17,921
Views
36
CrossRef citations to date
0
Altmetric
Review

Pharmacokinetic considerations and recommendations in palliative care, with focus on morphine, midazolam and haloperidol

, , , , , , , & show all
Pages 669-680 | Received 25 Feb 2016, Accepted 13 Apr 2016, Published online: 29 Apr 2016

References

  • De Lima L. International Association for Hospice and Palliative Care list of essential medicines for palliative care. Ann Oncol. 2007 Feb;18(2):395–399.
  • Cheeti S, Budha NR, Rajan S, et al. A physiologically based pharmacokinetic (PBPK) approach to evaluate pharmacokinetics in patients with cancer. Biopharm Drug Dispos. 2013 Apr;34(3):141–154.
  • Stevenson J, Abernethy AP, Miller C, et al. Managing comorbidities in patients at the end of life. BMJ. 2004 Oct 16;329(7471):909–912.
  • Bruera E, Hui D. Palliative care research: lessons learned by our team over the last 25 years. Palliat Med. 2013 Dec;27(10):939–951.
  • Sarhill N, Walsh D, Nelson K, et al. Evaluation and treatment of cancer-related fluid deficits: volume depletion and dehydration. Support Care Cancer. 2001 Sep;9(6):408–419.
  • Masman AD, van Dijk M, Tibboel D, et al. Medication use during end-of-life care in a palliative care centre. Int J Clin Pharm. 2015 Oct;37(5):767–775.
  • Reuben DB, Mor V, Hiris J. Clinical symptoms and length of survival in patients with terminal cancer. Arch Intern Med. 1988 Jul;148(7):1586–1591.
  • Van Lancker A, Velghe A, Van Hecke A, et al. Prevalence of symptoms in older cancer patients receiving palliative care: a systematic review and meta-analysis. J Pain Symptom Manage. 2014 Jan;47(1):90–104.
  • Turnheim K. When drug therapy gets old: pharmacokinetics and pharmacodynamics in the elderly. Exp Gerontol. 2003 Aug;38(8):843–853.
  • Lichtman SM. Guidelines for the treatment of elderly cancer patients. Cancer Control. 2003;10(6):445–453.
  • Smith BS, Yogaratnam D, Levasseur-Franklin KE, et al. Introduction to drug pharmacokinetics in the critically ill patient. Chest. 2012 May;141(5):1327–1336.
  • Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr. 2006 Apr;83(4):735–743.
  • Trobec K, Kerec Kos M, von Haehling S, et al. Pharmacokinetics of drugs in cachectic patients: a systematic review. PLoS One. 2013;8(11):e79603.
  • Mihelic RA. Pharmacology of palliative medicine. Semin Oncol Nurs. 2005 Feb;21(1):29–35.
  • Smucker D, Wang R. The effect of aging on digestive processes. In: Masoro EJ, editor. CRC handbook of physiology in aging. Boca Raton (FL): CRC Press; 1981. p. 235–285.
  • Chang SF, Moore L, Chien YW. Pharmacokinetics and bioavailability of hydromorphone: effect of various routes of administration. Pharm Res. 1988 Nov;5(11):718–721.
  • Sarhill N, Mahmoud FA, Christie R, et al. Assessment of nutritional status and fluid deficits in advanced cancer. Am J Hosp Palliat Care. 2003 Nov–Dec;20(6):465–473.
  • Krishnan V, Murray P. Pharmacologic issues in the critically ill. Clin Chest Med. 2003 Dec;24(4):671–688.
  • Viganò A, Dorgan M, Buckingham J, et al. Survival prediction in terminal cancer patients: a systematic review of the medical literature. Palliat Med. 2000 Sep;14(5):363–374.
  • Tisdale MJ. Molecular pathways leading to cancer cachexia. Physiology. 2005 Oct;20:340–348.
  • Fearon KC, Preston T. Body composition in cancer cachexia. Infusionstherapie. 1990 Apr;17(Suppl 3):63–66.
