202
Views
4
CrossRef citations to date
0
Altmetric
Review

NAT2 polymorphisms and risk for Parkinson’s disease: a systematic review and meta-analysis

, , &
Pages 937-946 | Received 24 Feb 2016, Accepted 17 May 2016, Published online: 03 Jun 2016

References

  • Hein DW, Rustan TD, Doll MA, et al. Acetyltransferases and susceptibility to chemicals. Toxicol Lett. 1992;6:4–6. Spec No:123-30
  • Hein DW, Doll MA, Fretland AJ, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev. 2000;9:29–42.
  • Nakajima T, Aoyama T. Polymorphism of drug-metabolizing enzymes in relation to individual susceptibility to industrial chemicals. Ind Health. 2000;38:143–152.
  • Grant DM, Goodfellow GH, Sugamori K, et al. Pharmacogenetics of the human arylamine N-acetyltransferases. Pharmacology. 2000;61:204–211.
  • Sim E, Payton M, Noble M, et al. An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaryotes. Hum Mol Genet. 2000;9:2435–2441.
  • Daly AK. Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol. 2003;17:27–41.
  • Sim E, Walters K, Boukouvala S. Arylamine N-acetyltransferases: from structure to function. Drug Metab Rev. 2008;40:479–510.
  • Agúndez JA. Polymorphisms of human N-acetyltransferases and cancer risk. Curr Drug Metab. 2008;9:520–531.
  • Sim E, Lack N, Wang CJ, et al. Arylamine N-acetyltransferases: structural and functional implications of polymorphisms. Toxicology. 2008;254:170–183.
  • Walker K, Ginsberg G, Hattis D, et al. Genetic polymorphism in N-Acetyltransferase (NAT): population distribution of NAT1 and NAT2 activity. J Toxicol Environ Health B Crit Rev. 2009;12:440–472.
  • Zhou X, Ma Z, Dong D, et al. Arylamine N-acetyltransferases: a structural perspective. Br J Pharmacol. 2013;169:748–760.
  • Sim E, Abuhammad A, Ryan A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br J Pharmacol. 2014;171:2705–2725.
  • Grant DM, Hughes NC, Janezic SA, et al. Human acetyltransferase polymorphisms. Mutat Res. 1997;12(376):61–70.
  • Hein DW. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res. 2002;506–507:65–77.
  • Martínez C, Andreu I, Amo G, et al. Gender and functional CYP2C and NAT2 polymorphisms determine the metabolic profile of metamizole. Biochem Pharmacol. 2014;92:457–466.
  • Crook JE, Woosley RL, Leftwich RB, et al. Agranulocytosis during combined procainamide and phenytoin therapy. South Med J. 1979;72:1599–1601.
  • Colmenero JD, Fernández-Gallardo LC, Agúndez JA, et al. Possible implications of doxycycline-rifampin interaction for treatment of brucellosis. Antimicrob Agents Chemother. 1994;38:2798–2802.
  • Andrade RJ, Agúndez JA, Lucena MI, et al. Pharmacogenomics in drug induced liver injury. Curr Drug Metab. 2009;10:956–970.
  • Zanrosso CW, Emerenciano M, Gonçalves BA, et al. N-acetyltransferase 2 polymorphisms and susceptibility to infant leukaemia with maternal exposure to dipyrone during pregnancy. Cancer Epidemiol Biomarkers Prev. 2010;19:3037–3043.
  • García-Martín E, Esguevillas G, Blanca-López N, et al. Genetic determinants of metamizole metabolism modify the risk of developing anaphylaxis. Pharmacogenet Genomics. 2015;25:462–464.
  • Agúndez JAG. NAT2 genotyping: equilibrium between accuracy and feasibility in routine analyses. J Appl Res. 2003;3:118–123.
  • [cited 15 May 2016]. Available from: http://nat.mbg.duth.gr/Human%20NAT2%20alleles_2013.htm
  • Jiménez-Jiménez FJ, Alonso-Navarro H, Ortí-Pareja M. Genética de la enfermedad de Parkinson. En: Jiménez-Jiménez FJ, Luquin MR, Molina JA, et al., Editores. Tratado de los Trastornos del Movimiento. 2ª edición. Vol. 1, Cap.16, p. 331–390, (ISBN 978-84-85424-76-4). Barcelona: Viguera Editores S.L.; 2008.
