291
Views
3
CrossRef citations to date
0
Altmetric
Review

Insights into the pharmacokinetic properties of antitubercular drugs

, , &
Pages 765-778 | Received 06 Sep 2015, Accepted 25 Apr 2016, Published online: 17 May 2016

References

  • World Health Organization. Global tuberculosis report [Internet]; 2014 [cited 2015 Aug 20]. Available from: http://www.who.int/tb/publications/global_report/en
  • Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol. 2014;12(3):159–167.
  • World Health Organization. Treatment of tuberculosis guidelines [Internet]; 2010. [cited 2015 Aug 25]. Available from: http://www.who.int/tb/publications/2010/9789241547833/en
  • Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov. 2013;12(5):388–404.
  • Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis. 2009;13(11):1320–1330.
  • Douglas JG, McLeod MJ. Pharmacokinetic factors in the modern drug treatment of tuberculosis. Clin Pharmacokinet. 1999;37(2):127–146.
  • Vaddady PK, Lee RE, Meibohm B. In vitro pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB. Future Med Chem. 2010;2(8):1355–1369.
  • Mariappan T, Singh S. Regional gastrointestinal permeability of rifampicin and isoniazid (alone and their combination) in the rat. Int J Tuberc Lung Dis. 2003;7(8):797–803.
  • Weber WW, Hein DW. Clinical pharmacokinetics of isoniazid. Clin Pharmacokinet. 1979;4(6):401–422.
  • Woo J, Cheung W, Chan R, et al. In vitro protein binding characteristics of isoniazid, rifampicin, and pyrazinamide to whole plasma, albumin, and α-1-acid glycoprotein. Clin Biochem. 1996;29(2):175–177.
  • Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–2183.
  • Nitti V, Virgilio R, Patricolo MR, et al. Pharmacokinetic study of intravenous rifampicin. Chemother. 1977;23(1):1–6.
  • Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327–341.
  • Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–127.
  • Fahimi F, Tabarsi P, Kobarfard F, et al. Isoniazid, rifampicin and pyrazinamide plasma concentrations 2 and 6 h post dose in patients with pulmonary tuberculosis. Int J Tuberc Lung Dis. 2013;17(12):1602–1606.
  • Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74(8):839–854.
  • Lacroix C, Hoang TP, Nouveau J, et al. Pharmacokinetics of pyrazinamide and its metabolites in healthy subjects. Eur J Clin Pharmacol. 1989;36(4):395–400.
  • Chen MM, Lee CS, Perrin JH. Absorption and disposition of ethambutol in rabbits. J Pharm Sci. 1984;73(8):1053–1055.
  • Peloquin CA, Bulpitt AE, Jaresko GS, et al. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother. 1999;43(3):568–572.
  • Lee CS, Brater DC, Gambertoglio JG, et al. Disposition kinetics of ethambutol in man. J Pharmacokinet Biopharm. 1980;8(4):335–346.
  • Skinner MH, Hsieh M, Torseth J, et al. Pharmacokinetics of rifabutin. Antimicrob Agents Chemother. 1989;33(8):1237–1241.
  • Blaschke TF, Skinner MH. The clinical pharmacokinetics of rifabutin. Clin Infect Dis. 1996;22 Suppl 1:S15–21; discussion S21–22.
  • Zhu M, Nix DE, Adam RD, et al. Pharmacokinetics of cycloserine under fasting conditions and with high-fat meal, orange juice, and antacids. Pharmacother. 2001;21(8):891–897.
  • Holdiness MR. Clinical pharmacokinetics of clofazimine. A review. Clin Pharmacokinet. 1989;16(2):74–85.
  • Anonymous. Ethionamide (Edinb). Tuberculosis. 2008;88(2):106–108.
  • Slatter JG, Adams LA, Bush EC, et al. Pharmacokinetics, toxicokinetics, distribution, metabolism and excretion of linezolid in mouse, rat and dog. Xenobiotica. 2002;32(10):907–924.
  • Zhu M, Burman WJ, Jaresko GS, et al. Population pharmacokinetics of intravenous and intramuscular streptomycin in patients with tuberculosis. Pharmacother. 2001;21(9):1037–1045.