  • Pichard C, Kyle UG. Body composition measurements during wasting diseases. Curr Opin Clin Nutr Metab Care. 1998 Jul;1(4):357–361.
  • Muscaritoli M, Anker SD, Argilés J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) ‘cachexia-anorexia in chronic wasting diseases’ and ‘nutrition in geriatrics’. Clin Nut. 2010 Apr;29(2):154–159.
  • Verhagen CAHHVM. Pathofysiologie, symptomen en problematiek rond de terminale patiënt. In: van Bommel EMG, Tukker J, editors. 26e Anselmus Colloquium De laatste fase. Stichting Organisatie Anselmus Colloquium, Houten, 2014 Sept 18, Utrecht; 2014.
  • Mahmoud FA, Rivera NI. The role of C-reactive protein as a prognostic indicator in advanced cancer. Curr Oncol Rep. 2002 May;4(3):250–255.
  • Lindenmann J, Fink-Neuboeck N, Koesslbacher M, et al. The influence of elevated levels of C-reactive protein and hypoalbuminemia on survival in patients with advanced inoperable esophageal cancer undergoing palliative treatment. J Surg Oncol. 2014 Nov;110(6):645–650.
  • Slaviero KA, Clarke SJ, Rivory LP. Inflammatory response: an unrecognised source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol. 2003;4:224–232.
  • Evans WJ, Morley JE, Argilés J, et al. Cachexia: a new definition. Clin Nut. 2008 Dec;27(6):793–799.
  • Kemik O, Sumer A, Kemik AS, et al. The relationship among acute-phase response proteins, cytokines and hormones in cachectic patients with colon cancer. World J Surg Oncol. 2010;8:85.
  • Araújo JP, Lourenço P, Rocha-Gonçalves F, et al. Nutritional markers and prognosis in cardiac cachexia. Int J Cardiol. 2011 Feb 3;146(3):359–363.
  • Woo J, Chan HS, Or KH, et al. Effect of age and disease on two drug binding proteins: albumin and alpha-1- acid glycoprotein. Clin Biochem. 1994 Aug;27(4):289–292.
  • Piafsky KM. Disease-induced changes in the plasma binding of basic drugs. Clin Pharmacokinet. 1980 May–Jun;5(3):246–262.
  • Duché JC, Urien S, Simon N, et al. Expression of the genetic variants of human alpha-1-acid glycoprotein in cancer. Clin Biochem. 2000 Apr;33(3):197–202.
  • Israili ZH, Dayton PG. Human alpha-1-glycoprotein and its interactions with drugs. Drug Metab Rev. 2001 May;33(2):161–235.
  • Delcò F, Tchambaz L, Schlienger R, et al. Dose adjustment in patients with liver disease. Drug Saf. 2005;28(6):529–545.
  • Alvarez AM, Mukherjee D. Liver abnormalities in cardiac diseases and heart failure. Int J Angiol. 2011 Sep;20(3):135–142.
  • Mapel D. Renal and hepatobiliary dysfunction in chronic obstructive pulmonary disease. Curr Opin Pulm Med. 2014 Mar;20(2):186–193.
  • Morgan DJ, McLean AJ. Clinical pharmacokinetic and pharmacodynamic considerations in patients with liver disease. An update. Clin Pharmacokinet. 1995 Nov;29(5):370–391.
  • Raiten DJ. Nutrition, pharmacology, and toxicology: a dialectic. In: Massaro E, editor. Handbook of human toxicology. Boca Raton (FL): CRC Press; 1997.
  • George J, Byth K, Farrell GC. Influence of clinicopathological variables on CYP protein expression in human liver. J Gastroenterol Hepatol. 1996 Jan;11(1):33–39.
  • Naito T, Tashiro M, Yamamoto K, et al. Impact of cachexia on pharmacokinetic disposition of and clinical responses to oxycodone in cancer patients. Eur J Clin Pharmacol. 2012 Oct;68(10):1411–1418.