  • Jiménez-Jiménez FJ, Alonso-Navarro H, Ortí-Pareja M. Epidemiología y etiología no genética de la enfermedad de Parkinson. En: Jiménez-Jiménez FJ, Luquin MR, Molina JA, et al., Editores. Tratado de los Trastornos del Movimiento. 2ª edición. Vol. 1, Cap.17, p. 391–424, (ISBN 978-84-85424-76-4). Barcelona: Viguera Editores S.L.; 2008.
  • Alonso-Navarro H, Jiménez-Jiménez FJ, Pilo de la Fuente B, et al. Mecanismos patogénicos de la enfermedad de Parkinson. En: Jiménez-Jiménez FJ, Luquin MR, Molina JA, et al., Editores. Tratado de los Trastornos del Movimiento. 2ª edición. Vol. 1, Cap.18, p. 425–485, (ISBN 978-84-85424-76-4). Barcelona: Viguera Editores S.L.; 2008.
  • Jiménez-Jiménez FJ, Tabernero C, Mena MA, et al. Acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in a model of rat designated a poor metabolizer of debrisoquine. J Neurochem. 1991;57:81–87.
  • Grundmann M, Earl CD, Sautter J, et al. Slow N-acetyltransferase 2 status leads to enhanced intrastriatal dopamine depletion in 6-hydroxydopamine-lesioned rats. Exp Neurol. 2004;187:199–202.
  • Ladero JM, Jiménez FJ, Benítez J, et al. Acetylator polymorphism in Parkinson’s disease. Eur J Clin Pharmacol. 1989;37:391–393.
  • Igbokwe E, Ogunniyi AO, Osuntokun BO. Xenobiotic metabolism in idiopathic Parkinson’s disease in Nigerian Africans. East Afr Med J. 1993;70:807–809.
  • Bandmann O, Vaughan J, Holmans P, et al. Association of slow acetylator genotype for N-acetyltransferase 2 with familial Parkinson’s disease. Lancet. 1997;350:1136–1139.
  • Tan EK, Khajavi M, Thornby JA, et al. Variability and validity of polymorphism association studies in Parkinson’s disease. Neurology. 2000;55:533–538.
  • Borlak J, Reamon-Buettner SM. N-acetyltransferase 2 (NAT2) gene polymorphisms in Parkinson’s disease. BMC Med Genet. 2006;29;7:30.
  • [cited 15 May 2016]. Available from: http://archive.pdgene.org/geneoverview.asp?geneid=205
  • Ruiz JD, Martínez C, Anderson K, et al. The differential effect of NAT2 variant alleles permits refinement in phenotype inference and identifies a very slow acetylation genotype. PLoS One. 2012;7:e44629.
  • [cited 15 May 2016]. Available from: http://www.hrc.es/investigacion/metadisc.html
  • Zamora J, Abraira V, Muriel A, et al. Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol. 2006;6:31.
  • Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies. J Natl Cancer Inst. 1959;22:719–748.
  • DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188.
  • Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–129.
  • Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. Br Med J. 2003;327:557–560.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.
  • Nicholl DJ, Bennett P. Acetylator genotype and Parkinson’s disease. Lancet. 1998;351:141–142.
  • Agúndez JA, Jiménez-Jiménez FJ, Luengo A, et al. Slow allotypic variants of the NAT2 gene and susceptibility to early-onset Parkinson’s disease. Neurology. 1998;51:1587–1592.
  • Nicholl DJ, Bennett P, Hiller L, et al. A study of five candidate genes in Parkinson’s disease and related neurodegenerative disorders. European study group on atypical parkinsonism. Neurology. 1999;53:1415–1421.
  • Dupret JM, Longuemaux S, Lucotte G. Acetylator genotype for N-acetyltransferase 2 and Parkinson’s disease. Ann Neurol. 1999;46:433–434.
