84
Views
0
CrossRef citations to date
0
Altmetric
Review

A neoteric annotation on the advances in combination therapy for Parkinson’s disease: nanocarrier-based combination approach and future anticipation. Part I: exploring theoretical insights and pharmacological advances

, , , &
Pages 423-435 | Received 03 Jun 2023, Accepted 12 Mar 2024, Published online: 21 Mar 2024

References

  • Kang YJ, Cutler EG, Cho H. Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Convergence. 2018 Dec;5(1):1–5. doi: 10.1186/s40580-018-0168-8
  • Dorsey E, Sherer T, Okun MS, et al. The emerging evidence of the Parkinson pandemic. J Parkinson’s Dis. 2018 Jan 1;8(s1):S3–S8. doi: 10.3233/JPD-181474
  • Kim Y, Suescun J, Schiess MC, et al. Computational medication regimen for Parkinson’s disease using reinforcement learning. Sci Rep. 2021 Apr 29;11(1):9313. doi: 10.1038/s41598-021-88619-4
  • Poewe W, Seppi K, Tanner CM, et al. Parkinson disease (Primer). Nat Rev Dis Primers. 2017;3(1). doi: 10.1038/nrdp.2017.13
  • Kaur R, Mehan S, Singh S. Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. Neurol Sci. 2019 Jan;40(1):13–23. doi: 10.1007/s10072-018-3585-x
  • Chougar L, Pyatigorskaya N, Degos B, et al. The role of magnetic resonance imaging for the diagnosis of atypical parkinsonism. Front Neurol. 2020 Jul 17;11:665. doi: 10.3389/fneur.2020.00665
  • Greenland JC, Barker RA The differential diagnosis of Parkinson’s disease. Exon Publications. 2018 Dec 21:109–128.
  • Drui G, Carnicella S, Carcenac C, et al. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson’s disease. Mol Psychiatry. 2014 Mar;19(3):358–367. doi: 10.1038/mp.2013.3
  • Galvin JE. Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson’s disease: a case for the selective vulnerability of the substantia nigra. Acta Neuropathol. 2006 Aug;112(2):115–126. doi: 10.1007/s00401-006-0096-2
  • Moore DJ, West AB, Dawson VL, et al. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005 Jul 21;28(1):57–87. doi: 10.1146/annurev.neuro.28.061604.135718
  • Cook C, Stetler C, Petrucelli L. Disruption of protein quality control in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012 May 1;2(5):a009423. doi: 10.1101/cshperspect.a009423
  • Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson’s disease. Mov Disord. 2010;25(S1):S32–S39. doi: 10.1002/mds.22798
  • Nutt JG, Carter JH, Sexton GJ. The dopamine transporter: importance in Parkinson’s disease. Ann Neurol. 2004 Jun;55(6):766–773. doi: 10.1002/ana.20089
  • Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci. 1999 Mar;22(1):123–144. doi: 10.1146/annurev.neuro.22.1.123
  • Bartels AL, Leenders KL. Parkinson’s disease: the syndrome, the pathogenesis and pathophysiology. Cortex. 2009 Sep 1;45(8):915–921. doi: 10.1016/j.cortex.2008.11.010
  • Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012 Feb 1;2(2):a009399. doi: 10.1101/cshperspect.a009399
  • Mavridis IN, Meliou M, Pyrgelis ES, et al. Nanotechnology and Parkinson’s disease. In Design of nanostructures for versatile therapeutic applications. William Andrew Publishing; 2018 Jan 1. p. 1–29. doi: 10.1016/B978-0-12-813667-6.00001-2
  • Ma L, Kohli M, Smith A. Nanoparticles for combination drug therapy. ACS Nano. 2013 Nov 26;7(11):9518–9525. doi: 10.1021/nn405674m
  • Pinheiro RG, Coutinho AJ, Pinheiro M, et al. Nanoparticles for targeted brain drug delivery: what do we know? Int J Mol Sci. 2021 Oct 28;22(21):11654. doi: 10.3390/ijms222111654
  • Pinto M, Fernandes C, Martins E, et al. Boosting drug discovery for Parkinson’s: enhancement of the delivery of a monoamine oxidase-B inhibitor by brain-targeted PEGylated polycaprolactone-based nanoparticles. Pharmaceutics. 2019 Jul 12;11(7):331. doi: 10.3390/pharmaceutics11070331
  • Reichmann H. Clinical criteria for the diagnosis of Parkinson’s disease. Neurodegen Dis. 2010 Jul 9;7(5):284–290. doi: 10.1159/000314478
  • Clarke CE, Patel S, Ives N, et al. Clinical effectiveness and cost-effectiveness of physiotherapy and occupational therapy versus no therapy in mild to moderate Parkinson’s disease: a large pragmatic randomised controlled trial (PD REHAB). Health Technol Assess. 2016;20(63):1–96. doi: 10.3310/hta20630
  • Heim B, Krismer F, De Marzi R, et al. Magnetic resonance imaging for the diagnosis of Parkinson’s disease. J Neural Transm. 2017 Aug;124(8):915–964.
  • Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson’s disease. Lancet Neurol. 2006 Jan 1;5(1):75–86. doi: 10.1016/S1474-4422(05)70285-4
  • Treseder SA, Rose S, Summo L, et al. Commonly used L-amino acid decarboxylase inhibitors block monoamine oxidase activity in the rat. J Neural Transm. 2003 Mar;110(3):229–238.
  • Waller DG, Sampson A, and Hitchings A. Medical Pharmacology and Therapeutics E-Book. 6th ed. Elsevier Health Sciences; 2021. p. 752. https://shop.elsevier.com/books/medical-pharmacology-and-therapeutics/waller/978-0-7020-8159-0
  • Kompoliti K, Verhagen L. Encyclopedia of movement disorders. Elsevier Inc.; 2010 Jan 1.
  • Oertel WH. Recent advances in treating Parkinson’s disease. F1000Res. 2017;6. doi: 10.12688/f1000research.10100.1
  • de Carvalho AO, Filho as S, Murillo-Rodriguez E, et al. Physical exercise for parkinson’s disease: clinical and experimental evidence. Clin Pract Epidemiol Ment Health. 2018;14:89. doi: 10.2174/1745017901814010089
  • Md S, Haque S, Sahni JK, et al. New non-oral drug delivery systems for Parkinson’s disease treatment. Expert Opin Drug Delivery. 2011 Mar 1;8(3):359–374. doi: 10.1517/17425247.2011.556616
  • Agid Y, Destee A, Durif F, et al. Tolcapone, bromocriptine, and Parkinson’s disease. Lancet. 1997 Sep 6;350(9079):712–3. doi: 10.1016/S0140-6736(05)63511-8
  • Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med. 1967 Feb 16;276(7):374–379. doi: 10.1056/NEJM196702162760703
  • Tintner R, Jankovic J. Treatment options for Parkinson’s disease. Curr Opin Neurol. 2002 Aug 1;15(4):467–476. doi: 10.1097/00019052-200208000-00011
  • Naskar A, Manivasagam T, Chakraborty J, et al. Melatonin synergizes with low doses of L‐DOPA to improve dendritic spine density in the mouse striatum in experimental parkinsonism. J Pineal Res. 2013 Oct;55(3):304–312. doi: 10.1111/jpi.12076
  • Borah A, Mohanakumar KP. Melatonin inhibits 6‐hydroxydopamine production in the brain to protect against experimental parkinsonism in rodents. J Pineal Res. 2009 Nov;47(4):293–300. doi: 10.1111/j.1600-079X.2009.00713.x
  • Caraceni T, Scigliano G, Musicco M. The occurrence of motor fluctuations in parkinsonian patients treated long term with levodopa: role of early treatment and disease progression. Neurology. 1991 Mar 1;41(3):380. doi: 10.1212/WNL.41.3.380
  • Brooks DJ. Optimizing levodopa therapy for Parkinson’s disease with levodopa/carbidopa/entacapone: implications from a clinical and patient perspective. Neuropsychiatr Dis Treat. 2008 Feb 1;4(1):39–47. doi: 10.2147/NDT.S1660
  • Wishart S, Macphee GJ. Evaluation and management of the non-motor features of Parkinson’s disease. Ther Adv Chronic Dis. 2011 Mar;2(2):69–85. doi: 10.1177/2040622310387847
  • Luo D, Reith M, Dutta AK. Dopamine agonists in the treatment of Parkinson’s disease: an overview. Diagnosis And Management In Parkinson’s Disease. 2020 Jan;1:445–460. doi: 10.1007/978-981-15-1835-5_21
  • Yuan H, Zhang ZW, Liang LW, et al. Treatment strategies for Parkinson’s disease. Neurosci Bull. 2010 Feb;26(1):66.