  • Chen YL, Le Vraux V, Leneveu A, et al. Acute-phase response, interleukin-6, and alteration of cyclosporine pharmacokinetics. Clin Pharmacol Ther. 1994 Jun;55(6):649–660.
  • Williams ML, Bhargava P, Cherrouk I, et al. A discordance of the cytochrome P450 2C19 genotype and phenotype in patients with advanced cancer. Br J Clin Pharmacol. 2000 May;49(5):485–488.
  • Rivory LP, Slaviero KA, Clarke SJ. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br J Cancer. 2002 Jul 29;87(3):277–280.
  • Yamaguchi A, Tateishi T, Okano Y, et al. Higher incidence of elevated body temperature or increased C-reactive protein level in asthmatic children showing transient reduction of theophylline metabolism. J Clin Pharmacol. 2000 Mar;40(3):284–289.
  • Frye RF, Schneider VM, Frye CS, et al. Plasma levels of TNF-alpha and IL-6 are inversely related to cytochrome P450-dependent drug metabolism in patients with congestive heart failure. J Card Fail. 2002 Oct;8(5):315–319.
  • Islam M, Frye RF, Richards TJ, et al. Differential effect of IFNalpha-2b on the cytochrome P450 enzyme system: a potential basis of IFN toxicity and its modulation by other drugs. Clin Cancer Res. 2002 Aug;8(8):2480–2487.
  • Rowe JW, Andres R, Tobin JD, et al. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J Gerontol. 1976 Mar;31(2):155–163.
  • Launay-Vacher V, Oudard S, Janus N, et al. Prevalence of renal insufficiency in cancer patients and implications for anticancer drug management: the renal insufficiency and anticancer medications (IRMA) study. Cancer. 2007 Sep 15;110(6):1376–1384.
  • WHO. Essential medicines in palliative care: executive summary. WHO Press, Geneva. 2013.
  • Olsen GD. Morphine binding to human plasma proteins. Clin Pharmacol Ther. 1975 Jan;17(1):31–35.
  • Le Couteur DG, McLean AJ. The aging liver. Drug clearance and an oxygen diffusion barrier hypothesis. Clin Pharmacokinet. 1998 May;34(5):359–373.
  • Lötsch J, Stockmann A, Kobal G, et al. Pharmacokinetics of morphine and its glucuronides after intravenous infusion of morphine and morphine-6-glucuronide in healthy volunteers. Clin Pharmacol Ther. 1996 Sep;60(3):316–325.
  • Christrup LL. Morphine metabolites. Acta Anaesthesiol Scand. 1997 Jan;41(1 Pt 2):116–122.
  • Donnelly S, Davis MP, Walsh D, et al. Morphine in cancer pain management: a practical guide. Supportive Care Cancer. 2002;10(1):13–35.
  • Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit. 1991 Jan;13(1):1–23.
  • Francés B, Gout R, Campistron G, et al. Morphine-6-glucuronide is more mu-selective and potent in analgesic tests than morphine. Prog Clin Biol Res. 1990;328:477–480.
  • Pasternak GW, Bodnar RJ, Clark JA, et al. Morphine-6-glucuronide, a potent mu agonist. Life Sci. 1987 Dec 28;41(26):2845–2849.
  • Paul D, Standifer KM, Inturrisi CE, et al. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther. 1989 Nov;251(2):477–483.
  • Klimas R, Mikus G. Morphine-6-glucuronide is responsible for the analgesic effect after morphine administration: a quantitative review of morphine, morphine-6-glucuronide, and morphine-3-glucuronide. Br J Anaesth. 2014 Jul 1;113:935–944.
  • Wu D, Kang YS, Bickel U, et al. Blood-brain barrier permeability to morphine-6-glucuronide is markedly reduced compared with morphine. Drug Metab Dispos. 1997 Jun;25(6):768–771.