  • Harhangi BS, Oostra BA, Heutink P, et al. N-acetyltransferase-2 polymorphism in Parkinson’s disease: the Rotterdam study. J Neurol Neurosurg Psychiatry. 1999;67:518–520.
  • Bandmann O, Vaughan JR, Holmans P, et al. Detailed genotyping demonstrates association between the slow acetylator genotype for N-acetyltransferase 2 (NAT2) and familial Parkinson’s disease. Mov Disord. 2000;15:30–35.
  • Maraganore DM, Farrer MJ, Hardy JA, et al. Case-control study of debrisoquine 4-hydroxylase, N-acetyltransferase 2, and apolipoprotein E gene polymorphisms in Parkinson’s disease. Mov Disord. 2000;15:714–719.
  • Liu P, Liu Z, Shao M. Relationship between genetic polymorphism of N- acetyltransferase and early-onset Parkinson disease. Chinese J Neurol. 2001;34:5–8.
  • Białecka M, Droździk M, Podraza H. [Role of gene polymorphism of catechol-O-methyltransferase (COMT), monoamine oxidase B (MAOB), cytochrome P450 2D6 (CYP2D6) and N-acetyltransferase 2 (NAT2) in pathogenesis of Parkinson’s disease]. Neurol Neurochir Pol. 2002;36:113–121.
  • Chan DK, Lam MK, Wong R, et al. Strong association between N-acetyltransferase 2 genotype and PD in Hong Kong Chinese. Neurology. 2003;60:1002–1005.
  • van der Walt JM, Martin ER, Scott WK, et al. Genetic polymorphisms of the N-acetyltransferase genes and risk of Parkinson’s disease. Neurology. 2003;60:1189–1191.
  • Liu P, Liu ZL, Yang JF, et al. Relationship of early Parkinson’s diseases to the polymorphisms of cytochrome P4501A1 gene and n-acetyltransferase 2 gene and individual predisposition to Parkinson ‘s disease. Chinese J Clin Rehabil. 2004;8:621–623.
  • Chaudhary S, Behari M, Dihana M, et al. Association of N-acetyl transferase 2 gene polymorphism and slow acetylator phenotype with young onset and late onset Parkinson’s disease among Indians. Pharmacogenet Genomics. 2005;15:731–735.
  • Fung HC, Scholz S, Matarin M, et al. Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol. 2006;5:911–916.
  • Dick FD, De Palma G, Ahmadi A, et al. Gene-environment interactions in parkinsonism and Parkinson’s disease: the Geoparkinson study. Occup Environ Med. 2007;64:673–680.
  • Gołab-Janowska M, Honczarenko K, Gawrońska-Szklarz B, et al. The role of NAT2 gene polymorphism in aetiology of the most frequent neurodegenerative diseases with dementia. Neurol Neurochir Pol. 2007;41:388–394.
  • Bialecka M, Klodowska-Duda G, Honczarenko K, et al. Polymorphisms of catechol-0-methyltransferase (COMT), monoamine oxidase B (MAOB), N-acetyltransferase 2 (NAT2) and cytochrome P450 2D6 (CYP2D6) gene in patients with early onset of Parkinson’s disease. Parkinsonism Relat Disord. 2007;13:224–229.
  • Pankratz N, Wilk JB, Latourelle JC, et al. Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet. 2009;124:593–605.
  • Simon-Sanchez J, Schulte C, Bras JM, et al. Genomewide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41:1308–1312.
  • Palacios N, Weisskopf M, Simon K, et al. Polymorphisms of caffeine metabolism and estrogen receptor genes and risk of Parkinson’s disease in men and women. Parkinsonism Relat Disord. 2010;16:370–375.
  • Singh M, Khanna VK, Shukla R, et al. Association of polymorphism in cytochrome P450 2D6 and N-acetyltransferase-2 with Parkinson’s disease. Dis Markers. 2010;28:87–93.
  • De Palma G, Dick FD, Calzetti S, et al. A case-control study of Parkinson’s disease and tobacco use: gene-tobacco interactions. Mov Disord. 2010;25:912–919.