  • Cánovas AA, Piudo RL, Ruiz-Espiga PG, et al. Dopaminergic agonists in Parkinson’s disease. Neurología (Eng Ed). 2014 May 1;29(4):230–241. doi: 10.1016/j.nrleng.2011.04.010
  • Le WD, Jankovic J. Are dopamine receptor agonists neuroprotective in Parkinson’s disease? Drugs Aging. 2001 Jun;18:389–396. doi: 10.2165/00002512-200118060-00001
  • Thorpy MJ. Sleep disorders in Parkinson’s disease Clinical cornerstone. 2004Jan 1;6(1):S7–15. doi: 10.1016/S1098-3597(04)90013-0
  • Dezsi L, Vecsei L. Monoamine oxidase B inhibitors in Parkinson’s disease. Neurological Disorders. 2017 May 1;16(4):425–439. doi: 10.2174/1871527316666170124165222
  • Conroy DA, Brower KJ. Alcohol, toxins, and medications as a cause of sleep dysfunction. Handbook Clin Neurol. 2011 Jan 1;98:587–612.
  • Lew MF, Pahwa R, Leehey M, et al. Zydis selegiline study Group*. Safety and efficacy of newly formulated selegiline orally disintegrating tablets as an adjunct to levodopa in the management of ‘off’episodes in patients with Parkinson’s disease. Curr Med Res Opin. 2007 Apr 1;23(4):741–750. doi: 10.1185/030079906X167697
  • Uzun M, Alp R, Uzlu E, et al. Investigation of oral selegiline and rasagiline administration on QT interval in conscious rabbits. Eur Rev Med Pharmacol Sci. 2009 Mar 1;13(2):95–98.
  • Gerlach M, Reichmann H, Riederer P. A critical review of evidence for preclinical differences between rasagiline and selegiline. Basal Ganglia. 2012 Dec 1;2(4):S9–S15. doi: 10.1016/j.baga.2012.04.032
  • Hattori N, Takeda A, Takeda S, et al. Rasagiline monotherapy in early Parkinson’s disease: a phase 3, randomized study in Japan. Parkinsonism Related Disord. 2019 Mar 1;60:146–152. doi: 10.1016/j.parkreldis.2018.08.024
  • Cattaneo C, Sardina M, Bonizzoni E. Safinamide as add-on therapy to levodopa in mid-to late-stage Parkinson’s disease fluctuating patients: post hoc analyses of studies 016 and SETTLE. J Parkinson’s Dis. 2016 Jan 1;6(1):165–173. doi: 10.3233/JPD-150700
  • Zahoor I, Shafi A, Haq E Pharmacological treatment of Parkinson’s disease. Exon Publications. 2018 Dec 21:129–144.
  • Olanow CW, Stocchi F. COMT inhibitors in Parkinson’s disease: can they prevent and/or reverse levodopa-induced motor complications? Neurology. 2004 Jan 13;62(1 suppl 1):S72–S81. doi: 10.1212/WNL.62.1_suppl_1.S72
  • Rivest J, Barclay CL, Suchowersky O. COMT inhibitors in Parkinson’s disease. Can J Neurosci Nurs. 1999 Aug;26(S2):S34–S38. doi: 10.1017/S031716710000007X
  • Ahlskog JE. Slowing Parkinson’s disease progression: recent dopamine agonist trials. Neurology. 2003 Feb 11;60(3):381–389. doi: 10.1212/01.WNL.0000044047.58984.2F
  • Borges N. Tolcapone in Parkinson’s disease: liver toxicity and clinical efficacy. Expert Opin Drug Saf. 2005 Jan 1;4(1):69–73. doi: 10.1517/14740338.4.1.69
  • Gordin A, Kaakkola S, Teräväinen H. Clinical advantages of COMT inhibition with entacapone–a review. J Neural Transm. 2004 Oct;111:1343–1363. doi: 10.1007/s00702-004-0190-3
  • Vo TN, Frei K, Truong DD. Neuro Psychopharmacotherapy. Springer, Cham; 2020. p. 1–21. doi: 10.1007/978-3-319-56015-1_357-1
  • Philip AE, DeMaagd G, Khan MF. Parkinson Disease and Antiparkinsonian Drugs. Med Chem Drugs Affect Ner Syst. 2020 Sep 24;2:321–376.