  • Janicki PK, Erskine WA, James MF. The route of prolonged morphine administration affects the pattern of its metabolites in the urine of chronically treated patients. Eur J Clin Chem Clin Biochem. 1991 Jun;29(6):391–393.
  • Portenoy RK, Thaler HT, Inturrisi CE, et al. The metabolite morphine-6-glucuronide contributes to the analgesia produced by morphine infusion in patients with pain and normal renal function. Clin Pharmacol Ther. 1992 Apr;51(4):422–431.
  • Bartlett SE, Dodd PR, Smith MT. Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites. Pharmacol Toxicol. 1994 Aug;75(2):73–81.
  • Löser SV, Meyer J, Freudenthaler S, et al. Morphine-6-O-beta-D-glucuronide but not morphine-3-O-beta-D-glucuronide binds to mu-, delta- and kappa- specific opioid binding sites in cerebral membranes. Naunyn Schmiedebergs Arch Pharmacol. 1996 Jul;354(2):192–197.
  • Chen ZR, Irvine RJ, Somogyi AA, et al. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci. 1991;48(22):2165–2171.
  • Penson RT, Joel SP, Bakhshi K, et al. Randomized placebo-controlled trial of the activity of the morphine glucuronides. Clin Pharmacol Ther. 2000 Dec;68(6):667–676.
  • Lewis SS, Hutchinson MR, Rezvani N, et al. Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience. 2010 Jan 20;165(2):569–583.
  • Baillie SP, Bateman DN, Coates PE, et al. Age and the pharmacokinetics of morphine. Age Ageing. 1989;18:258–262.
  • Säwe J, Dahlström B, Paalzow L, et al. Morphine kinetics in cancer patients. Clin Pharmacol Ther. 1981 Nov;30(5):629–635.
  • Säwe J, Kager L, Svensson Eng JO, et al. Oral morphine in cancer patients: in vivo kinetics and in vitro hepatic glucuronidation. Br J Clin Pharmacol. 1985 Apr;19(4):495–501.
  • Faura CC, Collins SL, Moore RA, et al. Systematic review of factors affecting the ratios of morphine and its major metabolites. Pain. 1998 Jan;74(1):43–53.
  • Klepstad P, Dale O, Kaasa S, et al. Influences on serum concentrations of morphine, M6G and M3G during routine clinical drug monitoring: a prospective survey in 300 adult cancer patients. Acta Anaesthesiol Scand. 2003 Jul;47(6):725–731.
  • Osborne R, Joel S, Trew D, et al. Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther. 1990 Jan;47(1):12–19.
  • Peterson GM, Randall CT, Paterson J. Plasma levels of morphine and morphine glucuronides in the treatment of cancer pain: relationship to renal function and route of administration. Eur J Clin Pharmacol. 1990;38(2):121–124.
  • Osborne R, Joel S, Grebenik K, et al. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther. 1993 Aug;54(2):158–167.
  • D’Honneur G, Gilton A, Sandouk P, et al. Plasma and cerebrospinal fluid concentrations of morphine and morphine glucuronides after oral morphine. The influence of renal failure. Anesthesiology. 1994 Jul;81(1):87–93.
  • Chan GL, Matzke GR. Effects of renal insufficiency on the pharmacokinetics and pharmacodynamics of opioid analgesics. Drug Intell Clin Pharm. 1987 Oct;21(10):773–783.
  • Regnard CF, Twycross RG. Metabolism of narcotics. BMJ. 1984 Mar 17;288(6420):860.
  • Hoskin PJ, Hanks GW. The management of symptoms in advanced cancer: experience in a hospital-based continuing care unit. J R Soc Med. 1988 Jun;81(6):341–344.
  • Thompson PI, Joel SP, John L, et al. Respiratory depression following morphine and morphine-6-glucuronide in normal subjects. Br J Clin Pharmacol. 1995 Aug;40(2):145–152.