  • Gobel A, MacKlin EA, Winkler S, et al. Interaction of NAT2 and UCHL1 genotypes influences the risk and age at onset of Parkinson’s disease. Mov Disord. 2011;26(Suppl. 2):S308–S309.
  • Matmurodov RJ, Khalimova KM, Raimova MM. The study of polymorphism S282T Nat2 gene in the development of Parkinson’s disease in people of Uzbek nationality. Eur J Neurol. 2012;19(Suppl. 1):692.
  • Vishwanathan PM, Markandeyan D, Jayaraman M, et al. Genetic association studies (single nucleotide polymorphisms) in south indian Parkinson’s disease patients and controls. Ann Neurol. 2012;72(Suppl. 16):S106.
  • Göbel A, Macklin EA, Winkler S, et al. Genetic risk factors in Parkinson’s disease: single gene effects and interactions of genotypes. J Neurol. 2012;259:2503–2505.
  • García-Martín E. Interethnic and intraethnic variability of NAT2 single nucleotide polymorphisms. Curr Drug Metab. 2008;9:487–497.
  • Agúndez JA, Martínez C, Olivera M, et al. Molecular analysis of the arylamine N-acetyltransferase polymorphism in a Spanish population. Clin Pharmacol Ther. 1994;56:202–209.
  • Agúndez JA, Olivera M, Martínez C, et al. Identification and prevalence study of 17 allelic variants of the human NAT2 gene in a white population. Pharmacogenetics. 1996;6:423–428.
  • Kang SH, Park G, Jang SJ, et al. Novel NAT2 haplotyping using allele-specific sequencing. Pharmacogenomics. 2014;15:1117–1124.
  • Selinski S, Blaszkewicz M, Ickstadt K, et al. Improvements in algorithms for phenotype inference: the NAT2 example. Curr Drug Metab. 2014;15:233–249.
  • Selinski S, Blaszkewicz M, Agundez JA, et al. Clarifying haplotype ambiguity of NAT2 in multi-national cohorts. Front Biosci (Schol Ed). 2013;5:672–684.
  • Agúndez JA, Golka K, Martínez C, et al. Unraveling ambiguous NAT2 genotyping data. Clin Chem. 2008;54:1390–1394.
  • Alonso-Navarro H, Jiménez-Jiménez FJ, García-Martín E, et al. Genomic and pharmacogenomic biomarkers of Parkinson’s disease. Curr Drug Metab. 2014;15:129–181.
  • Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, et al. Advances in understanding genomic markers and pharmacogenetics of Parkinson’s disease. Expert Opin Drug Metab Toxicol. 2016;12:433–448.
  • Lu Y, Mo C, Zeng Z, et al. CYP2D6*4 allele polymorphism increases the risk of Parkinson’s disease: evidence from meta-analysis. PLoS One. 2013;8:e84413.
  • Wang T, Wang B. Association between Glutathione S-transferase M1/Glutathione S-transferase T1 polymorphisms and Parkinson’s disease: a meta-analysis. J Neurol Sci. 2014;338:65–70.
  • Wang D, Zhai JX, Zhang LM, et al. Null genotype of GSTT1 contributes to increased Parkinson’s disease risk in Caucasians: evidence from a meta-analysis. Mol Biol Rep. 2014;41:7423–7430.
  • Ayuso P, Martínez C, Lorenzo-Betancor O, et al. A polymorphism located at an ATG transcription start site of the heme oxygenase-2 gene is associated with classical Parkinson’s disease. Pharmacogenet Genomics. 2011;21:565–571.
  • Ayuso P, Martínez C, Pastor P, et al. An association study between Heme oxygenase-1 genetic variants and Parkinson’s disease. Front Cell Neurosci. 2014;8:298.
  • Agúndez JA, Jiménez-Jiménez FJ, Luengo A, et al. Association between the oxidative polymorphism and early onset of Parkinson’s disease. Clin Pharmacol Ther. 1995;57:291–298.
  • Patillon B, Luisi P, Poloni ES, et al. A homogenizing process of selection has maintained an ‘ultra-slow’ acetylation NAT2 variant in humans. Hum Biol. 2014;86:185–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.