  • Bianchi ML, Riboldazzi G, Mauri M, et al. Efficacy of safinamide on non-motor symptoms in a cohort of patients affected by idiopathic Parkinson’s disease. Neurol Sci. 2019 Feb;40:275–279. doi: 10.1007/s10072-018-3628-3
  • Kim ES, Lyseng-Williamson KA. Choose treatment for restless legs syndrome based on patient and drug characteristics. Drugs Ther Perspect. 2020 Oct;36(10):435–439. doi: 10.1007/s40267-020-00773-3
  • US Food and Drug Administration. Drugs. [cited 2023 Mar 17]. Available from: https://www.fda.gov/drugs
  • Fitzpatrick D. Chapter 9 - Electrical Stimulation Therapy for Parkinson’s Disease and Dystonia. In: Implantable Electro Med Dev; 2015. p. 111–116. doi: 10.1016/B978-0-12-416556-4.00008-5
  • Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019 Mar;15(3):148–160. doi: 10.1038/s41582-018-0128-2
  • McIntyre CC, Anderson RW. Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation. J Neurochem. 2016 Oct;139(S1):338–345. doi: 10.1111/jnc.13649
  • Fenoy AJ, Simpson RK. Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg. 2014 Jan 1;120(1):132–139. doi: 10.3171/2013.10.JNS131225
  • Rampello L, Raffaele R, Furnari P, et al. Psychotic complications of long term levodopa treatment of Parkinson’s disease. Arch Gerontol Geriatr. 1996 Jan 1;22:63–67. doi: 10.1016/0167-4943(96)86915-9
  • Boshes B. Sinemet and the treatment of Parkinsonism. Ann Intern Med. 1981 Mar;94(3):364–370. doi: 10.7326/0003-4819-94-3-364. PMID: 7018729
  • Garcia-Escrig M, JT FP, Fernández Ponsatí JT. [Levodopa-induced psychosis in patients with idiopathic Parkinson disease]. Med Clin. 1999 Feb 1;112(7):245–250.
  • Marin C, Aguilar E, Bonastre M, et al. Early administration of entacapone prevents levodopa-induced motor fluctuations in hemiparkinsonian rats. Exp Neurol. 2005 Mar 1;192(1):184–193. doi: 10.1016/j.expneurol.2004.10.008
  • Kaakkola S. Problems with the present inhibitors and a relevance of new and improved COMT inhibitors in Parkinson’s disease. Int Rev Neurobiol. 2010 Jan 1;95:207–225.
  • Kotra LP, Park J. Therapeutic approaches to MS and Other Neurodegenerative Diseases. In: Comprehensive Medicinal Chemistry III; 2016 Dec. p. 439–473. doi: 10.1016/B978-0-12-409547-2.13766-7
  • Valera E, Masliah E. Combination therapies: the next logical step for the treatment of synucleinopathies? Mov Disord. 2016 Feb;31(2):225–234. doi: 10.1002/mds.26428
  • Rai SN, Singh P, Varshney R, et al. Promising drug targets and associated therapeutic interventions in Parkinson’s disease. Neural Regen Res. 2021 Sep;16(9):1730. doi: 10.4103/1673-5374.306066
  • Schapira AH, Emre M, Jenner P, et al. Levodopa in the treatment of Parkinson’s disease. Eur J Neurol. 2009 Sep;16(9):982–989.