  • Boxer GE, Jelinek VC, Edison AO. Streptomycin; clearance and binding to protein. J Pharmacol Exp Ther. 1949;97(1):93–104.
  • Rodvold KA. Clinical pharmacokinetics of clarithromycin. Clin Pharmacokinet. 1999;37(5):385–398.
  • Lode H. The pharmacokinetics of azithromycin and their clinical significance. Eur J Clin Microbiol Infect Dis. 1991;10(10):807–812.
  • Luke DR, Foulds G. Disposition of oral azithromycin in humans. Clin Pharmacol Ther. 1997;61(6):641–648.
  • Donald PR, Sirgel FA, Venter A, et al. The early bactericidal activity of amikacin in pulmonary tuberculosis. Int J Tuberc Lung Dis. 2001;5(6):533–538.
  • Botha FJ, van der Bijl P, Seifart HI, et al. Fluctuation of the volume of distribution of amikacin and its effect on once-daily dosage and clearance in a seriously ill patient. Intensive Care Med. 1996;22(5):443–446.
  • Leroy A, Borsa F, Humbert G, et al. The pharmacokinetics of ofloxacin in healthy adult male volunteers. Eur J Clin Pharmacol. 1987;31(5):629–630.
  • Fillastre JP, Leroy A, Humbert G. Ofloxacin pharmacokinetics in renal failure. Antimicrob Agents Chemother. 1987;31(2):156–160.
  • Nijland HM, Ruslami R, Suroto AJ, et al. Rifampicin reduces plasma concentrations of moxifloxacin in patients with tuberculosis. Clin Infect Dis. 2007;45(8):1001–1007.
  • Dooley KE, Park JG, Swindells S, et al. Safety, tolerability, and pharmacokinetic interactions of the antituberculous agent TMC207 (bedaquiline) with efavirenz in healthy volunteers: AIDS Clinical Trials Group Study A5267. J Acquir Immune Defic Syndr. 2012;59(5):455–462.
  • van Heeswijk RP, Dannemann B, Hoetelmans RM. Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother. 2014;69(9):2310–2318.
  • Ginsberg AM, Laurenzi MW, Rouse DJ, et al. Safety, tolerability, and pharmacokinetics of PA-824 in healthy subjects. Antimicrob Agents Chemother. 2009;53(9):3720–3725.
  • van den Boogaard J, Kibiki GS, Kisanga ER, et al. New drugs against tuberculosis: problems, progress, and evaluation of agents in clinical development. Antimicrob Agents Chemother. 2009;53(3):849–862.
  • Sotgiu G, Alffenaar J-WC, Centis R, et al. Therapeutic drug monitoring: how to improve drug dosage and patient safety in tuberculosis treatment. Int J Infect Dis. 2015;32:101–104.
  • Lin JH, Lu AY. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev. 1997;49(4):403–449.
  • Kjellsson MC, Via LE, Goh A, et al. Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob Agents Chemother. 2012;56(1):446–457.
  • Lurie MB, Dannenberg Jr AM. Stages in the pathogenesis of human and rabbit tuberculosis. In: Dannenberg Jr AM, editor. Pathogenesis of human pulmonary tuberculosis. Washington, DC: American Society of Microbiology Press; 2006. p. 22–23.
  • Mouton JW, Theuretzbacher U, Craig WA, et al. Tissue concentrations: do we ever learn? J Antimicrob Chemother. 2008;61(2):235–237.
  • Argyrou A, Jin L, Siconilfi-Baez L, et al. Proteome-wide profiling of isoniazid targets in Mycobacterium tuberculosis. Biochem. 2006;45(47):13947–13953.
  • Nishida CR, Ortiz de Montellano PR. Bioactivation of antituberculosis thioamide and thiourea prodrugs by bacterial and mammalian flavin monooxygenases. Chem Biol Interact. 2011;192(1–2):21–25.
  • Singh R, Manjunatha U, Boshoff HIM, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science. 2008;322(5906):1392–1395.
  • Egelund EF, Peloquin CA. Current issues in tuberculosis pharmacokinetics. In: Donald PR, van Helden PD, editors. Antituberculosis chemotherapy. Vol. 40. Prog Respir Res. Basel: Karger; 2011. p. 153–160.
