium chloride (PTMA) concentration on acetochlor adsorption by modified montmorillonite [article]. J Environ Sci Health Part B-Pesticides Food Contaminants And Agricultural Wastes. 2018;53(8):503–509. doi: 10.1080/03601234.2018.1462930 PubMed PMID: WOS:000443895800003.
  • Eshkol-Yogev I, Gilboa E, Giladi S, et al. Formulation - properties effects of novel dual composite hydrogels for use as medical sealants [article]. Eur Polym J. 2021 Jun 5;152:110470. doi: 10.1016/j.eurpolymj.2021.110470 PubMed PMID: WOS:000652831600012.
  • Gonzalez Garcia LE, Ninan N, Simon J, et al. Ultra-small gold nanoclusters assembled on plasma polymer-modified zeolites: a multifunctional nanohybrid with anti-haemorrhagic and anti-inflammatory properties [article]. Nanoscale. 2021 Dec 13;13(47):19936–19945. doi: 10.1039/d1nr06591b PubMed PMID: WOS:000722288100001.
  • Bee S-L, Abdullah MAA, Bee S-T, et al. Polymer nanocomposites based on silylated-montmorillonite: a review [review]. Progress Polym Sci. 2018 Oct;85:57–82. doi: 10.1016/j.progpolymsci.2018.07.003 PubMed PMID: WOS:000445313500002.
  • Liu C, Liu C, Yu S, et al. Efficient antibacterial dextran-montmorillonite composite sponge for rapid hemostasis with wound healing [article]. Int J Biol Macromol. 2020 Oct 1;160:1130–1143. doi: 10.1016/j.ijbiomac.2020.05.140 PubMed PMID: WOS:000564751600009.
  • Vaiana CA, Leonard MK, Drummy LF, et al. Epidermal growth factor: layered silicate nanocomposites for tissue regeneration [article]. Biomacromolecules. 2011 Sep;12(9):3139–3146. doi: 10.1021/bm200616v PubMed PMID: WOS:000294699000005.
  • Li G, Quan K, Liang Y, et al. Graphene-montmorillonite composite sponge for safe and effective hemostasis [article]. ACS Appl Mater Inter. 2016 Dec 28;8(51):35071–35080. doi: 10.1021/acsami.6b13302 PubMed PMID: WOS:000391081700014.
  • Das SS, Neelam HK, Singh S, et al. Laponite-based nanomaterials for biomedical applications: a review [review]. Curr Pharm Des. 2019;25(4):424–443. doi: 10.2174/1381612825666190402165845 PubMed PMID: WOS:000470078100009.
  • Goncharuk O, Samchenko Y, Sternik D, et al. Thermosensitive hydrogel nanocomposites with magnetic laponite nanoparticles [Article Proceedings Paper]. App Nano sci. 2020 Dec;10(12):4559–4569. doi: 10.1007/s13204-020-01388-w PubMed PMID: WOS:000526325800001.
  • Valencia GA, Djabourov M, Carn F, et al. Novel insights on swelling and dehydration of laponite [article]. Coll Inter Sci Commun. 2018 Mar;23:1–5. doi: 10.1016/j.colcom.2018.01.001 PubMed PMID: WOS:000429092100001.
  • Jin Y, Liu C, Chai W, et al. Self-supporting nanoclay as internal scaffold material for direct printing of soft hydrogel composite structures in air [article]. ACS Appl Mater Inter. 2017 May 24;9(20):17457–17466. doi: 10.1021/acsami.7b03613 PubMed PMID: WOS:000402498600077.
  • Buyukbektas A, Delibas A, Benk A, et al. Laponite-AMPS/AA composite hydrogels for efficient removal of methylene blue (MB) [Article]. J Polym Res. 2021 Aug;28(8):307. doi: 10.1007/s10965-021-02677-w PubMed PMID: WOS:000691541500003.
  • Cheng Y-H, Cheng S-J, Chen H-H, et al. Development of injectable graphene oxide/laponite/gelatin hydrogel containing Wharton’s jelly mesenchymal stem cells for treatment of oxidative stress-damaged cardiomyocytes [article]. Colloids Surf B Biointerfaces. 2022 Jan;209:112150. doi: 10.1016/j.colsurfb.2021.112150 PubMed PMID: WOS:000711541500003.