  • Peat SJ, Hanna MH, Woodham M, et al. Morphine-6-glucuronide: effects on ventilation in normal volunteers. Pain. 1991 Apr;45(1):101–104.
  • Romberg R, Olofsen E, Sarton E, et al. Pharmacodynamic effect of morphine-6-glucuronide versus morphine on hypoxic and hypercapnic breathing in healthy volunteers. Anesthesiology. 2003;99(4):788–798.
  • Morita T, Tei Y, Tsunoda J, et al. Increased plasma morphine metabolites in terminally ill cancer patients with delirium: an intra-individual comparison. J Pain Symptom Manage. 2002;23(2):107–113.
  • Sawe J. Morphine and its 3- and 6-glucuronides in plasma and urine during chronic oral administration in cancer patients. In: Foley KM, Lnturrisi CE, editors. Advances in pain research and therapy. New York (NY): Raven Press; 1986. p. 45–55.
  • Sjøgren P, Jonsson T, Jensen NH, et al. Hyperalgesia and myoclonus in terminal cancer patients treated with continuous intravenous morphine. Pain. 1993;55(1):93–97.
  • Gretton SK, Ross JR, Rutter D, et al. Plasma morphine and metabolite concentrations are associated with clinical effects of morphine in cancer patients. J Pain Symptom Manage. 2013;45(4):670–680.
  • Ferris DJ. Controlling myoclonus after high-dosage morphine infusions. Am J Health Syst Pharm. 1999 May 15;56(10):1009–1010.
  • Smith MT, Wright AW, Williams BE, et al. Cerebrospinal fluid and plasma concentrations of morphine, morphine-3-glucuronide, and morphine-6-glucuronide in patients before and after initiation of intracerebroventricular morphine for cancer pain management. Anesth Analg. 1999 Jan;88(1):109–116.
  • McCann S, Yaksh TL, Von Gunten CF. Correlation between myoclonus and the 3-glucuronide metabolites in patients treated with morphine or hydromorphone: a pilot study. J Opioid Manage. 2010;6(2):87–94.
  • Oosten AW, Oldenmenger WH, van Zuylen C, et al. Higher doses of opioids in patients who need palliative sedation prior to death: cause or consequence? Eur J Cancer. 2011 Oct;47(15):2341–2346.
  • Cherny NI. Sedation for the care of patients with advanced cancer. Nat Clin Pract Oncol. 2006;3(9):492–500.
  • Farriols C, Ferrández O, Planas J, et al. Changes in the prescription of psychotropic drugs in the palliative care of advanced cancer patients over a seven-year period. J Pain Symptom Manage. 2012 May;43(5):945–952.
  • Cherny NI, Grp EGW. ESMO Clinical Practice Guidelines for the management of refractory symptoms at the end of life and the use of palliative sedation. Ann Oncol. 2014 Sep;25:143–152.
  • Jamei M, Turner D, Yang J, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009 Jun;11(2):225–237.
  • Brill MJ, van Rongen A, Houwink AP, et al. Midazolam pharmacokinetics in morbidly obese patients following semi-simultaneous oral and intravenous administration: a comparison with healthy volunteers. Clin Pharmacokinet. 2014 Oct;53(10):931–941.
  • Reves JG, Fragen RJ, Vinik HR, et al. Midazolam: pharmacology and uses. Anesthesiology. 1985 Mar;62(3):310–324.
  • Moschitto LJ, Greenblatt DJ. Concentration-independent plasma protein binding of benzodiazepines. J Pharm Pharmacol. 1983 Mar;35(3):179–180.
  • Kanto JH. Midazolam: the first water-soluble benzodiazepine. Pharmacology, pharmacokinetics and efficacy in insomnia and anesthesia. Pharmacotherapy. 1985 May–Jun;5(3):138–155.
  • Maitre PO, Funk B, Crevoisier C, et al. Pharmacokinetics of midazolam in patients recovering from cardiac surgery. Eur J Clin Pharmacol. 1989;37(2):161–166.