  • Hall RG, Swancutt MA, Meek C, et al. Ethambutol pharmacokinetic variability is linked to body mass in overweight, obese, and extremely obese people. Antimicrob Agents Chemother. 2012;56(3):1502–1507.
  • Zhu M, Burman WJ, Starke JR, et al. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int J Tuberc Lung Dis. 2004;8(11):1360–1367.
  • Lee SY, Jang H, Lee JY, et al. Inhibition of cytochrome P450 by ethambutol in human liver microsomes. Toxicol Lett. 2014;229(1):33–40.
  • Namdar R, Ebert SC, Peloquin C. Drugs for tuberculosis. In: Piscitelli S, Rodvold K, editors. Drug interactions in infectious diseases. Totowa (NJ): Humana Press; 2001. p. 109–120.
  • Zhang Y, Heym B, Allen B, et al. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992;358(6387):591–593.
  • Egelund EF, Alsultan A, Peloquin CA. Optimizing the clinical pharmacology of tuberculosis medications. Clin Pharmacol Ther. 2015;98(4):387–393.
  • Rao KV, Kailasam S, Menon NK, et al. Inactivation of isoniazid by condensation in a syrup preparation. Bull World Health Organ. 1971;45(5):625–632.
  • Schaaf H, Parkin D, Seifart H, et al. Isoniazid pharmacokinetics in children treated for respiratory tuberculosis. Arch Dis Child. 2005;90(6):614–618.
  • Kim YG, Shin JG, Shin SG, et al. Decreased acetylation of isoniazid in chronic renal failure. Clin Pharmacol Ther. 1993;54(6):612–620.
  • Zhou Y, Jiao Y, Wei YH, et al. Effects of pyridoxine on the intestinal absorption and pharmacokinetics of isoniazid in rats. Eur J Drug Metab Pharmacokinet. 2013;38(1):5–13.
  • Holdiness MR. Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet. 1984;9(6):511–544.
  • Desta Z, Soukhova NV, Flockhart DA. Inhibition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A. Antimicrob Agents Chemother. 2001;45(2):382–392.
  • Nolan CM, Goldberg SV. Treatment of isoniazid-resistant tuberculosis with isoniazid, rifampin, ethambutol, and pyrazinamide for 6 months. Int J Tuberc Lung Dis. 2002;6(11):952–958.
  • Roy V, Tekur U, Chopra K. Pharmacokinetics of pyrazinamide in children suffering from pulmonary tuberculosis. Int J Tuberc Lung Dis. 1999;3(2):133–137.
  • Graham SM, Bell DJ, Nyirongo S, et al. Low levels of pyrazinamide and ethambutol in children with tuberculosis and impact of age, nutritional status, and human immunodeficiency virus infection. Antimicrob Agents Chemother. 2006;50(2):407–413.
  • Lacroix C, Guyonnaud C, Chaou M, et al. Interaction between allopurinol and pyrazinamide. Eur Respir J. 1988;1(9):807–811.
  • Papastavros T, Dolovich LR, Holbrook A, et al. Adverse events associated with pyrazinamide and levofloxacin in the treatment of latent multidrug-resistant tuberculosis. CMAJ. 2002;167(2):131–136.
  • Gumbo T, Dona CSWS, Meek C, et al. Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother. 2009;53(8):3197–3204.
  • Niemi M, Backman JT, Fromm MF, et al. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet. 2003;42(9):819–850.
  • Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158(3):693–705.
  • Boeree MJ, Diacon AH, Dawson R, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191(9):1058–1065.
  • Gumbo T, Louie A, Deziel MR, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51(11):3781–3788.
  • Jayaram R, Gaonkar S, Kaur P, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47(7):2118–2124.
  • Pargal A, Rani S. Non-linear pharmacokinetics of rifampicin in healthy Asian Indian volunteers. Int J Tuberc Lung Dis. 2001;5(1):70–79.
  • Smythe W, Khandelwal A, Merle C, et al. A semimechanistic pharmacokinetic-enzyme turnover model for rifampin autoinduction in adult tuberculosis patients. Antimicrob Agents Chemother. 2012;56(4):2091–2098.