  • Yan F, Zhang X, Ren H, et al. Reinforcement of polyacrylamide hydrogel with patched laponite-polymer composite particles [article]. Colloids Surf A Physicochem Eng Asp. 2017 Sep 20;529:268–273. doi: 10.1016/j.colsurfa.2017.06.005 PubMed PMID: WOS:000407841800033.
  • Zhu X, Chen Y, Xie R, et al. Rapid gelling of guar gum hydrogel stabilized by copper hydroxide nanoclusters for efficient removal of heavy metal and supercapacitors [article]. Front Chem. 2021 Nov 16;9:794755. doi: 10.3389/fchem.2021.794755 PubMed PMID: WOS:000725714900001.
  • Ghadiri M, Chrzanowski W, Lee WH, et al. Layered silicate clay functionalized with amino acids: wound healing application. RSC Adv. 2014;4(67):35332–35343. doi: 10.1039/c4ra05216a PubMed PMID: WOS:000341288100009.
  • Ruiz-Garcia C, Heras F, Angel Gilarranz M, et al. Sepiolite-carbon nanocomposites doped with Pd as improving catalysts for hydrodechlorination processes [article]. Appl Clay Sci. 2018 Sep 1;161:132–138. doi: 10.1016/j.clay.2018.04.004 PubMed PMID: WOS:000436916600017.
  • Zaini NAM, Ismail H, Rusli A. Short review on sepiolite-filled polymer nanocomposites [article]. Polym-Plast Technol Eng. 2017;56(15):1665–1679. doi: 10.1080/03602559.2017.1289395 PubMed PMID: WOS:000414138300007.
  • Selvitepe N, Balbay A, Saka C. Optimisation of sepiolite clay with phosphoric acid treatment as support material for CoB catalyst and application to produce hydrogen from the NaBH4 hydrolysis [article]. Int J Hydrogen Energy. 2019 Jun 21;44(31):16387–16399. doi: 10.1016/j.ijhydene.2019.04.254 PubMed PMID: WOS:000472991100033.
  • Largo F, Haounati R, Akhouairi S, et al. Adsorptive removal of both cationic and anionic dyes by using sepiolite clay mineral as adsorbent: Experimental and molecular dynamic simulation studies. J Mol Liq. 2020 Nov 15;318:114247. doi: 10.1016/j.molliq.2020.114247 Article PubMed PMID: WOS:000583924900141.
  • Martino L, Guigo N, van Berkel JG, et al. Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate) [article]. Comp Part B-Eng. 2017 Feb 1;110(110): 96–105. doi: 10.1016/j.compositesb.2016.11.008 PubMed PMID: WOS:000395841600011.
  • Castillo L, Lescano L, Marfil S, et al. Sepiolite nanofibers structure. From tridimensional networks to bidimensional layers [article]. Appl Clay Sci. 2022 Oct;228:106595. doi: 10.1016/j.clay.2022.106595 PubMed PMID: WOS:000880102300004.
  • Ruiz-Hitzky E, Ruiz-Garcia C, Fernandes FM, et al. Sepiolite-hydrogels: synthesis by ultrasound irradiation and their use for the preparation of functional clay-based nanoarchitectured materials [article]. Front Chem. 2021 Aug 13;9:733105. doi: 10.3389/fchem.2021.733105 PubMed PMID: WOS:000698802800001.
  • Jiang Y, Yang Y, Peng Z, et al. Sustainable sepiolite-based composites for fast clotting and wound healing [article]. Biomater Sci. 2023 Jun;149:213402. doi: 10.1016/j.bioadv.2023.213402 PubMed PMID: WOS:001042856000001.
  • Yu C, Hu X, Lu S, et al. Preparation of triple-functionalized montmorillonite layers promoting thermal stability of polystyrene [article]. Nanomaterials. 2021 Sep;11(9):2170. doi: 10.3390/nano11092170 PubMed PMID: WOS:000701577800001.
  • Dutta J, Devi N. Preparation, optimization, and characterization of chitosan-sepiolite nanocomposite films for wound healing [article]. Int J Biol Macromol. 2021 Sep 1;186:244–254. doi: 10.1016/j.ijbiomac.2021.07.020 PubMed PMID: WOS:000688437700011.
  • Cao L, Xie W, Cui H, et al. Fibrous clays in dermopharmaceutical and cosmetic applications: traditional and emerging perspectives [article]. Int J Pharmaceut. 2022 Sep 25;625:122097. doi: 10.1016/j.ijpharm.2022.122097 PubMed PMID: WOS:000888751100001.