  • Malacrida R, Fritz ME, Suter PM, et al. Pharmacokinetics of midazolam administered by continuous intravenous infusion to intensive care patients. Crit Care Med. 1992 Aug;20(8):1123–1126.
  • Greenblatt DJ, Abernethy DR, Locniskar A, et al. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology. 1984 Jul;61(1):27–35.
  • Brill MJ, van Rongen A, van Dongen EP, et al. The pharmacokinetics of the CYP3A substrate midazolam in morbidly obese patients before and one year after bariatric surgery. Pharm Res. 2015 Jul 23;32:3927–3936.
  • van Rongen A, Vaughns JD, Moorthy G, et al. Population pharmacokinetics of midazolam and its metabolites in overweight and obese adolescents. Br J Clin Pharmacol. 2015 Jun 4;80:1185–1196.
  • Halliday NJ, Dundee JW, Collier PS, et al. Influence of plasma proteins on the onset of hypnotic action of intravenous midazolam. Anaesthesia. 1985 Aug;40(8):763–766.
  • Cvan Trobec K, Kerec Kos M, Trontelj J, et al. Influence of cancer cachexia on drug liver metabolism and renal elimination in rats. J Cachexia Sarcopenia Muscle. 2015 Mar;6(1):45–52.
  • Albarmawi A, Czock D, Gauss A, et al. CYP3A activity in severe liver cirrhosis correlates with Child-Pugh and model for end-stage liver disease (MELD) scores. Br J Clin Pharmacol. 2014;77(1):160–169.
  • Bleasel MD, Peterson GM, Dunne PF. Plasma concentrations of midazolam during continuous subcutaneous administration in palliative care. Palliat Med. 1994;8(3):231–236.
  • Matsunaga T, Maruyama M, Matsubara T, et al. Mechanisms of CYP3A induction by glucocorticoids in human fetal liver cells. Drug Metab Pharmacokinet. 2012;27(6):653–657.
  • McCune JS, Hawke RL, LeCluyse EL, et al. In vivo and in vitro induction of human cytochrome P4503A4 by dexamethasone. Clin Pharmacol Ther. 2000 Oct;68(4):356–366.
  • Bauer TM, Ritz R, Haberthür C, et al. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet. 1995 Jul 15;346(8968):145–147.
  • Prommer E. Role of haloperidol in palliative medicine: an update. Am J Hosp Palliat Care. 2012 Jun;29(4):295–301.
  • Bartz L, Klein C, Seifert A, et al. Subcutaneous administration of drugs in palliative care: results of a systematic observational study. J Pain Symptom Manage. 2014 Apr 21;48:540–547.
  • Kudo S, Ishizaki T. Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet. 1999 Dec;37(6):435–456.
  • Nishimuta H, Nakagawa T, Nomura N, et al. Significance of reductive metabolism in human intestine and quantitative prediction of intestinal first-pass metabolism by cytosolic reductive enzymes. Drug Metab Dispos. 2013 May;41(5):1104–1111.
  • Forsman A, Ohman R. Studies on serum protein binding of haloperidol. Curr Ther Res Clin Exp. 1977 Feb;21(2):245–255.
  • Rowell FJ, Hui SM, Fairbairn AF, et al. Total and free serum haloperidol levels in schizophrenic patients and the effect of age thioridazine and fatty acid on haloperidol-serum protein binding in vitro. Br J Clin Pharmacol. 1981 Apr;11(4):377–382.
  • Someya T, Shibasaki M, Noguchi T, et al. Haloperidol metabolism in psychiatric patients: importance of glucuronidation and carbonyl reduction. J Clin Psychopharmacol. 1992 Jun;12(3):169–174.
  • Fang J, Baker GB, Silverstone PH, et al. Involvement of CYP3A4 and CYP2D6 in the metabolism of haloperidol. Cell Mol Neurobiol. 1997 Apr;17(2):227–233.