  • Jadhav MV, Sathe AG, Deore SS, et al. Tissue concentration, systemic distribution and toxicity of clofazimine-an autopsy study. Indian J Pathol Microbiol. 2004;47(2):281–283.
  • Mehta J, Gandhi IS, Sane SB, et al. Effect of clofazimine and dapsone on rifampicin (Lositril) pharmacokinetics in multibacillary and paucibacillary leprosy cases. Lepr Rev. 1986;57 Suppl 3:67–76.
  • Wilson JG. Present status of drugs as teratogens in man. Teratology. 1973;7(1):3–15.
  • Jenner PJ, Ellard GA, Gruer PJ, et al. A comparison of the blood levels and urinary excretion of ethionamide and prothionamide in man. J Antimicrob Chemother. 1984;13(3):267–277.
  • Sotgiu G, Centis R, D’Ambrosio L, et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J. 2012;40(6):1430–1442.
  • Slatter JG, Stalker DJ, Feenstra KL, et al. Pharmacokinetics, metabolism, and excretion of linezolid following an oral dose of [(14)C]linezolid to healthy human subjects. Drug Metab Dispos. 2001;29(8):1136–1145.
  • Panomvana D, Kiatjaroensin SA, Phiboonbanakit D. Correlation of the pharmacokinetic parameters of amikacin and ceftazidime. Clin Pharmacokinet. 2007;46(10):859–866.
  • Foulds G, Shepard RM, Johnson RB. The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother. 1990;25 Suppl A:73–82.
  • Fraschini F, Scaglione F, Demartini G. Clarithromycin clinical pharmacokinetics. Clin Pharmacokinet. 1993;25(3):189–204.
  • Ginsburg AS, Grosset JH, Bishai WR. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis. 2003;3(7):432–442.
  • Shandil RK, Jayaram R, Kaur P, et al. Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against Mycobacterium tuberculosis: evaluation of in vitro and pharmacodynamic indices that best predict in vivo efficacy. Antimicrob Agents Chemother. 2007;51(2):576–582.
  • Moise PA, Birmingham MC, Schentag JJ. Pharmacokinetics and metabolism of moxifloxacin. Drugs Today (Barc). 2000;36(4):229–244.
  • Lounis N, Bentoucha A, Truffot-Pernot C, et al. Effectiveness of once-weekly rifapentine and moxifloxacin regimens against Mycobacterium tuberculosis in mice. Antimicrob Agents Chemother. 2001;45(12):3482–3486.
  • Nuermberger EL, Yoshimatsu T, Tyagi S, et al. Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am J Respir Crit Care Med. 2004;170(10):1131–1134.
  • Gillespie SH, Crook AM, McHugh TD, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med. 2014;371(17):1577–1587.
  • Jawahar MS, Banurekha VV, Paramasivan CN, et al. Randomized clinical trial of thrice-weekly 4-month moxifloxacin or gatifloxacin containing regimens in the treatment of new sputum positive pulmonary tuberculosis patients. PLoS One. 2013;8(7):e67030.
  • Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J Infect Dis. 2004;190(9):1642–1651.
  • Wong FA, Flor SC. The metabolism of ofloxacin in humans. Drug Metab Dispos. 1990;18(6):1103–1104.
  • Polk RE. Drug-drug interactions with ciprofloxacin and other fluoroquinolones. Am J Med. 1989;87(5, Supplement 1):S76–S81.
  • Working Group on New Drugs. Stop TB Partnership. 2015 [cited 2015 Dec 1]. Available from: http://www.newtbdrugs.org/pipeline.php
  • Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307(5707):223–227.
  • Huitric E, Verhasselt P, Andries K, et al. In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother. 2007;51(11):4202–4204.
  • Petrella S, Cambau E, Chauffour A, et al. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob Agents Chemother. 2006;50(8):2853–2856.
  • Diacon AH, Pym A, Grobusch MP, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med. 2014;371(8):723–732.
  • Diacon AH, Donald PR, Pym A, et al. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: long-term outcome, tolerability, and effect on emergence of drug resistance. N Eng J Med. 2014;371(8):723–732.