  • Liu Q, Zhu D, Jiang P, et al. Resveratrol synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson disease in mice. Behav Brain Res. 2019 Jul 23;367:10–18. doi: 10.1016/j.bbr.2019.03.043
  • Xia D, Sui R, Zhang Z. Administration of resveratrol improved Parkinson’s disease‐like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/miR‐129/SNCA signaling pathway. J Cell Biochem. 2019 Apr;120(4):4942–4951. doi: 10.1002/jcb.27769
  • Lu KT, Ko MC, Chen BY, et al. Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J Agric Food Chemistry. 2008 Aug 27;56(16):6910–6913. doi: 10.1021/jf8007212
  • Guo YJ, Dong SY, Cui XX, et al. Resveratrol alleviates MPTP‐induced motor impairments and pathological changes by autophagic degradation of α‐synuclein via SIRT1‐deacetylated LC3. Mol Nutr Food Res. 2016 Oct;60(10):2161–2175. doi: 10.1002/mnfr.201600111
  • Jia Z, Feng Z, Wang L, et al. Resveratrol reverses the adverse effects of a diet-induced obese murine model on oocyte quality and zona pellucida softening. Food Funct. 2018;9(5):2623–2633. doi: 10.1039/C8FO00149A
  • Zheng CQ, Fan HX, Li XX, et al. Resveratrol alleviates levodopa-induced dyskinesia in rats. Front Immunol. 2021 Jun 25;12:683577. doi: 10.3389/fimmu.2021.683577
  • Kim HS, Quon MJ, Kim JA. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014 Jan 1;2:187–195. doi: 10.1016/j.redox.2013.12.022
  • Levites Y, Weinreb O, Maor G, et al. Green tea polyphenol (–)‐epigallocatechin‐3‐gallate prevents N‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine‐induced dopaminergic neurodegeneration. J Neurochem. 2001 Sep 1;78(5):1073–1082. doi: 10.1046/j.1471-4159.2001.00490.x
  • Choi JY, Park CS, Kim DJ, et al. Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology. 2002 Sep 1;23(3):367–374. doi: 10.1016/S0161-813X(02)00079-7
  • Zhou T, Zhu M, Liang Z. (-)-epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Mol Med Rep. 2018 Apr 1;17(4):4883–4888. doi: 10.3892/mmr.2018.8470
  • Kang KS, Wen Y, Yamabe N, et al. Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS One. 2010 Aug 5;5(8):e11951. doi: 10.1371/journal.pone.0011951
  • Nagai M, Conney AH, Zhu BT. Strong inhibitory effects of common tea catechins and bioflavonoids on the o -methylation of catechol estrogens catalyzed by human liver cytosolic catechol- o -methyltransferase. Drug Metab Dispos. 2004 May 1;32(5):497–504. doi: 10.1124/dmd.32.5.497
  • Chitra M, Sukumar E, Suja V, et al. Antitumor, anti-inflammatory and analgesic property of embelin, a plant product. Chemotherapy. 1994 Sep 11;40(2):109–113. doi: 10.1159/000239181
  • Caruso F, Rossi M, Kaur S, et al. Antioxidant properties of embelin in cell culture. Electrochemistry and theoretical mechanism of scavenging. Potential scavenging of superoxide radical through the cell membrane. Antioxidants. 2020 May 5;9(5):382. doi: 10.3390/antiox9050382
  • Naik SR, Niture NT, Ansari AA, et al. Anti-diabetic activity of embelin: involvement of cellular inflammatory mediators, oxidative stress and other biomarkers. Phytomedicine. 2013 Jul 15;20(10):797–804. doi: 10.1016/j.phymed.2013.03.003
  • Chitra M, Shyamala Devi CS, Sukumar E. Antibacterial activity of embelin. Fitoterapia. 2003 Jun 1;74(4):401–3. doi: 10.1016/S0367-326X(03)00066-2
  • Agrawal S, Chauhan S, Mathur R. Antifertility effects of embelin in male rats. Andrologia. 1986 Mar 4;18(2):125–131. doi: 10.1111/j.1439-0272.1986.tb01749.x
  • Kundap UP, Bhuvanendran S, Kumari Y, et al. Plant derived phytocompound, embelin in CNS disorders: a systematic review. Front Pharmacol. 2017 Feb 27;8:76. doi: 10.3389/fphar.2017.00076
  • Rao SP, Sharma N, Kalivendi SV. Embelin averts MPTP-induced dysfunction in mitochondrial bioenergetics and biogenesis via activation of SIRT1. Biochim Biophys Acta Bioenerg. 2020 Mar 1;1861(3):148157. doi: 10.1016/j.bbabio.2020.148157