  • Midha KK, Hawes EM, Hubbard JW, et al. Interconversion between haloperidol and reduced haloperidol in humans. J Clin Psychopharmacol. 1987 Oct;7(5):362–364.
  • Chakraborty BS, Hubbard JW, Hawes EM, et al. Interconversion between haloperidol and reduced haloperidol in healthy volunteers. Eur J Clin Pharmacol. 1989;37(1):45–48.
  • Jann MW, Lam YW, Chang WH. Reversible metabolism of haloperidol and reduced haloperidol in Chinese schizophrenic patients. Psychopharmacology (Berl). 1990;101(1):107–111.
  • Kudo S, Odomi M. Involvement of human cytochrome P450 3A4 in reduced haloperidol oxidation. Eur J Clin Pharmacol. 1998 May;54(3):253–259.
  • Pan LP, De Vriendt C, Belpaire FM. In-vitro characterization of the cytochrome P450 isoenzymes involved in the back oxidation and N-dealkylation of reduced haloperidol. Pharmacogenetics. 1998 Oct;8(5):383–389.
  • Johnson PC Jr, Charalampous KD, Braun GA. Absorption and excretion of tritiated haloperidol in man. (A preliminary report). Int J Neuropsychiatry. 1967 Aug;3(Suppl 1):24–25.
  • Anderson RJ, Gambertoglio JG, Schrier RW. Clinical use of drugs in renal failure. Springfield (IL): Thomas; 1976.
  • Forsman AO. Individual variability in response to haloperidol. Proc R Soc Med. 1976;69(suppl 1):9–12.
  • Jann MW, Ereshefsky L, Saklad SR, et al. Effects of carbamazepine on plasma haloperidol levels. J Clin Psychopharmacol. 1985 Apr;5(2):106–109.
  • Kidron R, Averbuch I, Klein E, et al. Carbamazepine-induced reduction of blood levels of haloperidol in chronic schizophrenia. Biol Psychiatry. 1985 Feb;20(2):219–222.
  • Arana GW, Goff DC, Friedman H, et al. Does carbamazepine-induced reduction of plasma haloperidol levels worsen psychotic symptoms? Am J Psychiatry. 1986 May;143(5):650–651.
  • Hesslinger B, Normann C, Langosch JM, et al. Effects of carbamazepine and valproate on haloperidol plasma levels and on psychopathologic outcome in schizophrenic patients. J Clin Psychopharmacol. 1999 Aug;19(4):310–315.
  • Mihara K, Suzuki A, Kondo T, et al. Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese patients with schizophrenia. Clin Pharmacol Ther. 1999 Mar;65(3):291–294.
  • Goff DC, Midha KK, Brotman AW, et al. Elevation of plasma concentrations of haloperidol after the addition of fluoxetine. Am J Psychiatry. 1991 Jun;148(6):790–792.
  • Viala A, Aymard N, Leyris A, et al. [Pharmaco-clinical correlations during fluoxetine administration in patients with depressive schizophrenia treated with haloperidol decanoate]. Therapie. 1996 Jan–Feb;51(1):19–25. French.
  • Goff DC, Midha KK, Sarid-Segal O, et al. A placebo-controlled trial of fluoxetine added to neuroleptic in patients with schizophrenia. Psychopharmacology (Berl). 1995 Feb;117(4):417–423.
  • Avenoso A, Spinà E, Campo G, et al. Interaction between fluoxetine and haloperidol: pharmacokinetic and clinical implications. Pharmacol Res. 1997 Apr;35(4):335–339.
  • Gysels MH, Evans C, Higginson IJ. Patient, caregiver, health professional and researcher views and experiences of participating in research at the end of life: a critical interpretive synthesis of the literature. BMC Med Res Methodol. 2012;12:123.
  • Ohde S, Hayashi A, Takahasi O, et al. A 2-week prognostic prediction model for terminal cancer patients in a palliative care unit at a Japanese general hospital. Palliat Med. 2011 Mar;25(2):170–176.