  • Anonymous. LL-3858. Tuberculosis (Edinb). 2008;88(2):126.
  • Diacon AH, Dawson R, Hanekom M, et al. Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis. 2011;15(7):949–954.
  • Hittel N. Open forum II on key issues in TB drug development. London, 2006 [cited 2015 Dec 10]. Available from: http://www.kaisernetwork.org/health_cast/uploaded_files/Hittel,_Norbert_(12-12)_OPC_67683.pdf
  • Sasaki H, Haraguchi Y, Itotani M, et al. Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3-dihydroimidazo[2,1-b]oxazoles. J Med Chem. 2006;49(26):7854–7860.
  • Matsumoto M, Hashizume H, Tomishige T, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 2006;3(11):e466.
  • Choi KP, Bair TB, Bae YM, et al. Use of transposon Tn5367 mutagenesis and a nitroimidazopyran-based selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F(420) biosynthesis by Mycobacterium bovis BCG. J Bacteriol. 2001;183(24):7058–7066.
  • Choi KP, Kendrick N, Daniels L. Demonstration that fbiC is required by Mycobacterium bovis BCG for coenzyme F(420) and FO biosynthesis. J Bacteriol. 2002;184(9):2420–2428.
  • Lenaerts AJ, Gruppo V, Marietta KS, et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother. 2005;49(6):2294–2301.
  • Tyagi S, Nuermberger E, Yoshimatsu T, et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother. 2005;49(6):2289–2293.
  • Winter H, Ginsberg A, Egizi E, et al. Effect of a high-calorie, high-fat meal on the bioavailability and pharmacokinetics of PA-824 in healthy adult subjects. Antimicrob Agents Chemother. 2013;57(11):5516–5520.
  • Dogra M, Palmer BD, Bashiri G, et al. Comparative bioactivation of the novel anti-tuberculosis agent PA-824 in Mycobacteria and a subcellular fraction of human liver. Br J Pharmacol. 2011;162(1):226–236.
  • Nuermberger E, Tyagi S, Tasneen R, et al. Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother. 2008;52(4):1522–1524.
  • de Jonge MR, Koymans LHM, Guillemont JEG, et al. A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910. Proteins. 2007;67(4):971–980.
  • Jia L, Noker PE, Coward L, et al. Interspecies pharmacokinetics and in vitro metabolism of SQ109. Br J Pharmacol. 2006;147(5):476–485.
  • Chen P, Gearhart J, Protopopova M, et al. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J Antimicrob Chemother. 2006;58(2):332–337.
  • Anonymous. SQ109. Tuberculosis (Edinb). 2008;88(2):159–161.
  • Sacksteder KA, Protopopova M, Barry CE, et al. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol. 2012;7(7):823–837.
  • Horwith G, Protopopova M, Lyer L, et al. Drug-drug interaction studies of SQ109 with first-line anti-TB drugs. 1st Int Workshop Clin Pharmacol Tuberculosis Drugs; 2008; Toronto, Canada; Abstract no. 16.
  • Centers for Disease Control and Prevention. Managing drug interactions in the treatment of HIV-related tuberculosis [Internet]. 2013 [cited 2015 Nov 25]. Available from: http://www.cdc.gov/tb/publications/guidelines/hiv_aids.htm
  • Kassahun K, McIntosh I, Cui D, et al. Metabolism and disposition in humans of raltegravir (MK-0518), an anti-AIDS drug targeting the human immunodeficiency virus 1 integrase enzyme. Drug Metab Dispos. 2007;35(9):1657–1663.
  • Ngaimisi E, Mugusi S, Minzi O, et al. Effect of rifampicin and CYP2B6 genotype on long-term efavirenz autoinduction and plasma exposure in HIV patients with or without tuberculosis. Clin Pharmacol Ther. 2011;90(3):406–413.
  • Weiner M, Benator D, Burman W, et al. Association between acquired rifamycin resistance and the pharmacokinetics of rifabutin and isoniazid among patients with HIV and tuberculosis. Clin Infect Dis. 2005;40(10):1481–1491.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.