  • Thippeswamy BS, Nagakannan P, Shivasharan BD, et al. Protective effect of embelin from Embelia ribes Burm. against transient global ischemia-induced brain damage in rats. Neurotox Res. 2011 Nov;20(4):379–386. doi: 10.1007/s12640-011-9258-7
  • Dhadde SB, Nagakannan P, Roopesh M, et al. Effect of embelin against 3-nitropropionic acid-induced Huntington’s disease in rats. Biomed Pharmacother. 2016 Feb 1;77:52–58. doi: 10.1016/j.biopha.2015.11.009
  • Wang B, Chen X, Zhou T, et al. Antidepressant-like effects of embelin and its possible mechanisms of action in chronic unpredictable stress-induced mice. Neurological res. 2018 Aug 3;40(8):666–676. doi: 10.1080/01616412.2018.1460705
  • Bhuvanendran S, Bakar SN, Kumari Y, et al. Embelin improves the spatial memory and hippocampal long-term potentiation in a rat model of chronic cerebral hypoperfusion. Sci Rep. 2019 Oct 10;9(1):14507. doi: 10.1038/s41598-019-50954-y
  • Xue Z, Ge Z, Zhang K, et al. Embelin suppresses dendritic cell functions and limits autoimmune encephalomyelitis through the TGF-β/β-catenin and STAT3 signaling pathways. Mol Neurobiol. 2014 Apr;49(2):1087–1101. doi: 10.1007/s12035-013-8583-7
  • Afzal M, Gupta G, Kazmi I, et al. Evaluation of anxiolytic activity of embelin isolated from Embelia ribes. Biomed Aging Pathol. 2012 Apr 1;2(2):45–47. doi: 10.1016/j.biomag.2012.03.003
  • Shaikh A, Dhadde SB, Durg S, et al. Effect of embelin against Lipopolysaccharide‐induced sickness behaviour in mice. Phytother Res. 2016 May;30(5):815–822.
  • Ko JH, Lee SG, Yang WM, et al. The application of embelin for cancer prevention and therapy. Molecules. 2018 Mar 9;23(3):621. doi: 10.3390/molecules23030621
  • Mahendran S, Thippeswamy BS, Veerapur VP, et al. Anticonvulsant activity of embelin isolated from Embelia ribes. Phytomedicine. 2011 Jan 15;18(2–3):186–188. doi: 10.1016/j.phymed.2010.04.002
  • Koppal A, Sivanesan S, Vagdevi HR, et al. Embelin and levodopa combination therapy mitigates Parkinson’s disease complications in mice. Ind J Pharm Educ Res. 2021 Apr 1;55(2s):s468–s478. doi: 10.5530/ijper.55.2s.118
  • Monteiro Espindola KM, Ferreira RG, Mosquera Narvaez LE, et al. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol. 2019 Jun 21;9:541–51. doi: 10.3389/fonc.2019.00541
  • Moridani MY, Scobie H, O’Brien PJ. Metabolism of caffeic acid by isolated rat hepatocytes and subcellular fractions. Toxicol Lett. 2002 Jul 21;133(2–3):141–151. doi: 10.1016/S0378-4274(02)00105-4
  • Zhang J, He Y, Cui M, et al. Metabolic studies on the total phenolic acids from the roots of Salvia miltiorrhiza in rats. Biomed Chromatogr. 2005 Jan;19(1):51–59.
  • Zaitone SA, Ahmed E, Elsherbiny NM, et al. Caffeic acid improves locomotor activity and lessens inflammatory burden in a mouse model of rotenone-induced nigral neurodegeneration: relevance to Parkinson’s disease therapy. Pharmacol Rep. 2019 Jan;71:32–41. doi: 10.1016/j.pharep.2018.08.004
  • Zhang Y, Wu Q, Zhang L, et al. Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol Res. 2019 Dec 1;150:104538. doi: 10.1016/j.phrs.2019.104538
  • Wang LH, Hsu KY, Uang YS, et al. Caffeic acid improves the bioavailability of l‐dopa in rabbit plasma. Phytother Res. 2010 Jun;24(6):852–858. doi: 10.1002/ptr.3031
  • Thanvi BR, Lo TC. Long term motor complications of levodopa: clinical features, mechanisms, and management strategies. Postgrad Med J. 2004 Aug;80(946):452–458. doi: 10.1136/pgmj.2003.013912
  • Tolosa E, Martí MJ, Valldeoriola F, et al. History of levodopa and dopamine agonists in Parkinson’s disease treatment. Neurology. 1998 Jun 1;50(6 Suppl 6):S2–S10. doi: 10.1212/WNL.50.6_Suppl_6.S2
  • Maj J, Rogóż Z, Skuza G, et al. Antidepressant effects of pramipexole, a novel dopamine receptor agonist. J Neural Transm. 1997 Apr;104(4–5):525–533.