  • Ragu S, Dardillac E, Brooks DA, et al. Responses of human cells to sepiolite interaction [Article Proceedings Paper]. App Clay Sci. 2020 Sep 1;194:105655. doi: 10.1016/j.clay.2020.105655 PubMed PMID: WOS:000546204800005.
  • Santagata M, Johnston CT. A study of nanoconfined water in halloysite [article]. Appl Clay Sci. 2022 May;221:106467. doi: 10.1016/j.clay.2022.106467 PubMed PMID: WOS:000795496500004.
  • Feng Y, Luo X, Wu F, et al. Systematic studies on blood coagulation mechanisms of halloysite nanotubes-coated PET dressing as superior topical hemostatic agent [article]. Chem Eng J. 2022 Jan 15;428:132049. doi: 10.1016/j.cej.2021.132049 PubMed PMID: WOS:000724823400006.
  • Alvarez-Alvareza JA, Aguilar-Aguilar A, Robledo-Cabrera A, et al. Contribution of halloysite as nanotubular clay mineral on mechanism and adsorption rate of Cd(II) onto nanocomposites alginate-halloysite [article]. Environ Res. 2023 Jan 1;216:114772. doi: 10.1016/j.envres.2022.114772 PubMed PMID: WOS:000918196300003.
  • Zhao P, Feng Y, Zhou Y, et al. Gold@halloysite nanotubes-chitin composite hydrogel with antibacterial and hemostatic activity for wound healing [article]. Bioact Mater. 2023 Feb;20:355–367. doi: 10.1016/j.bioactmat.2022.05.035 PubMed PMID: WOS:000830020000001.
  • Sandri G, Aguzzi C, Rossi S, et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing [article]. Acta Biomaterialia. 2017 Jul 15;57:216–224. doi: 10.1016/j.actbio.2017.05.032 PubMed PMID: WOS:000405041900017.
  • Feng Y, Wang Q, He M, et al. Antibiofouling zwitterionic gradational membranes with moisture retention capability and sustained antimicrobial property for chronic wound infection and skin regeneration [article]. Biomacromolecules. 2019 Aug;20(8):3057–3069. doi: 10.1021/acs.biomac.9b00629 PubMed PMID: WOS:000480826700016.
  • Zhang Y, Li Y, Xu Y, et al. Effects of mercapto-palygorskite application on cadmium accumulation of soil aggregates at different depths in Cd-contaminated alkaline farmland [article]. Environ Res. 2023 Jan 1;216:114448. doi: 10.1016/j.envres.2022.114448 PubMed PMID: WOS:000868982300005.
  • Ryan BH, Kaczmarek SE, Rivers JM, et al. Dolomite dissolution: an alternative diagenetic pathway for the formation of palygorskite clay [article]. Sedimentology. 2019 Aug;66(5):1803–1824. doi: 10.1111/sed.12559 PubMed PMID: WOS:000477915100013.
  • Zhou W, Li Q, Ma R, et al. Modified alginate-based hydrogel as a carrier of the CB2 agonist JWH133 for bone engineering [article]. ACS Omega. 2021 Mar 16;6(10):6861–6870. doi: 10.1021/acsomega.0c06057 PubMed PMID: WOS:000631101200038.
  • Zhang Z, Zhang X, Fu Z, et al. Fibrous palygorskite clays as versatile nanocarriers for skin delivery of tea tree oils in efficient acne therapy [article]. Int J Pharmaceut. 2022 Jul 25;623:121903. doi: 10.1016/j.ijpharm.2022.121903 PubMed PMID: WOS:000828708900001.
  • Huang D, Zheng Y, Quan Q. Enhanced mechanical properties and UV shield of carboxymethyl cellulose films with polydopamine-modified natural fibre-like palygorskite [article]. Appl Clay Sci. 2019 Dec 15;183:105314. doi: 10.1016/j.clay.2019.105314 PubMed PMID: WOS:000506426500012.
  • Tian H, Tian H, Gao P, et al. Synthesis of hydrogels from low-grade palygorskite and its adsorption behavior for methylene blue [article]. ChemistrySelect. 2021 Dec 13;6(46):13291–13300. doi: 10.1002/slct.202102125 PubMed PMID: WOS:000729501700019.
  • Ding J, Zhang H, Wang W, et al. Synergistic effect of palygorskite nanorods and ion crosslinking to enhance sodium alginate-based hydrogels [article]. Eur Polym J. 2021 Mar 15;147:110306. doi: 10.1016/j.eurpolymj.2021.110306 PubMed PMID: WOS:000639290300023.