  • Bennett JP Jr, Piercey MF. Pramipexole—a new dopamine agonist for the treatment of Parkinson’s disease. J Neurolog Sci. 1999 Feb 1;163(1):25–31. doi: 10.1016/S0022-510X(98)00307-4
  • Tayarani‐Binazir KA, Jackson MJ, Rose S, et al. Pramipexole combined with levodopa improves motor function but reduces dyskinesia in MPTP‐treated common marmosets. Mov Disord. 2010 Feb 15;25(3):377–384. doi: 10.1002/mds.22960
  • Foster PS, Yung RC, Drago V, et al. Working memory in Parkinson’s disease: the effects of depression and side of onset of motor symptoms. Neuropsychology. 2013 May;27(3):303. doi: 10.1037/a0032265
  • Faddoul L, Chahine B, Haydar S, et al. The effect of pramipexole extended release on the levodopa equivalent daily dose in Lebanese Parkinson diseased patients. Pharm Pract (Granada). 2018 Dec;16(4):1220.
  • Huang J, Hong W, Yang Z, et al. Efficacy of pramipexole combined with levodopa for Parkinson’s disease treatment and their effects on QOL and serum TNF-α levels. J Int Med Res. 2020 Jul;48(7):0300060520922449. doi: 10.1177/0300060520922449
  • Olanow CW, Rascol O, Hauser R, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med. 2009 Sep 24;361(13):1268–1278. doi: 10.1056/NEJMoa0809335
  • Goren T, Adar L, Sasson N, et al. Clinical pharmacology tyramine challenge study to determine the selectivity of the monoamine oxidase type B (MAO‐B) inhibitor rasagiline. J Clin Pharmacol. 2010 Dec;50(12):1420–1428.
  • Ramsay RR, Dunford C, Gillman PK. Methylene blue and serotonin toxicity: inhibition of monoamine oxidase a (MAO A) confirms a theoretical prediction. Br J Pharmacol. 2007 Nov;152(6):946–951. doi: 10.1038/sj.bjp.0707430
  • Im JH, Ha JH, Cho IS, et al. Ropinirole as an adjunct to levodopa in the treatment of Parkinson’s disease: a 16-week bromocriptine controlled study. J Neurol. 2003 Jan;250:90–96. doi: 10.1007/s00415-003-0937-z
  • Olanow CW, Kieburtz K, Leinonen M, et al. A randomized trial of a low‐dose rasagiline and pramipexole combination (P2B001) in early Parkinson’s disease. Mov Disord. 2017 May;32(5):783–789. doi: 10.1002/mds.26941
  • Lau B, Meier N, Serra G, et al. Axial symptoms predict mortality in patients with Parkinson disease and subthalamic stimulation. Neurology. 2019 May 28;92(22):e2559–e2570. doi: 10.1212/WNL.0000000000007562
  • Bove F, Mulas D, Cavallieri F, et al. Long-term outcomes (15 years) after subthalamic nucleus deep brain stimulation in patients with Parkinson disease. Neurology. 2021 Jul 20;97(3):e254–e62. doi: 10.1212/WNL.0000000000012246
  • Mahlknecht P, Foltynie T, Limousin P, et al. How does deep brain stimulation change the course of Parkinson’s disease? Mov Disord. 2022 Aug;37(8):1581–1592.
  • Khatri DK, Preeti K, Tonape S, et al. Nanotechnological advances for nose to brain delivery of therapeutics to improve the Parkinson therapy. Curr Neuropharmacol. 2023 Mar 1;21(3):493–516. doi: 10.2174/1570159X20666220507022701

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.