  • Bao X, Li H, Zhang H. Model for the phase separation of poly(N-isopropylacrylamide)-clay nanocomposite hydrogel based on energy-density functional [article]. Phys Rev E. 2020 Jun 12;101(6):062118. doi: 10.1103/PhysRevE.101.062118 PubMed PMID: WOS:000539919800002.
  • Wang X, Mu B, Zhang H, et al. Incorporation of mixed-dimensional palygorskite clay into chitosan/polyvinylpyrrolidone nanocomposite films for enhancing hemostatic activity [article]. Int J Biol Macromol. 2023 May 15;237:124213. doi: 10.1016/j.ijbiomac.2023.124213 PubMed PMID: WOS:000968769500001.
  • Yang Y, Wang X, Yang F, et al. Progress and future prospects of hemostatic materials based on nanostructured clay minerals [Review; early access]. Biomater Sci. 2023;11(23):7469–7488. doi: 10.1039/d3bm01326j PubMed PMID: WOS:001087845100001.
  • Gao H, Zhong Z, Xia H, et al. Construction of cellulose nanofibers/quaternized chitin/organic rectorite composites and their application as wound dressing materials [article]. Biomater Sci. 2019 Jun 1;7(6):2571–2581. doi: 10.1039/c9bm00288j PubMed PMID: WOS:000474065900028.
  • Wang X, Du Y, Luo J, et al. A novel biopolymer/rectorite nanocomposite with antimicrobial activity [article]. Carbohydr Polym. 2009 Jul 11;77(3):449–456. doi: 10.1016/j.carbpol.2009.01.015 PubMed PMID: WOS:000267154300003.
  • Bezerra Batista LM, Bezerra FA, Freitas Oliveira JL, et al. PYROLYSIS of glycerol with modified vermiculite catalysts. J Therm Anal Calorim. 2019 Sep 30;137(6):1929–1938. doi: 10.1007/s10973-019-08083-1 PubMed PMID: INSPEC:19900291.
  • Cuadros J, Mavris C, Michalski JR. Possible widespread occurrence of vermiculite on Mars [article]. Appl Clay Sci. 2022 Oct; 228. doi: 10.1016/j.clay.2022.106643 PubMed PMID: WOS:000849963100002.
  • Huang X, Wang Q, Mao R, et al. Two-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds promoting diabetic wound healing [article]. J Nanobiotechnol. 2022 Jul 26;20(1). doi: 10.1186/s12951-022-01556-w PubMed PMID: WOS:000830746200003.
  • Xiong J, Liu X, Liang L, et al. Investigation of the factors influencing methane adsorption on illite [article]. Energy Sci Eng. 2019 Dec;7(6):3317–3331. doi: 10.1002/ese3.501 PubMed PMID: WOS:000491095000001.
  • Gualtieri AF, Ferrari S, Leoni M, et al. Structural characterization of the clay mineral illite-1M. J Appl Crystallogr. 2008 Apr;41:402–415. doi: 10.1107/s0021889808004202 Article PubMed PMID: WOS:000253992700021.
  • Yu L, Zhang H, Xiao L, et al. A bio-inorganic hybrid hemostatic gauze for effective control of fatal emergency hemorrhage in “Platinum Ten Minutes. ACS Appl Mater Inter. 2022 May 18;14(19):21814–21821. doi: 10.1021/acsami.1c24668 Article PubMed PMID: WOS:000812793900001.
  • Deng Y, Zhang Q, Qu D-H, et al. A chemically recyclable crosslinked polymer network enabled by orthogonal dynamic covalent chemistry [article]. Angew Chem-Int Ed. 2022 Sep 26;61(39). doi: 10.1002/anie.202209100 PubMed PMID: WOS:000842960300001.
  • Jing Y, Zhang Y, Cheng W, et al. The synthesis, characterization, and protein-release properties of hydrogels composed of chitosan-Zingiber officinale-polysaccharide [article]. Foods. 2022 Sep;11(18):2747. doi: 10.3390/foods11182747 PubMed PMID: WOS:000859530400001.
  • Tan Y, Yang Q, Zheng M, et al. Multifunctional nanoclay-based hemostatic materials for wound healing: a review [Review; early access]. Adv Healthcare Mater. 2023. doi: 10.1002/adhm.202302700 PubMed PMID: WOS:001091620100001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.